P2.39: ASSESSMENT OF FLOW MEDIATED DILATION. COMPARISON BETWEEN TWO METHODS

S. Rastelli, F. Stea, E. Bozec, L. Zanoli, F. Faita, L. Ghiadoni, P. Castellino, P. Boutouyrie, S. Laurent


To link to this article: https://doi.org/10.1016/j.artres.2012.09.119

Published online: 21 December 2019
Validation of Aortic Pulse Wave Velocity Estimation from Brachial Artery and Finger Blood Pressure Waveforms in Humans: Ability to Detect Age- and Exercise Training-Related Differences in Effective Reflecting Distance and Aortic Pulse Wave Velocity

G. L. Pierce1, D. P. Casey2, J. G. Fiedorowicz1, D. R. Seals3, T. B. Curry2, G. Parati1,3
1University of Iowa, Iowa City, United States
2Mayo Clinic, Rochester, United States
3University of Colorado, Boulder, United States

It has been argued that aortic pulse wave velocity (APWV) cannot be determined from the reflected wave transit time (Δt) because the effective reflecting distance (EFRD, aortic valve to distal reflecting site) is not defined anatomically. We hypothesized that EFRD can be estimated from demographic/anthropometric data and used to indirectly determine APWV from peripheral blood pressure (BP) waveforms in humans. Invasive (n=25, brachial artery) and non-invasive (n=15, EndoPAT) BP waveforms were converted into aortic BP waveforms (transfer function) and 3t computed from decomposed forward and reflected waves. True EFRD was determined from measured carotid-femoral pulse wave velocity (CF-PWV) (SphygmoCor) and Δt. Stepwise regression analysis resulted in the equation: EFRD = 0.173*age+0.661*BMI−34.548 cm, used to indirectly estimate EFRD and APWV in the original 40 healthy adults, and in a separate cohort of young sedentary (YS, n=6; 22±2 years; VO2max 39±2 ml/kg/min), older sedentary (OS, n=24; 62±1 years; VO2max 27±1 ml/kg/min), and older endurance-trained (OT, n=14; 61±2 years; VO2max 46±2 ml/kg/min) subjects. CF-PWV and indirectly determined APWV were highly correlated (r=0.74; Pearson’s R=0.65, P<0.01; interclass correlation coefficient ICC=0.64, P<0.01). In YS, OS and OT, EFRD and APWV were 52.0, 60.6 and 62.3 cm/s, respectively. In healthy adults, APWV can be reliably derived from invasive and non-invasive peripheral BP waveforms using age and BMI to determine EFRD. This method can detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with endurance exercise.

Comparison Between Two Indirect Methods for Pulse Waveform Analysis

C. Ramos1,2,3, L. Lonati3, G. Bilo1,2, A. Faini3, E. Cardona2,4, G. Parati1,3
1Università degli Studi di Milano-Bicocca, Milan, Italy
2University of Guadalajara, Guadalajara, Mexico
3Istituto Auxologico Italiano, Milan, Italy
4Cardiovascular Research Unit, Guadalajara, Mexico

Introduction: The prognostic value of arterial stiffness has been shown in different groups of patients and also in apparently healthy populations. Several studies have already pointed out the prognostic importance of central Systolic Blood Pressure (cSBP).

Aim: To compare two devices that use indirect methods to assess central blood pressure: The Sphygmocor and OMROM HEM-9000Ai.

Inclusion criteria

References:
Abstracts

Flow-mediated dilation after ischemia, %

Flow-mediated dilation post-NTG, %

P2.40
TENSILE MEASUREMENTS ON VERY SMALL BLOOD VESSELS AND VASCULAR GRAFTS
M. S. Stoiher1,4, C. G. Grasl1,4, K. K. Kessler3, B. M. Messner3, VASCULAR GRAFTS
TENSILE MEASUREMENTS ON VERY SMALL BLOOD VESSELS AND
P2.40

M. S. Stoiher1,4, C. G. Grasl1,4, K. K. Kessler3, B. M. Messner3, VASCULAR GRAFTS
TENSILE MEASUREMENTS ON VERY SMALL BLOOD VESSELS AND

Methods: For the tensile measurements a BBOSE ElectroForce system (Bose Corp. MN, USA) with a controllable linear motor for static and dynamic measurements was used. To measure very small ring-shaped specimens the system was modified with a cantilever and a special designed probe fixation.

Firstly, tensile behaviour on thoracic mice aortae after 19 weeks high-fat-diet (group 1) and a control group (group 2) were analyzed. Secondly, on electrospun vascular grafts repeated loading-unloading measurements were performed to obtain the dynamic behaviour in the physiological range.

Results: The modified system allowed measurements on very small specimens (0.7mm inner diameter in case of the mice aortae) and the use of very sensitive load cells of 10N and up to 0.5N. For the mice aortae significant higher maximum tear forces in group 1 with 0.41 +/- 0.12N, than in group 2 with 0.34 +/- 0.10N were measured. Diverse tear forces and braking strains at different zones of the aorta could be observed. For the vascular grafts hysteresis curves could be recorded with peak-to-valley forces of 0.03 to 0.08N, corresponding to 80 and 120mmHg.

Conclusion: The established method enables a reproducible and sensible measurement of static and dynamic mechanical properties in small ring-shaped specimen of arteries and vascular prostheses.

P2.41
ACUTE RESPIRATORY CHANGES IN AUGMENTATION INDEX ARE RELATED TO AORTIC RESERVOIR FUNCTION
M. G. Schultz1, J. E. Davies2, A. D. Hughes2, J. E. Sharman1
1menzies Research Institute Tasmania, Hobart, Australia
2International Centre for Circulatory Health, Imperial College, London, United Kingdom

Background: Augmentation index (Alx) is an independent predictor of mortality. Current theory states augmented pressure (AP) is principally due to wave reflection. Subtle changes in AP occur with respiration, but the mechanisms are not fully understood. This study aimed to determine the possible contribution of wave reflection and aortic reservoir function to respiratory changes in AP.

Methods: Simultaneous invasive pressure and Doppler flow velocity were recorded in the ascending aorta via intra-arterial wire in 24 consecutive participants undergoing cardiac catheterisation or surgery. We performed wave intensity analysis to derive forward and reflected waves, and calculated reservoir pressure in five patients displaying marked respiratory AP changes (see figure). Data was compared between four respiratory cycles of expiration (high AP) with inspiration (low AP) in each individual.

Results: AP and Alx were raised during expiration compared to inspiration (5.6±6mmHg; 10±1% vs. 9±2mmHg; 6±1%; P<0.001 for both). Despite this, wave reflection was not significantly changed (-7x10^5±9x10^5 vs. -6x10^5±5x10^5 W.m^-2; P=0.50). However, reservoir pressure was significantly higher during expiration compared with inspiration (95±23 vs. 88±20 mmHg; P<0.001), as were forward compression waves (41x10^5±27x10^5 vs. 36x10^5±24x10^5 W.m^-2; P=0.04). The change in AP between inspiration and expiration correlated with change in reservoir pressure (r=0.81, P<0.001), but not reflected wave intensity (r=-0.19, P=0.41) or heart rate (r=-0.33, P=0.15).

Conclusions: Acute changes in AP and Alx occur during normal respiration. These changes appear related to aortic reservoir function and cannot be explained by conventional wave reflection theory.

P2.42
A NEW BLOOD PRESSURE-INDEPENDENT ARTERIAL STIFFNESS INDEX, CARDIO-ANKLE VASCULAR INDEX (CAVI)
K. Shirai
Sakura Hospital, Toho University, Sakura, Chiba, Japan

The Cardio-Ankle Vascular Index (CAVI) is a new indicator of the stiffness of arteries from the origin of the aorta to the ankle of the lower leg. The theory is based on the stiffness parameter β. CAVI is essentially independent of blood pressure at a measuring time. This is confirmed by the study using adrenergic β1 receptor-blocking agent, metoprolol in human. When metoprolol is administered to men, blood pressure decreased and pulse wave velocity is decreased. But, CAVI remains constant. This result was also confirmed by the study on the rabbits using same apparatus.

CAVI increased with aging and showed higher values in males than in females. CAVI showed high value in patients with cerebral infarction, coronary stenosis, and chronic kidney disease. As for the risks of coronary artery disease, CAVI showed high value in hypertension, diabetes mellitus, dyslipidemia, smoking, and metabolic syndrome. Furthermore, improvement of those risk factors by drugs or lifestyle changes reduced CAVI in most cases. In other words, CAVI is a useful indicator for the management of coronary risk factors.