P2.29: COMPARISON OF ARTERIAL AUGMENTATION INDICES OBTAINED BY ULTRASOUND WALL TRACKING AND ARTERIAL TONOMETRY

B. Jiang, A. Guilcher, P. Chowienczyk, D. Hou

To link to this article: https://doi.org/10.1016/j.artres.2012.09.110

Published online: 21 December 2019
Arterial augmentation indices (AI, the ratios of differences in the components of arterial pressure during systole to pulse pressure) provide measures of pressure wave reflection and are usually estimated from arterial tonometry. High resolution ultrasound tracking of the arterial wall provides an alternative method for obtaining AI. The objective of the present study was to compare AI measured by tonometry and wall tracking at the carotid, brachial and radial arteries. Forty seven asymptomatic subjects (24 men), aged 23-84 years were studied. At each site, tonometry (SphymoCor system, Atcor medical, Australia) and wall tracking (Aloka \textlessthan}10 ultrasound system with a 10MHz linear vascular transducer, Aloka, Japan) were performed in triplicate in random order. At the carotid artery, there was reasonably good agreement between AI obtained by wall tracking and tonometry (R = 0.82, P < 0.0001, mean difference = 3.0(±13.7%) but at brachial and radial sites agreement was poor (R = 0.33, mean difference = 17.7 ± 24.2% at brachial, R = 0.48, mean difference, 18.1 ± 23.5% at radial). Wall tracking may be a reasonable surrogate for tonometry when measuring AI at the carotid artery but there is poor agreement between AI obtained by tonometry and wall tracking in smaller arteries.

P2.30
DOES OCCLUSION OF THE BRACHIAL ARTERY CAUSE LOCAL OSCILLATION OF ARTERIAL PRESSURE?
O. Korolkova 1,2, K. H. Parker 1, J. E. Davies 2, A. D. Hughes 2, J. H. Siggers 1
1Department of Bioengineering, Imperial College London, London, United Kingdom
2National Heart and Lung Institute, Imperial College London, London, United Kingdom

One-dimensional (1D) models are useful to study pressure and flow waves in large arteries in cases where clinical measurements are not available. Using a simplified 1D model (1) we have modelled the pressure waveform in the brachial artery with and without occlusion, which is relevant to non-invasive measurement of blood pressure with cuff-based devices. The results show that occlusion of the brachial artery leads to superimposed high frequency oscillations in local brachial blood pressure of up to 10mmHg (Fig.). A modelling study of brachial occlusion done independently by a group from Swansea University (2) has also shown similar results. Preliminary data made with a fluid-filled catheter by collaborators in New Zealand (unpublished data) show much smaller pressure fluctuations during cuff occlusion, but the use of a fluid-filled catheter may have damped out the relatively high frequency waves that are predicted. Therefore, measurements of blood pressure using a high-fidelity catheter are being made in patients undergoing routine cardiac catheterization. Pressure waveforms recorded in the brachial, subclavian arteries and the ascending aorta with and without brachial artery occlusion are compared to the predictions of the 1D models.