1.4: ASSOCIATION OF 24 HOUR AORTIC AMBULATORY BLOOD PRESSURE MONITORING WITH LEFT VENTRICULAR MASS

A.A. Argyris, G. Kollias, T.G. Papaioannou, E. Nasothimiou, J. Blacher, M.E. Safar, A. Achimastos, P.P. Sfikakis, A.D. Protogerou

To cite this article: A.A. Argyris, G. Kollias, T.G. Papaioannou, E. Nasothimiou, J. Blacher, M.E. Safar, A. Achimastos, P.P. Sfikakis, A.D. Protogerou (2012) 1.4: ASSOCIATION OF 24 HOUR AORTIC AMBULATORY BLOOD PRESSURE MONITORING WITH LEFT VENTRICULAR MASS, Artery Research 6:4, 142–142, DOI: https://doi.org/10.1016/j.artres.2012.09.010

To link to this article: https://doi.org/10.1016/j.artres.2012.09.010

Published online: 21 December 2019
1.4 ASSOCIATION OF 24 HOUR AORTIC AMBULATORY BLOOD PRESSURE MONITORING WITH LEFT VENTRICULAR MASS

A. A. Argyris 1, G. Kollias 1, T. G. Papaioannou 2, E. Nasothimiou 2, J. Blacher 3, M. E. Safar 4, A. Achimastos 3, P. P. Sfikakis 1, A. D. Protogerou 1

1Hypertension Center and Cardiovascular Research Laboratory, 1st Dpt of Propaedeutic Medicine, "Laiko" Hospital, Athens, Greece
2Biomedical Engineering Unit, 1st Dpt of Cardiology, "Hippokration" Hospital, Athens, Greece
3Hypertension Center, 3rd University Dpt of Medicine, "Sotiria" Hospital, Athens, Greece
4Paris Descartes University, AP-HP, Diagnosis and Therapeutic Center, Hôtel-Dieu, Paris, France

Introduction: There is evidence suggesting the superiority of office aortic blood pressure (BP) over office brachial in the management of arterial hypertension. The 24-hour ambulatory blood pressure monitoring (ABPM) is regarded as the optimal method for assessing BP profile; the non-invasive 24-hour aortic ABPM is now feasible.

Objective: To investigate the association and possible superiority of 24-hour aortic BP over 24-hour brachial and office BP (aortic or brachial) in the assessment of target organ damage. Non-invasive 24-hour aortic and brachial ABPM was performed using Mobilo-O-Graph, IEM, a validated brachial cuff based oscillometric device which calibrates the obtained brachial pressure waveform either using SBP and DBP (calib 1) or MBP and DBP (calib 2).

Design and methods: 184 subjects (mean age 55.4 ± 14 years, 54% male, 48% hypertensives) underwent aortic pressure (b) and aortic pressure (SphygmoCor) BP assessment, 24-hour aortic and brachial ABPM and cardiac ultrasound.

Results: The correlation of BP indices with left ventricular mass indexed for body surface area as well as the R square values from multivariate analysis are provided in the table. Using Fisher’s z-transformation it was shown that among all SBP parameters only aSBP calib2 had significantly higher correlation coefficient with LVMass compared to office brachial SBP; aSBP calib2 tended to have marginally significantly closer correlation with LVMass than aSBP calib1 (p = 0.085). For the provided correlation coefficients (age & gender):

<table>
<thead>
<tr>
<th></th>
<th>Univariate models: Pearson correlation coefficients</th>
<th>Multivariate models: R square values</th>
</tr>
</thead>
<tbody>
<tr>
<td>bSBP office (mmHg)</td>
<td>0.29***</td>
<td>0.204</td>
</tr>
<tr>
<td>aSBP office (mmHg)</td>
<td>0.28*</td>
<td>0.221</td>
</tr>
<tr>
<td>bSBP 24h (mmHg)</td>
<td>0.39**</td>
<td>0.292</td>
</tr>
<tr>
<td>aSBP 24h calib1 (mmHg)</td>
<td>0.33**</td>
<td>0.266</td>
</tr>
<tr>
<td>aSBP 24h calib2 (mmHg)</td>
<td>0.503**</td>
<td>0.347</td>
</tr>
</tbody>
</table>

(***p<0.001 for the provided correlation coefficients)

1.5 BLOOD PRESSURE-INDEPENDENT ASSOCIATION BETWEEN AORTIC CHARACTERISTIC IMPEDANCE AND LEFT VENTRICULAR MASS IN HYPERTENSION

G. Pucci 1, F. Battista 1, L. Settimi 1, B. Hametner 2, S. Wassertheurer 2, G. Schillaci 1

1University of Perugia at Terni, Terni, Italy
2Austrian Institute of Technology, Vienna, Austria

Background: It is uncertain whether pressure/flow ratio in the proximal aorta, namely aortic characteristic impedance (Zc), is related to left ventricular (LV) mass independently of blood pressure (BP) level.

Methods: 435 never-treated subjects with uncomplicated essential hypertension free from overt cardiovascular disease (men 62%, age 48.1 ± 11 years, BP 148/92 ± 16/10 mmHg) underwent M-mode echocardiography and 24-hour BP monitoring. Aortic waveform was obtained from tonometric radial waveform with a validated generalized transfer function (SphygmoCor). Aortic Zc and forward (Pf) and backward (Pb) wave amplitudes were calculated from central waveform using an aortic blood flow model based on higher-order Windkessel theory (ArcSolver). [Weber T et al, Hypertension EPub May 14, 2012].

Results: Patients with LV hypertrophy (LV mass > 51 g/m²²) had a higher brachial systolic BP (153±18 vs 146±15 mmHg, p<0.001), central systolic BP (142±18 vs 133±16 mmHg, p<0.001), aortic Zc (0.235±0.08 vs 0.211±0.06 AU, p<0.001), Pf (31.7±9 vs 28.6±7 mmHg, p<0.001), and Pb (19.8±7 vs 18.1±5 mmHg, p=0.02), while reflection magnitude (Pb/Pf) did not differ (0.62±0.10 vs 0.63±0.10, p=0.3). After controlling for age, sex, and mean arterial pressure as a measure of distending pressure, LV mass index maintained an independent association with Zc (partial r=0.14, p=0.002), while the association of either Pf or Pb with LV mass became no longer significant. In a multiple linear regression model, Zc independently predicted LV mass index (p=0.116, p<0.005) along with age, mean arterial pressure, and body mass index.

Conclusion: Aortic characteristic impedance has a significant, pressure-independent relationship with LV mass in human hypertension.