P2.38: COMPARISON BETWEEN TWO INDIRECT METHODS FOR PULSE WAVEFORM ANALYSIS

C. Ramos, L. Lonati, G. Bilo, A. Faini, E. Cardona, G. Parati


To link to this article: https://doi.org/10.1016/j.artres.2012.09.118

Published online: 21 December 2019
P2.37
VALIDATION OF AORTIC PULSE WAVE VELOCITY ESTIMATION FROM BRACHIAL ARTERY AND FINGER BLOOD PRESSURE WAVEFORMS IN HUMANS: ABILITY TO DETECT AGE- AND EXERCISE TRAINING-RELATED DIFFERENCES IN EFFECTIVE REFLECTING DISTANCE AND AORTIC PULSE VELOCITY
G. L. Pierce1, D. P. Casey2, J. G. Fiedorowicz1, D. R. Seals3, T. B. Curry2, J. N. Barnes2, D. R. Wilson1, H. M. Stauss1
1University of Iowa, Iowa City, United States
2Mayo Clinic, Rochester, United States
3University of Colorado, Boulder, United States

It has been argued that aortic pulse wave velocity (APWV) cannot be determined from the reflected wave transit time (Δt) because the effective reflecting distance (EFD, aortic valve to distal reflecting site) is not defined anatomically. We hypothesized that EFRD can be estimated from demographic/anthropometric data and used to indirectly determine APWV from peripheral blood pressure (PP) waveforms in humans. Invasive (n = 25), brachial artery and non-invasive (n = 15, EndoPAT) BP waveforms were converted into aortic BP waveforms (transfer function) and Δt computed from decomposed forward and reflected waves. True EFRD was determined from measured carotid-femoral pulse wave velocity (CF-PWV) (SphygmoCor) and Δt. Stepwise regression analysis resulted in the equation: EFRD = 0.173*age+0.661*BMI+34.548 cm, used to indirectly estimate EFRD and APWV in the original 40 healthy adults, and in a separate cohort of young sedentary (YS, n = 6; 22±2 years; VO2max 39±2 ml/kg/min), older sedentary (OS, n = 24; 62±1 years; VO2max 27±1 ml/kg/min), and older endurance-trained (OT, n = 14; 61±2 years; VO2max 46±2 ml/kg/min) subjects. CF-PWV and indirectly determined APWV were highly correlated (r = 0.74; Pearson’s R = 0.65, P < 0.01; interclass correlation coefficient ICC = 0.64, P < 0.05). In YS, OS and OT, EFRD and APWV were 52.0±1.0, 61.8±1.0 and 60.6±0.5 cm (all P < 0.05) and 6.4±0.3, 9.6±0.2, and 8.1±0.2 m/s (all P < 0.05), respectively. In healthy adults, APWV can be reliably derived from invasive and non-invasive peripheral BP waveforms using age and BMI to determine EFRD. This method can detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with endurance exercise.

P2.38
COMPARISON BETWEEN TWO INDIRECT METHODS FOR PULSE WAVEFORM ANALYSIS
C. Ramos 1,2,3,4, L. Lonati 3, G. Bilo 1,2, A. Faini 3, E. Cardona 2,4, G. Parati 1,3
1Università degli Studi di Milano-Bicocca, Milan, Italy
2University of Guadalajara, Guadalajara, Mexico
3Istituto Auxologico Italiano, Milan, Italy
4Cardiovascular Research Unit, Guadalajara, Mexico

Introduction: The prognostic value of arterial stiffness has been shown in different groups of patients and also in apparently healthy populations. Several studies have already pointed out the prognostic importance of central Systolic Blood Pressure (cSBP). Aim: To compare two devices that use indirect methods to assess central blood pressure: The SphygmoCor and OMRON HEM-9000AI. Inclusion criteria

Age ≥ 18 years, Males and females, Arterial Hypertension

Methods: Eighty-four hypertensive subjects, mean age 58 ± 12 years were examined. Radial artery waveform recording at the left wrist was performed in patients with arrhythmias, severe hypertension, absence of radial pulse, diabetes were excluded. Statistical software version 9.0 was used. Pearson’s correlations and Bland–Altman plots were used to assess the agreement between methods.

Results: cSBP measured with both devices showed a significant correlation, r = 0.76; r² = 0.58. cSBP values recorded with OMRON device were 16 mmHg higher (SD of difference = 13 mmHg) cSBP (Sphyg) and pSBP2 (Omni) values showed a significant correlation (r = 0.74; r² = 0.55, P < 0.001) (Figure 1) mean difference was of -0.8, SD = 13 mmHg.

Conclusion: When compared both devices they offer discordant results, and this discrepancy tends to be larger at higher BP levels. In absence of invasive measurements of central aortic pressure, it is impossible to conclude which of the two systems provides cSBP values closer to true aortic cSBP. Our data suggest that pSBP2 reported by the Omron device more closely reflects the cSBP value assessed by the SphygmoCor device.

References: