P2.36: FLOW-MEDIATED VASODILATION PULSE BY PULSE

L.G. Mészáros, J. Mihalicza


To link to this article: https://doi.org/10.1016/j.artres.2012.09.116

Published online: 21 December 2019
P2.33
PERIPHERAL VERSUS CENTRAL PULSE PRESSURE VALUES IN CALCULATIONS OF CAROTID DISTENSIBILITY AND COMPLIANCE
O. Mac Ananey, V. Maher
Adelaide & Meath Hospital Incorporating the National Children’s Hospital, Dublin, Ireland

The aim of our study was to compare carotid compliance and distensibility calculations derived from central aortic pressure and peripheral brachial blood pressure measurements.

For this study 232 healthy, lifelong non-smoking, normotensive subjects (111 male & 121 female) were recruited (age 40±11 years, BMI 25.7±4.1 kg/m²). Augmentation Index (Alx), central aortic pressure (Sphygmacor, Skidmore Medical, UK) and brachial blood pressure (Dynamap Pro, GE, USA), were measured using application tonometry. Stroke changes in common carotid diameter and intima-media thickness (CIMT) were measured from ultrasound (Philips HDX7E, Philips, UK) images using semi-automated software1 (QLAB, Philips, UK). Carotid compliance and distensibility were subsequently calculated using brachial and aortic pulse pressure values.

*Mean Alx, PWV and CIMT was 16.45±14.79 %, 7.04±1.22 m.s⁻¹ and 0.52±0.07 mm respectively. Carotid distensibility & compliance values calculated using brachial blood pressure (35.08±14.75 mmHg & 13.09 m².kPa⁻¹) as significantly (p<0.001) lower compared to aortic derived measurements (48.63±34.81 mmHg & 15.68±13.09 m².kPa⁻¹). Spearman’s analysis showed that aortic derived calculations of compliance & distensibility were more strongly correlated with indices of arterial stiffness compared to brachial derived calculations (Table 1).

| Table 1 | Spearman’s correlation analysis between brachial/aortic pulse pressure derived distensibility/compliance measurements.* |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                | Distensibility  | Compliance       | Distensibility  | Compliance       | Distensibility  | Compliance       | Distensibility  | Compliance       |
|                | r               | r               | r               | r               | r               | r               | r               | r               |
| PWV             | -0.0308         | -0.0367         | -0.3028         | ** -0.2674**    |                 |                 |                 |                 |
| Alx             | 0.0843          | -0.0452         | -0.4298         | *** -0.5250**   |                 |                 |                 |                 |
| CIMT            | -0.0598         | 0.0741          | -0.2327*        | -0.1430         |                 |                 |                 |                 |

The results of the study reveal important considerations for blood pressure derived calculations of arterial stiffness.


P2.34
EFFECT OF DECREASED PERFUSION PRESSURE ON THE DILATATION AND NORMALISATION PROCESSES OF FOREARM SKELETAL MUSCLE VESSELS AFTER ARTERIAL OCCLUSION
D. Matisone, V. Dzerve, I. Kukulis
University of Latvia, Research Institute of Cardiology, Riga, Latvia

Objective: The purpose of this investigation was to determine the effect of decreased perfusion pressure (Pperf.) on the dilatation and normalisation processes of skeletal muscle vessels.

Methods: Ten healthy subjects were investigated in supine position. Blood flow (I) and oxygen consumption (VO2) were studied during reactive hyperemia (RH) caused by arterial occlusion (AO) of 30 sec., 1, 3, 5, 7, 15 and 30 min. in the forearm at the level of the heart and after passive raising the arm above heart level. I was determined by venous occlusion plethysmographic method. VO2 was determined according Fick principle. Total cross-sectional area of forearm blood vessels (Q) was calculated.

Results: Analysis of the forearm I and VO2 in the discrete points of determination during RH revealed that raising the arm above heart level evoked the decrease of maximal values of I and VO2 in the early phase of RH, but further these values becomes greater than those in the horizontal arm position.

Comparison of maximal values of forearm Q revealed that the reduction of Pperf. did not affect dilatation process of skeletal muscle precapillary vessels, but caused a delay of Q normalization during RH.

Conclusions: Dilatation and normalisation processes of skeletal muscle precapillary vessels are two different phenomena which are determined by different local factors. Dilatation reaction of precapillary vessels is determined by disappearing of dynamic component of transmural pressure after AO, but normalisation of resistance vessel tone is dependent from the repayment of O2 debt and blood supply conditions during RH.

P2.35
VASCULAR CONTROL IN DIFFERENT PARTS OF FOREARM ARTERIAL VESSEL TREE IN HEALTHY SUBJECTS DURING RESTING CONDITIONS AND DECREASED PERFUSION PRESSURE
D. Matisone, V. Dzerve, I. Kukulis
University of Latvia, Research Institute of Cardiology, Riga, Latvia

Objective: To investigate the changes in the forearm magistral and capillary vessel tone in two different situations – during spontaneous changes in sympathetic activity and after reduction of perfusion pressure (Pperf.).

Methods: Ten healthy volunteers were studied in supine position. Blood flow (I) and volume pulse amplitude (δV) in the forearm were recorded by venous occlusion plethysmographic method. Systemic arterial pressure was determined auscultatory on the upper arm. Distensibility (D) of magistral arteries was calculated as a ratio between ΔV and pulse pressure (AP). Hemodynamic resistance (R) was calculated as a ratio between mean arterial pressure and I in the forearm. All investigated parameters were studied during resting conditions and after passive raising the arm above heart level.

Results: In the resting conditions I in the forearm oscillated from 0.8-6.3 ml/100cm² min. and corresponding changes was observed in D — when I increased D also increased and visa versa. After reduction of Pperf. forearm D always increased and after the increase of Pperf. - decreased. These changes in D occurred very rapidly (within 2-3 sec.) and remained permanent after the changing of Pperf. Whereas I in the forearm after reduction of Pperf. always decreased, but afterwards in 30% of the cases when initial value of I was below 2 ml/100cm² min. isovolumic autoregulation occurred - I increased and within a minute stabilised on a new increased level.

Conclusion: Intramuscular vessel tone is submitted not only to sympathetic activity and Ptransm. changes as extramuscular arteries, but also to metabolic control.

P2.36
FLOW-MEDIATED VASODILATION PULSE BY PULSE
L. G. Mészáros 1, J. Mihalica 2
1Department of Animal Physiology, University of Kaposvár, Kaposvár, Hungary
2Department of Programming Languages and Compilers, Eötvös Loránd University, Budapest, Hungary

The measurement of flow-mediated dilation (FMD) is a standard method to assess endothelial function in the arteries (1,2). In practice, FMD measures arterial dilation after abruptly releasing the flow in previously clamped arteries (1,2). This clamping-releasing process might be considered as an experimental mimic of pulsation and, thereby, an FMD-equivalent measure might be determined by simply recording dilation that is induced by the initiation of flow during the rise of a pulse. By using piezoelectric and photo-plethysmographic sensors, pressure (PP) and volume pulse (VP) waves were simultaneously recorded from adjacent digits, then their kinetics were compared. The systolic peak of the VP appeared with considerably slower kinetics as compared to that in the PP. The difference in the kinetics—either max. rate of rise or delay time (Fig. 1) computed after length-normalizing the pulses—was found to relate to the (a) subjects’ age, (b) systolic blood pressure and (c) pulse wave velocity. Importantly, the kinetic differences between the PP and the VP of older subjects were apparently eliminated by the administration of sublingual nitroglycerin, suggesting that the rate of rise in the VP is a measure of endothelium-dependent vasodilation.

Our results imply the existence of a nitric oxide-dependent, flow-mediated mechanism of arterial dilation that operates pulse-by-pulse, on which basis a simple pulse contour analysis method, which might provide equivalent results as FMD, is developed to that assess endothelial function in the arteries.
P2.37
VALIDATION OF AORTIC PULSE WAVE VELOCITY ESTIMATION FROM BRACHIAL ARTERY AND FINGER BLOOD PRESSURE WAVEFORMS IN HUMANS: ABILITY TO DETECT AGE- AND EXERCISE TRAINING-RELATED DIFFERENCES IN EFFECTIVE REFLECTING DISTANCE AND AORTIC PULSE WAVE VELOCITY

G. L. Pierce 1, D. P. Casey 2, J. G. Fiedorowicz 1, D. R. Seals 3, T. B. Curry 2, J. N. Barnes 2, D. R. Wilson 1, H. M. Stauss 1
1University of Colorado, Boulder, United States
2Mayo Clinic, Rochester, United States
3University of Iowa, Iowa City, United States

It has been argued that aortic pulse wave velocity (APWW) cannot be determined from the reflected wave transit time (Δt) because the effective reflecting distance (ERD, aortic valve to distal reflecting site) is not defined anatomically. We hypothesized that ERD can be estimated from demographic/anthropometric data and used to indirectly determine APWW from peripheral blood pressure (BP) waveforms in humans. Invasive (n=25, brachial artery) and non-invasive (n=15, EndoPAT) BP waveforms were converted into aortic BP waveforms (transfer function) and Δt computed from decomposed forward and reflected waves. True ERD was determined from measured carotid-femoral pulse wave velocity (CF-PWV) (SphygmoCor) and Δt. Stepwise regression analysis resulted in the equation: ERD = 0.173*age + 0.661*BMI - 34.548 cm, used to indirectly estimate ERD and APWW in the original 40 healthy adults, and in a separate cohort of young sedentary (YS, n=6; 22±2 years; VO2max 39±2 ml/kg/min), older sedentary (OS, n=24; 62±1 years; VO2max 27±1 ml/kg/min), and older endurance-trained (OT, n=14; 61±2 years; VO2max 46±2 ml/kg/min) subjects. CF-PWV and indirectly determined APWW were highly correlated (r=0.74, Pearson’s R=0.65, P<0.01; interclass correlation coefficient ICC=0.64, P<0.01). In YS, OS and OT, ERD and APWW were 52.0±3.97, 40.2±4.85, and 25.2±6.06 cm, respectively. In healthy adults, APWW can be reliably derived from invasive and non-invasive peripheral BP waveforms using age and BMI to determine ERD. This method can detect the distal shift of the reflecting site with age and the increase in APWW with sedentary aging that is attenuated with endurance exercise.

References:

P2.38
COMPARISON BETWEEN TWO INDIRECT METHODS FOR PULSE WAVEFORM ANALYSIS

C. Ramos 1,2,3,4, L. Lonati 3, G. Bilo 1,2, A. Faini 3, E. Cardona 2,4, G. Parati 1,3
1Universitdi degli Studi di Milano-Bicocca, Milan, Italy
2University of Guadalajara, Guadalajara, Mexico
3Istituto Auxologico Italiano, Milan, Italy
4Cardiovascular Research Unit, Guadalajara, Mexico

Introduction: The prognostic value of arterial stiffness has been shown in different groups of patients and also in apparently healthy populations. Several studies have already pointed out the prognostic importance of central Systolic Blood Pressure (cSBP).

Aim: To compare two devices that use indirect methods to assess central blood pressure: The SphygmoCor and OMROM HEM-9000AI.

Inclusion criteria

Age ≥18 years, Males and females, Arterial Hypertension

Methods: Eighty-four hypertensive subjects, mean age 58 ± 12 years were examined. Radial artery waveform recording at the left wrist was performed, patients with arrhythmias, severe hypertension, absence of radial pulse, diabetes were excluded. Statistical software version 9.0 was used. Pearson’s correlations and Bland–Altman plots were used to assess the agreement between methods.

Results: cSBP measured with both devices values showed a significant correlation, r=0.76; r²=0.58. cSBP values recorded with OMRON device were 16 mmHg higher (SD of difference = 13 mmHg) cSBP (Sphy) and pSBP2 (Omr) values showed a significant correlation (r=0.74; r²=0.55, P<0.001) (Figure 1) mean difference was of -0.8, SD = 13 mmHg.

Conclusion: When compared both devices they offer discordant results, and this discrepancy tends to be larger at higher BP levels. In absence of invasive measurements of central aortic pressure, it is impossible to conclude which of the two systems provides cSBP values closer to true aortic cSBP. Our data suggest that pSBP2 reported by the Omron device more closely reflects the cSBP value assessed by the SphygmoCor device.

Figure 1

P2.39
ASSESSMENT OF FLOW MEDIATED DILATION. COMPARISON BETWEEN TWO METHODS

ART LAB VS. FMD STUDIO

S. Rastelli 1,2, F. Stea 2,3, E. Bozec 2, L. Zanoli 1,2, F. Faita 3, L. Ghidoni 3, P. Castellino 1, P. Boutouyrie 2, S. Laurent 2
1Internal Medicine, University of Catania, Catania, Italy
2Department of Pharmacology, INSERM U970, Paris, France
3Department of Internal Medicine, University of Pisa, Pisa, Italy

Introduction Aim. The ultrasound assessment of flow-mediated dilation (FMD) of the brachial artery is a non-invasive and reproducible technique to evaluate the endothelial function. FMD is classified as a percentage rise of the change in diameter from the baseline after ischemia or administration of sublingual nitroglycerin (NTG).

We compared FMD and internal diameter measurements obtained with an echotripping system (ART.LAB; Esaote BV, Maastricht, the Netherlands), to those obtained with a new, image-based, system for real time measurement of FMD (FMD Studio, Pisa, Italy).

Methods: FMD studio-ART.LAB mean difference of FMD after ischemia and internal brachial diameter at baseline, peak and post-ischemia were tested in 30 subject. Moreover, in a subgroup of 16 subjects, we measured FMD after NTG administration. All measurements were performed simultaneously by ART.LAB and FMD studio.

Results: Mean difference of internal diameter was 0.27±0.24 mm at baseline (7% of mean value), 0.33±0.25 mm at peak (6% of mean value), and 0.30±0.23 mm after ischemia (8% of mean value); mean difference of FMD after ischemia was 0.89±3.97%, corresponding to 15% of mean value. Mean difference of FMD post-NTG was 0.85±4.85% (5% of mean value). All the values obtained by FMD studio were not significantly different (P=NS) to those obtained by ART.LAB.

Conclusions: We reported a good agreement of FMD and internal diameter measurements between an echotripping device, which represents the gold standard for arterial parameters measurements, and a new, image-based, system for real time measurement of FMD.