P3.01: PHENOTYPIC MODULATION OF VASCULAR SMOOTH MUSCLE CELLS IN RESPONSE TO HYPERTENSION CONFERS A PROTHROMBOTIC STATE WITHIN THE VESSEL WALL

K. Ait Aissa, J. Lagrange, J.P. Max, P. Challande, P. Lacolley, V. Regnault

To link to this article: https://doi.org/10.1016/j.artres.2012.09.128

Published online: 21 December 2019
P2.47
ANALYSIS OF THE RELATIONSHIP BETWEEN THE RADIAL PULSE AND PHOTOPLETHYSMOGRAPHY BASED ON THE SPRING CONSTANT METHOD
C. C. Wei, W. C. Tsai
Chaooyang University of Technology, Taichung, Taiwan, ROC

The spring constant method is a newly proposed method to evaluate the arterial stiffness. However, whether the spring constants computed using the radial pulse and photoplethysmography (PPG) show a similar characteristic deserves to be investigated. The experimental group comprised 40 participants (18 men and 22 women), all with diabetes mellitus and ranging between 48 and 75 years of age. All were subjected to the measurements of the radial pulse and PPG pulse. Parameters, the amplitude, the rising slope, the second derivative of the peak and the spring constant of the two types of pulses, were used for analysis. Statistical results showed that only the spring constant parameter revealed the significant relationship (correlation coefficient $r = 0.78$, $p < 0.001$) between the radial pulse and PPG pulse. In other words, regarding to the assessment of arterial stiffness, the radial pulse and PPG pulse showed a similar characteristic. The finding provides more alternatives to evaluate the arterial stiffness in clinic.

P3 — Basic Science

P3.01
PHENOTYPIC MODULATION OF VASCULAR SMOOTH MUSCLE CELLS IN RESPONSE TO HYPERTENSION CONFERS A PROTHROMBOTIC STATE WITHIN THE VESSEL WALL
K. Ait Aïssa 1,2, J. Lagrange 1,2, J. P. Max 1,2, P. Challande 1, P. Lacolley 1,2, V. Regnault 1,2
1Inserm U961, Nancy, France
2Université de Lorraine, Nancy, France
3Université Paris 6, Paris, France

The hypothesis that hypertension may confer a hypercoagulable state arises from the main complications associated with hypertension, stroke and myocardial infarction. Our objective was to determine whether spontaneous hypertension confers changes in the coagulation proteins and the thrombin generating capacity in blood and the vascular wall.

We used the model of spontaneously hypertensive rats (SHR) compared with Wistar rats. Thrombin generation was lower in platelet-rich plasma and platelet-free plasma from SHR compared to Wistar. This was related to lower tissue factor (TF) and prothrombin as well as higher TFPI levels in SHR plasma. In contrast, the addition of thoracic aorta rings of SHR to a Wistar plasma pool resulted in a higher increase in thrombin generation compared to the addition of equivalent rings from Wistar. Whereas no difference was observed for endothelial cells, thrombin formation was higher at the surface of cultured SHR aortic SMCs than from Wistar. Exposure of negatively-charged phospholipids was higher on SHR than on Wistar rings as well as on SMCs. TF and TFPI activities were higher in SHR SMCs. These results show opposite thrombin generating capacity of plasma and vessel walls in SHR compared to Wistar. The higher prothrombotic phenotype of the SHR vessel wall was due to the ability of SMCs to support thrombin generation. These findings suggest that the hypertension-induced membrane phospholipid reorganization and synthesis of procoagulant molecules in SMCs provide substrates for increased thrombin formation within the vessel wall.

Figure 1: Common venous markers related to measured pressures (top panel) and the separation of P_{exc} into forward and backward components (bottom panel) at control conditions.