10.7: NON-INVASIVE ESTIMATION OF CENTRAL SYSTOLIC PRESSURE: A COMPARISON BETWEEN RADIAL ARTERY TONOMETRY AND A NEW DIRECT CENTRAL BLOOD PRESSURE ESTIMATION METHOD (DCBP)

Denis Chemla, Sandrine Millasseau, Edmund Lau, Nathalie Richard, Pierre Attal, Mabrouk Brahimi, Alain Nitenberg

To cite this article: Denis Chemla, Sandrine Millasseau, Edmund Lau, Nathalie Richard, Pierre Attal, Mabrouk Brahimi, Alain Nitenberg (2016) 10.7: NON-INVASIVE ESTIMATION OF CENTRAL SYSTOLIC PRESSURE: A COMPARISON BETWEEN RADIAL ARTERY TONOMETRY AND A NEW DIRECT CENTRAL BLOOD PRESSURE ESTIMATION METHOD (DCBP), Artery Research 16:C, 72–73, DOI: https://doi.org/10.1016/j.artres.2016.10.085

To link to this article: https://doi.org/10.1016/j.artres.2016.10.085

Published online: 7 December 2019
95 % Limits of Agreement (LOA) for the mean interarm difference for a single measurement was 13.2 mmHg.

Conclusion: MicroLife WatchBP measurement is a feasible method to determine IAD in a clinical setting. Bilateral BP measurements should be performed at first visit to help the clinician choose the right arm for further BP evaluations.

10.4 COMPARISON OF BLOOD PRESSURE VARIABILITY CALCULATED FROM PERIPHERAL AND DERIVED AORTIC BLOOD PRESSURE
Zahra Kouchaki, Mark Butlin, Ahmad Qasem, Alberto Avolio
Macquarie University, Sydney, Australia

Background: Systolic blood pressure variability (SBPV), conventionally calculated from peripheral sites such as the arm or finger, may be of more utility when computed from central aortic values, as this has greater applicability to the heart and the baroreceptor function, due to central location of baroreceptors. As the relationship between aortic and peripheral blood pressure is frequency dependent, particularly in the range of physiological heart rate frequencies, peripheral and aortic SBPV may not be identical. Differences between peripheral and aortic SBPV have not been previously quantified.

Methods: In this study, peripheral and derived aortic SBPV was calculated in 30 healthy subjects (25–62 years). Continuous finger blood pressure was measured for 10 minutes in each subject (Finapres) and aortic blood pressure derived using a general transfer function. SBPV was quantified using a Short Time Fourier Transform in a time-frequency method to calculate the ratio of average power across the low frequency power band (0.05–0.15 Hz) to the high frequency power band (0.15–0.4 Hz).

Results: Aortic SBPV (power band ratio) was correlated with peripheral SBPV (r² = 0.961, p < 0.001) with a mean difference of -0.67 ± 2.07. However, there was a bias toward peripheral SBPV overestimation compared to aortic SBPV for higher values of SBPV.

Conclusions: This study demonstrates that peripheral SBPV cannot be taken as equivalent to aortic SBPV, particularly where the low frequency to high frequency power ratio of SBPV is of higher magnitude.

10.5 COMPARISON OF ARTERIAL STIFFNESS ASSESSED BY POPMÈTRE® WITH ARTERIAL STIFFNESS ASSESSED BY APPLANATION TONOMETRY: A CLINICAL STUDY
Hasan Obeid 1, Hakim Khettab 1, Pierre Boutouyrie 1, Stephane Laurent 1, Magid Hallab 1
1 Paris Descartes University, Paris, France
2 Georges Pompidou European Hospital, Paris, France
3 AXELife and University Hospital of Nantes, France

Background: Large artery stiffness is recognized as a strong, independent marker of cardiovascular risk, mainly through aortic pulse wave velocity (PWV), pOpmetre® is a new non-invasive method, which estimates aortic PWV through finger-toe (FT) wave analysis. In a previous study, Alvin et al. have shown an acceptable correlation (r² = 0.43 for PWV) between pOpmetre® and the reference method Sphygmacor. However this study led to the necessity to optimize the algorithm and the procedures because of the presence of several outliers involving mainly obese and elderly subjects.

Materials and Methods: The pOpmetre® has 2 photodiodes sensors, positioned on the finger and on the toe. A particular attention was drawn on positioning of the toe sensor so that the pulp was in contact with the photodiode. Different signal processing chains were applied and no cut-off value was used for pulse height. Applanation tonometry was performed for CF PWV measurements.

Results: 45 subjects were included: 18 healthy subjects and 27 patients with essential hypertension aged 32 ± 7 years and 58 ± 18 years respectively. The correlation between FT PWV and CF PWV was good and significant (r² = 0.77 p < 0.0001). A better correlation was found in terms of transit time (r² = 0.83 p < 0.0001). The standard deviation of the difference was 0.87 m/s versus 6.73 ms, classifying the device as good agreement with reference (Wilkinson, ARTERY RES 2010).

Conclusion: pOpmetre® with optimized algorithm and procedure qualifies as excellent agreement with the reference technique for PWV assessment, however, outcome studies must confirm the value of this new device.

References
1. Maureen ALIVON et al. 2015 ARTERY research archives. Validation study of pOpmetre.

10.6 VARIATION OF THE ASYMPTOMATIC DIASTOLIC PRESSURE WITH DIFFERENT FITTING TECHNIQUES IN HEALTHY HUMANS
Nicola Pomella 1, Christina Kolyva 1, Ernst Rietzschel 1, Patrick Segers 2, Ashraf W. Khir 1, Madalina Negoita 1
1 Brunel University, London, UK
2 Universiteit Gent, Belgium
3 Middlessex University, London, UK

Background: Reservoir-wave model assumes the measured pressure (Pm) consists of two additive components: reservoir (Pr) and excess pressure (Pex) 1,2. Calculation of Pr requires fitting the diastolic decay of Pm for calculating parameters P0 (asymptomatic value) and b (time constant) 1. However, there is no consensus over the value of these parameters 1-3-4. Although many investigators use free-fitting, different degrees of freedom (dof) could be used 1,5. The aim of this study was to examine the effect of varying fitting method on P0, b and calculate the peaks of Pr and Pex.

Methods: Data pressure from common carotid artery of 505 middle-aged healthy subjects were selected from the Asklepios dataset. Free-fitting methods with 3 dof (dicrotic notch not fixed) and 2 dof (dicrotic notch fixed) were used to obtain P0, b and calculate Pr and Pex.

Results: Mean value of P0 change significantly between 3 dof and 2 dof (58 vs. 50 mmHg p<0.01) as well as b (2.3 vs. 1.9 s-1 p<0.01). Pr- and Pex-peaks didn’t significantly change (Pr = 105 mmHg for 3 dof and 2 dof p=0.05 Pex = 30 mmHg and 31 mmHg for 3 dof and 2 dof, respectively p=0.05).

Conclusions: P0 and b values are method-dependent with a large variation between methods. P0 values in our study are higher than previously reported in literature, and variation in P0 and b values don’t affect Pr- and Pex-peaks. Given the variability in the combination of P0, b in different subjects, the use of free-fitting is more appropriate.

References

10.7 NON-INVASIVE ESTIMATION OF CENTRAL SYSTOLIC PRESSURE: A COMPARISON BETWEEN RADIAL ARTERY TONOMETRY AND A NEW DIRECT CENTRAL BLOOD PRESSURE ESTIMATION METHOD (DCBP)
Denis Chemla 3, Sandrine Millasseau 1, Edmund Lau 4, Nathalie Richard 1, Pierre Attal 1, Mabrouk Brahimi 1, Alain Nitenberg 1, Denis Chemla 2, Sandrine Millasseau 3, Edmund Lau 4, Nathalie Richard 1, Pierre Attal 1, Mabrouk Brahimi 1, Alain Nitenberg 1
1 Paris South University-Inserm U999, Paris, France
2 Assistance Publique Hopitaux de Paris, France
3 Atal Medical, Vincennes, France
4 University of Sydney, Australia

Background: We have developed a new proprietary method (DCBP® Direct Central Blood Pressure) to estimate central systolic blood pressure (cSBP) directly from peripheral pressure. In a previous meta-analysis of published high-fidelity pressure studies with simultaneous aortic and brachial pressure recordings, negligible mean difference between DCBP and cSBP has been documented (1). The accuracy and precision of DCBP against arterial tonom-etry measurements remain to be documented.
METHODS: The cSBP was estimated from radial artery tonometry and a transfer function using a SphygmoCor® system (AtCor Medical, Australia) in 100 subjects (mean age+/-SD = 57±10 years). Pressure waveforms were calibrated from the brachial systolic and diastolic pressures, measured just prior to tonometric measurement with an oscillometric cuff system (Omron 705SCP Omron, Japan). DCBP and cSBP were compared using the Bland and Altman method and subgroups were compared using unequal Student’s t test.

RESULTS: The difference between DCBP (129.41±16.8 mmHg) and cSBP (129.4±16.4 mmHg) was -0.2 (±2.6 mmHg). The difference was not influenced by the mean (DCBP + cSBP / 2). Similar results were obtained in men (n=60) and women (n=40), and in subjects with/without hypertension (n=51/49), with/without diabetes (26/74), and with/without dyslipidemia (36/64).

Conclusions: The new DCBP® method and the transfer function applied to radial tonometry method were interchangeable in estimating central SBP. These results persisted strictly to the studied population (patients ages 57 years on average, and displaying a high percentage of cardiovascular risk factors). Further studies are needed to confirm our results.

References

10.8 SYSTOLIC AORTIC PRESSURE DERIVED FROM DIFFERENT CALIBRATION METHODS IN THE GENERAL POPULATION
Siegfried Wassertheurer 1, Bernhard Hametner 1, Christopher Mayer 1, Ahmed Hafez 2, Thomas Weber 2
1Austrian Institute of Technology, Vienna, Austria
2Klinikum Wels-Grieskirchen, Wels, Austria

Background: There is recent evidence from different research groups that accuracy [1] and prognostic value [2,3,4] of systolic aortic pressure significantly depends on the method of calibration. Although these results consistently show superiority of mean pressure calibration (aSBP2) over both, traditional calibrated aortic systolic (cSBP1) and brachial systolic pressure (bSBP), the investigated cohorts were relatively small and it is still unclear whether the observed associations between pressures are preserved in the general population.

Objective: Therefore the objective of this work is the investigation of associations between different methods of systolic pressure assessment i.e. a large cohort and its comparison to reported outcome.

Methods: During a public health campaign cardiovascular hemodynamic data was assessed using the Mobil-O-Graph® device and ARCSolver® algorithms in a kiosk like setting. Systolic aortic pressure was derived from two different calibrations: systolic and diastolic pressure and mean and diastolic pressure. Furthermore brachial pressures, age, sex and anthropometric data were recorded and regression analysis was performed to investigate associations.

Results: Summary statistics of 7409 valid measurements are reported in Table 1. Systolic and subsequent pulse pressures significantly differed from bSBP for aSBP but not for aSBP2. Regression analysis unveiled that aSBP2 (R²=0.853) is significantly (p<0.0001) less associated with bSBP than aSBP1 (R²=0.937), see Figure 1.

Conclusions: Comparison of our data with literature suggests that unlike aSBP1 [5] the association between bSBP and aSBP2 is only slightly influenced by increased sample size [2] and therefore prognostic superiority over bSBP is likely to be sustainable and warrants further investigation.