1.6: SPIRONOLACTONE REDUCES AORTIC STIFFNESS IN PEOPLE WITH A HYPERTENSIVE RESPONSE TO EXERCISE VIA THE BLOOD PRESSURE-DEPENDENT EFFECTS OF CANRENOATE

S.B. Nikolic, L.M. Edwards, R. Wilson, J.L. Hare, T.H. Marwick, J.E. Sharman

To cite this article: S.B. Nikolic, L.M. Edwards, R. Wilson, J.L. Hare, T.H. Marwick, J.E. Sharman (2012) 1.6: SPIRONOLACTONE REDUCES AORTIC STIFFNESS IN PEOPLE WITH A HYPERTENSIVE RESPONSE TO EXERCISE VIA THE BLOOD PRESSURE-DEPENDENT EFFECTS OF CANRENOATE, Artery Research 6:4, 142–143, DOI: https://doi.org/10.1016/j.artres.2012.09.012

To link to this article: https://doi.org/10.1016/j.artres.2012.09.012

Published online: 21 December 2019
Table 1

<table>
<thead>
<tr>
<th>Status</th>
<th>cSBP values stratified by metabolic syndrome and brachial BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>No MetS, low BP</td>
<td>Central SBP (mmHg)</td>
</tr>
<tr>
<td>MetS, low BP</td>
<td>150</td>
</tr>
<tr>
<td>No MetS, high BP</td>
<td>180</td>
</tr>
<tr>
<td>MetS, high BP</td>
<td>200</td>
</tr>
</tbody>
</table>

Conclusions: In these subjects, when adjusting for high normal BP, cSBP is still strongly influenced by the cumulative number of CVRFs. The association between MetS and cSBP is mainly driven by the inclusion of high normal BP in its definition.

1.4 ASSOCIATION OF 24 HOUR AORTIC AMBULATORY BLOOD PRESSURE MONITORING WITH LEFT VENTRICULAR MASS

A. Argyris 1, G. Kollias 1, T. G. Papaioannou 2, E. Nasothimiou 3, J. Blacher 4, M. E. Safar 4, A. Achimastos 3, P. P. Sfikakis 1, A. D. Protergerou 1

1Hypertension Center and Cardiovascular Research Laboratory, 1st Dpt of Propaedeutic Medicine, "Laiko" Hospital, Athens, Greece
2Biomedical Engineering Unit, 1st Dpt of Cardiology, "Hippokration" Hospital, Athens, Greece
3Hypertension Center, 3rd University Dpt of Medicine, "Sotiria" Hospital, Athens, Greece
4Paris Descartes University, AP-HP, Diagnosis and Therapeutic Center, Hôtel-Dieu, Paris, France

Introduction: There is evidence suggesting the superiority of office aortic blood pressure (BP) over office brachial in the management of arterial hypertension. The 24 hour ambulatory blood pressure monitoring (ABPM) is regarded as the optimal method for assessing BP profile; the non-invasive 24 hour aortic ABPM is now feasible.

Objective: To investigate the association and possible superiority of 24h aortic BP over 24h brachial and office BP (aortic or brachial) in the assessment of target organ damage. Non-invasive 24h aortic and brachial ABPM was performed using Mobilo-O-Graph, IEM, a validated brachial cuff based oscillometric device which calibrates the obtained brachial pressure waveform either using SBP and DBP (calib 1) or MBP and DBP (calib 2).

Design and methods: 184 subjects (mean age 55±14 years, 54% male, 48% hypertensives) underwent office brachial (b) and aortic (a) (SphygmoCor) BP assessment, 24h brachial and aortic ABPM and cardiac ultrasound.

Results: The correlation of BP indices with left ventricular mass indexed for body surface area as well as the R square values from multivariate analysis are provided in the Table. Using Fisher’s z-transformation it was shown that among all SBP parameters only aSBP 24 calib2 had significantly higher correlation coefficient with LVMass compared to office brachial SBP; aSBP calib2 tended to have marginally significantly closer correlation with LVMass than aSBP calib1 (p<0.055).

Conclusion: In the present study 24h aortic SBP calibrated with MBP and DBP seems to be the best alternative to office brachial SBP to assess the association between BP and LVMass.

<table>
<thead>
<tr>
<th>Univariate models:</th>
<th>Pearson correlation coefficients</th>
<th>Multivariate models:</th>
<th>R square values</th>
</tr>
</thead>
<tbody>
<tr>
<td>bSBP office (mmHg)</td>
<td>0.295**</td>
<td>bSBP office (mmHg)</td>
<td>0.204</td>
</tr>
<tr>
<td>aSBP office (mmHg)</td>
<td>0.286*</td>
<td>bSBP 24h (mmHg)</td>
<td>0.292</td>
</tr>
<tr>
<td>bSBP 24h calib 1 (mmHg)</td>
<td>0.338**</td>
<td>bSBP 24h calib 2 (mmHg)</td>
<td>0.347</td>
</tr>
</tbody>
</table>

1.5 BLOOD PRESSURE-INDEPENDENT ASSOCIATION BETWEEN AORTIC CHARACTERISTIC IMPEDANCE AND LEFT VENTRICULAR MASS IN HYPERTENSION

G. Pucci 1, F. Battista 1, L. Settimi 1, B. Hametner 2, S. Wassertheurer 2, G. Schillaci 1

1University of Perugia at Terni, Terni, Italy
2Austrian Institute of Technology, Vienna, Austria

Background: It is uncertain whether pressure/flow ratio in the proximal aorta, namely aortic characteristic impedance (Zc), is related to left ventricular (LV) mass independently of blood pressure (BP) level.

Methods: 435 never-treated subjects with uncomplicated essential hypertension free from overt cardiovascular disease (men 62%, age 48±11 years, BP 148/92±10 mmHg) underwent M-mode echocardiography and 24-hour BP monitoring. Aortic waveform was obtained from tonometric radial waveform with a validated generalized transfer function (SphygmoCor). Aortic Zc and forward (Pf) and backward (Pb) wave amplitudes were calculated from central waveform using an aortic blood flow model based on higher-order Windkessel theory (ArcSolver), [Weber T et al, Hypertension EPub May 14, 2012].

Results: Patients with LV hypertrophy (LV mass >51 g/m²) had a higher brachial systolic BP (SBP 153±18 vs 146±15 mmHg, p<0.001), central systolic BP (142±18 vs 133±16 mmHg, p<0.001), aortic Zc (0.235±0.08 vs 0.211±0.06 AU, p<0.001), Pb (31.7±9 vs 28.6±7 mmHg, p<0.001), and Pb/Pf (19.8±7 vs 18.1±5 mmHg, p≈0.02), while reflection magnitude (Pb/Pf) did not differ (0.62±0.10 vs 0.63±0.10, p≈0.3). After controlling for age, sex, and mean arterial pressure as a measure of distending pressure, LV mass index maintained an independent association with Zc (partial r = 0.14, p≈0.002), while the association of either Pb or Pf with LV mass became no longer significant. In a multiple linear regression model, Zc independently correlated with LV mass (β = 0.116, p=0.005) along with age, mean arterial pressure, and body mass index.

Conclusions: Aortic characteristic impedance has a significant, pressure-independent relationship with LV mass in human hypertension.

1.6 SPIRONOLACTONE REDUCES AORTIC STIFFNESS IN PEOPLE WITH A HYPERTENSIVE RESPONSE TO EXERCISE VIA THE BLOOD PRESSURE-INDEPENDENT EFFECTS OF CANRENOATE

S. B. Nikolic 1, L. M. Edwards 2, R. Wilson 3, J. L. Hare 4, T. H. Marwick 5, J. E. Sharman 1

1Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
2School of Biological Sciences, University of Essex, Colchester, United Kingdom
3Central Science Laboratory, University of Tasmania, Hobart, Australia
4Baker IDI Medical Research Institute, Melbourne, Australia
5Cleveland Clinic, Cleveland, United States

Background: A hypertensive response to exercise (HRE) is associated with increased aortic stiffness. Spironolactone is thought to improve aortic stiffness. Spironolactone reduces aortic stiffness in people with HRE.

Methods: 115 people with HRE (aged 54±9 years) were randomized to three months spironolactone (25mg/d) or placebo. Serum samples and physiological data including aortic stiffness (pulse wave velocity; PWV) and 24 hour ambulatory BP were recorded at baseline and three months. Liquid
chromatography/mass spectrometry and untargeted metabolomics profiling were used to identify metabolites (endogenous and/or drug metabolites) that were significantly different after spironolactone treatment compared with placebo.

Results: Spironolactone significantly reduced aortic PWV ($P = 0.047$), but this change was no longer significant after adjustment for the change in daytime systolic BP ($P = 0.132$). Metabolomics profiling identified 43 features (nothing endogenous) that corresponded to downstream spironolactone metabolites, including canrenone, but none of these correlated with the change in aortic PWV ($P < 0.05$ for all). However, canrenone was significantly related to the reduction in daytime systolic BP ($r = -0.355$, $P = 0.017$) and 24 hour PP ($r = -0.332$, $P = 0.026$). These associations remained significant on multiple regression analysis after adjustment for sex and body mass index.

Conclusions: The downstream spironolactone metabolite canrenone appears to be an active metabolite with BP-dependent effects on the attenuation of aortic stiffness in people with HRE. This finding, together with the lack of change in endogenous metabolites relating to fibrosis, suggests that the antifibrotic effects of spironolactone could be BP-dependent.

Oral session 2
Free Communication Oral Presentations
In association with the North American Artery Society

2.1 WALL TENSILE STRESS BUT NOT Atherosclerotic RISK FACTORS PREDICTS 3-YEAR CAROTID INTIMA-MEDIA THICKNESS PROGRESSION RATE IN HEALTHY SUBJECTS
M. Kozakov 1,2, C. Morizzo 1, C. Palombo 1, Investigators RISC 2
1University of Pisa, Pisa, Italy
2EGiR-RISC Consortium, Pisa, Italy

In healthy young-to-middle-aged population atherosclerosis is considered marker of early atherosclerosis. However, experimental and clinical studies suggest that changes in arterial wall thickness may also represent an adaptive response to chronic changes in vessel diameter and/or intraluminal BP aimed to normalize wall tensile stress (WTS).

Aim of the study: to assess whether in healthy young-to-middle-aged population a short-term common carotid (CCA) IMT progression rate (ΔIMT) is associated with WTS at baseline.

Methods: study population consisted of 749 healthy subjects at low-average Framingham risk (327 men, age=45±8 years undergoing carotid US, fasting blood test (LDL-and HDL-cholesterol, triglycerides), oral glucose tolerance test and questionnaire regarding smoking and family history of cardiovascular diseases at baseline and after 3-year follow-up. WTS was calculated as (diastolic BPxCCA radius)/IMT.

Results: during a 3-year period, BMI, waist girth, systolic and diastolic BP and plasma glucose increased ($p < 0.001$), HR decreased ($p < 0.001$), and plasma lipids and insulin did not change significantly. CCA diameter (+0.09±0.30 mm, $p < 0.0001$) and IMT (+18±58 μm, $p < 0.0001$) increased, whereas WTS (-0.27±6.70 kPa, $p = 0.36$) remained unchanged. ΔIMT significantly increased by WTS quartiles at baseline ($p < 0.0001$). In multiple regression model, adjusted for gender, smoking, family history and atherosclerotic risk factors (or their 3-year changes), the only independent determinants of ΔIMT were male gender, age and WTS at baseline ($\beta\pm SE$; 0.12±0.04, 0.17±0.04 and 0.32±0.04, cumulative $R^2=0.20$, $p < 0.0001$).

Conclusions: In healthy young-to-middle-aged population, the strongest predictor of short-term IMT progression rate was baseline WTS, followed by age and gender. Thus, IMT increase cannot be always considered marker of atherosclerosis.

2.2 INACCURACIES WITH BRACHIAL AND RADIAL APPLANATION TONOMETRY: SIMILAR IN MAGNITUDE, BUT IN OPPOSITE DIRECTION
T. L. de Backer 1,2, S. J. Vermeersch 1, B. Briege 1, Y. Taeymans 1,2, P. Segers 1, L. van Bortel 1,2
1University Ghent, Ghent, Belgium
2University Hospital Ghent, Ghent, Belgium

Background: It has been postulated that in contrast to the radial artery (RA), brachial artery (BA) tonometry is not capable of accurately acquiring the peak profile of intra-arterial pressure. We investigated this statement in an invasive study through comparison of the measured form factors (FF).

Materials and methods: In 16 subjects (aged 39–82y, 7 males) undergoing an elective coronary angiography, left arm BA and RA pressure waves were recorded invasively (using two high-fidelity tipcatheter pressure wires) and noninvasively (using hand-held applanation tonometry). An average curve per location/technique was constructed. FF was calculated as (mean – min)/(max – min) × 100. Invasive vs. non-invasive and BA vs. RA data were compared.

Results: Form factors and their ratios are shown in the Table as mean±SD.

<table>
<thead>
<tr>
<th></th>
<th>invasive</th>
<th>non-Invasive</th>
<th>noninvasive/invasive</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>40.35±3.20</td>
<td>41.26±4.84</td>
<td>1.021±0.062</td>
</tr>
<tr>
<td>RA</td>
<td>40.27±3.11</td>
<td>39.17±3.75</td>
<td>0.975±0.082</td>
</tr>
<tr>
<td>BA/RA</td>
<td>1.002±0.033</td>
<td>1.055±0.090</td>
<td></td>
</tr>
</tbody>
</table>

In the studied cohort, applanation tonometry tended to overestimate BA FF (i.e. measuring a flattened curve) by 2.1%, yet it also tended to underestimate RA FF (i.e. measuring a more peaked profile) by 2.5%. Combined, these inaccuracies may amplify the BA/RA ratio.

Conclusions: Both RA and BA hand-held applanation tonometries introduce inaccuracies of similar magnitude but in opposite direction. These inaccuracies may lead to errors in the assessment of central pressure and brachial-to-radial amplification. Whether these inaccuracies may be improved by investigator-independent automated applanation tonometry should be investigated.

2.3 CLINICALLY APPLICABLE APPROACH TO DISCRIMINATE BLOOD PRESSURE DEPENDENT AND INDEPENDENT CHANGES IN ARTERIAL STIFFNESS
Maastricht University Medical Centre, Maastricht, Netherlands

Background: Monitoring of changes in arterial stiffness in hypertensive patients requires consideration of blood pressure (BP) dependent effects. Based on non-invasive measurements of carotid artery BP and cross-sectional area waveforms, we assessed the BP-dependent change in stiffness in 24 patients referred to our outpatient hypertension clinic, irrespective of antihypertensive treatment.

Methods and Results: In 13 women and 11 men (mean±SD; SBP/DBP: 157±26/92±10 mmHg, age: 53±15 yrs, BMI: 29±6 kg/m²) tonometric foot-to-foot carotid-femoral pulse wave velocity (cPWVDC) and common carotid artery cross-sectional area (wall-track) and local pressure waveforms were measured at baseline and at 3-month follow-up. Carotid stiffness was expressed as pulse wave velocity based on the distensibility coefficient (cPWV_{DC}). Per individual, a mono-exponential curve was fitted through baseline carotid diastolic (d), dicrotic notch and systolic (s) pressure-area points to enable prediction of the BP-dependent change in stiffness (expressed as $\text{cPWV}_{\text{DC}}*\text{BP}$). In the studied cohort, $\text{cPWV}_{\text{DC}}*\text{BP}$ was significantly reduced, cPWV_{DI} and (measured) cPWV_{DC} were reduced by 1 m/s, similar to the predicted BP-dependent change in stiffness (Table). Patients showing no change in BP showed no change in stiffness. Correlations were $\text{cPWV}_{\text{DC}}*\text{BP} \text{ vs. cPWV}_{\text{DI}}$: $r = 0.49$ ($p = 0.020$) and $\text{cPWV}_{\text{DC}}*\text{BP}$ vs. measured cPWV_{DC}: $r = 0.45$ ($p = 0.037$), while cPWV_{DI} vs. measured cPWV_{DC}: $r = 0.26$ ($p = 0.22$).

Conclusion: Quantitative assessment of carotid stiffness as function of pressure enables prediction of BP-dependent changes in stiffness. Our clinically applicable approach could help to discriminate pressure dependent and independent effects of antihypertensive treatment on arterial stiffness.