1.3: CENTRAL BLOOD PRESSURE: EFFECTS OF CARDIOVASCULAR RISK FACTORS OR PRESENCE OF METABOLIC SYNDROME (ON BEHALF OF THE REFERENCE VALUES FOR ARTERIAL MEASUREMENTS COLLABORATION)

A. Herbert

To cite this article: A. Herbert (2012) 1.3: CENTRAL BLOOD PRESSURE: EFFECTS OF CARDIOVASCULAR RISK FACTORS OR PRESENCE OF METABOLIC SYNDROME (ON BEHALF OF THE REFERENCE VALUES FOR ARTERIAL MEASUREMENTS COLLABORATION), Artery Research 6:4, 141–142, DOI: https://doi.org/10.1016/j.artres.2012.09.009

To link to this article: https://doi.org/10.1016/j.artres.2012.09.009

Published online: 21 December 2019
Non-invasive measures of common carotid artery properties, such as diameter, distension and local pulse pressure, have been widely used to determine carotid stiffness (CS), which is associated with cardiovascular disease (CVD). The interpretation of CS values measured across different age, sex and risk groups has been hampered by the absence of reference values, however. We therefore aimed to establish reference intervals of CS (obtained by echotracking) to help interpretation of these measures both in research and clinical settings.

We combined CS data on 10,749 individuals (53% men; age range 15-99 years) from 13 research centres worldwide. Individuals without CVD, cardiovascular risk factors and who were not on blood pressure- and/or lipid-lowering medication constituted the ‘normal’ healthy sub-population (n=2,281), which will be used to establish equations for percentiles of CS across age. With these equations we further plan to generate CS Z-scores in different sub-populations thereby allowing for a standardized comparison between observed and predicted (normal) values from individuals of the same age. The independent associations of known cardiovascular risk factors will then be assessed with multiple linear regression analyses, using these Z-scores as outcome variables.

The exact results are expected by the time of Artery 12. We hope to estimate age-specific percentiles of CS in a healthy population and to assess the associations of cardiovascular risk factors with CS Z-scores, which will enable comparison of CS values for (patient) groups with different cardiovascular risk profiles, helping interpretation of such measures when observed and predicted (normal) values from individuals of the same age.

The independent associations of known cardiovascular risk factors will then be assessed with multiple linear regression analyses, using these Z-scores as outcome variables.
Conclusions: In these subjects, when adjusting for high normal BP, cSBP is still strongly influenced by the cumulative number of CVRFs. The association between MetS and cSBP is mainly driven by the inclusion of high normal BP in its definition.

1.4 ASSOCIATION OF 24 HOUR AORTIC AMBULATORY BLOOD PRESSURE MONITORING WITH LEFT VENTRICULAR MASS

A. A. Argyris 1, G. Kollias 1, T. G. Papaioannou 2, E. Nasothimiu 3, J. Blacher 4, N. E. Safar 4, A. Achimastos 3, P. P. Sfikakis 1, A. D. Protegoreou 1

1Hypertension Center and Cardiovascular Research Laboratory, 1st Dpt of Propaeudeitic Medicine, "Laiko" Hospital, Athens, Greece
2Biomedical Engineering Unit, 1st Dpt of Cardiology, "Hippokration" Hospital, Athens, Greece
3Hypertension Center, 3rd University Dpt of Medicine, "Sotiria" Hospital, Athens, Greece
4Paris Descartes University, AP-HP, Diagnosis and Therapeutic Center, Hôtel-Dieu, Paris, France

Introduction: There is evidence suggesting the superiority of office aortic blood pressure (BP) over office brachial in the management of arterial hypertension. The 24 hour ambulatory blood pressure monitoring (ABPM) is regarded as the optimal method for assessing BP profile; the non-invasive 24 hour aortic ABPM is now feasible.

Objective: To investigate the association and possible superiority of 24h aortic BP over 24h brachial and office BP (aortic or brachial) in the assessment of target organ damage. Non-invasive 24h aortic and brachial ABPM was performed using Mobilo-O-Graph, IEM, a validated brachial cuff based oscillometric device which calibrates the obtained brachial pressure waveform either using SBP and DBP (calib 1) or MBP and DBP (calib 2).

Design and methods: 184 subjects (mean age 55±14 years, 54% male, 48% hypertensives) underwent office brachial (b) and aortic (a) (SphygmoCor) BP assessment, 24h brachial and aortic ABPM and cardiac ultrasound.

Results: The correlation of BP indices with left ventricular mass indexed for body surface area as well as the R square values from multivariate analysis are provided in the table. Using Fisher’s z-transformation it was shown that among all SBP parameters only aSBP 24 calib2 had significantly higher correlation coefficient with LVMass compared to office brachial SBP; aSBP calib2b tended to have marginally significantly closer correlation with LVMass than aSBP calib1 (p = 0.055).

Conclusion: In the present study 24h aortic SBP calibrated with MBP and DBP seems to be the best alternative to office brachial SBP to assess the association between BP and LVMass.

Table 1

<table>
<thead>
<tr>
<th>Status</th>
<th>cSBP values stratified by metabolic syndrome and brachial BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No MetS, low BP</td>
<td>200</td>
</tr>
<tr>
<td>MetS, low BP</td>
<td>150</td>
</tr>
<tr>
<td>No MetS, high BP</td>
<td>100</td>
</tr>
<tr>
<td>MetS, high BP</td>
<td>50</td>
</tr>
</tbody>
</table>

1.5 BLOOD PRESSURE-INDEPENDENT ASSOCIATION BETWEEN AORTIC CHARACTERISTIC IMPEDANCE AND LEFT VENTRICULAR MASS IN HYPERTENSION

G. Pucci 1, F. Battista 1, L. Settimi 1, B. Hametner 4, S. Wasserteurer 2, G. Schillaci 1
1University of Perugia at Terni, Terni, Italy
4Austrian Institute of Technology, Vienna, Austria

Background: It is uncertain whether pressure/flow ratio in the proximal aorta, namely aortic characteristic impedance (Zc), is related to left ventricular (LV) mass independently of blood pressure (BP) level.

Methods: 435 never-treated subjects with uncomplicated essential hypertension free from overt cardiovascular disease (men 62%, age 48±11 years, BP 148/92±10 mmHg) underwent H-mode echocardiography and 24-hour BP monitoring. Aortic waveform was obtained from tonometric radial waveform with a validated generalized transfer function (SphygmoCor). Aortic Zc and forward (Pf) and backward (Pb) wave amplitudes were calculated from central waveform using an aortic blood flow model based on higher-order Windkessel theory (ArcSolver). [Webber T et al, Hypertension EPub May 14, 2012].

Results: Patients with LV hypertrophy (LV mass >51 g/m2²) had a higher brachial systolic BP (SBP 153±18 vs 146±15 mmHg, p<0.001), central systolic BP (142±18 vs 133±16 mmHg, p<0.001), aortic Zc (0.235±0.08 vs 0.211±0.06 AU, p<0.001), Pb (31.7±9 vs 28.6±7 mmHg, p<0.001), and Pb/Pf (19.8±7 vs 18.1±5 mmHg, p=0.02), while reflection magnitude (Pb/Pf) did not differ (0.62±0.10 vs 0.63±0.10, p=0.3). After controlling for age, sex, and mean arterial pressure as a measure of distending pressure, LV mass index maintained an independent association with Zc (partial r = 0.14, p=0.002), while the association of either Pb or Pb/Pf with LV mass became no longer significant. In a multiple linear regression model, Zc independently predicted LV mass index (β=0.116, p=0.005) along with age, mean arterial pressure, and body mass index.

Conclusion: Aortic characteristic impedance has a significant, pressure-independent relationship with LV mass in human hypertension.

1.6 SPIRONOLACTONE REDUCES AORTIC STIFFNESS IN PEOPLE WITH A HYPERTENSIVE RESPONSE TO EXERCISE VIA THE BLOOD PRESSURE-INDEPENDENT EFFECTS OF CARNOATO

S. B. Nikolic 1, L. M. Edwards 2, R. Wilson 3, J. L. Hare 4, T. H. Marwick 5, J. E. Sharman 1
1Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
2School of Biological Sciences, University of Essex, Colchester, United Kingdom
3Central Science Laboratory, University of Tasmania, Hobart, Australia
4Baker IDI Medical Research Institute, Melbourne, Australia
5Cleveland Clinic, Cleveland, United States

Background: A hypertensive response to exercise (HRE) is associated with increased aortic stiffness. Spironolactone is thought to improve aortic stiffness via BP-independent (antifibrotic) effects, but the exact mechanisms are unknown. This study aimed to determine the underlying physiological actions of spironolactone in people with HRE.

Methods: 115 people with HRE (aged 54±9 years) were randomized to three months spironolactone (25mg/d) or placebo. Serum samples and physiological data including aortic stiffness (pulse wave velocity; PWV) and 24 hour ambulatory BP were recorded at baseline and three months. Liquid