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ABSTRACT
In this paper, cellular neural networks (CNNs) with neutral type delays and time-varying leakage delays are investigated. By
applying the existence of the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the
theory of calculus on time scales, a set of sufficient conditions which ensure the existence and exponential stability of almost
automorphic solutions of the model are obtained. An example with its numerical simulations is given to support the theoretical
findings.
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1. INTRODUCTION

Since the cellular neural networks with delay were first introduced
and investigated by Roska and Chua [1], they have been exten-
sively applied in various different fields such as classification of pat-
tern and processing of moving images. In recent years, extensive
results on the existence and stability of equilibrium points, peri-
odic solutions, almost periodic solutions and anti-periodic solu-
tions for cellular neural networks have been reported. For example,
Fan and Shao [2] investigated the positive almost periodic solutions
for shunting inhibitory cellular neural networks with time-varying
and continuously distributed delays, Li and Wang [3] analyzed the
existence and exponential stability of the almost periodic solu-
tions of shunting inhibitory cellular neural networks on time scales,
Xia et al. [4] established the sufficient conditions for the existence
and exponential stability of almost periodic solution for shunt-
ing inhibitory cellular neural networks with impulses, Peng and
Wang [5] addressed the existence and exponential stability of anti-
periodic solutions to shunting inhibitory cellular neural networks
with time-varying delays in leakage terms. Formore relatedwork on
shunting inhibitory cellular neural networks, one can see [4,6–17].

Many scholars [18–21] argue that neural networks usually contain
some information about the derivative of the past state to further
describe and model the dynamics for the complex neural reactions.
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Then some authors focused on the dynamical behaviors of neutral
type neural networks. For example, Rakkiyappan et al. [22] con-
sidered the global exponential stability for neutral-type impulsive
neural networks, Li et al. [23] discussed the existence of periodic
solutions for neutral type cellular neural networks with delays, Bai
[24] investigated the global stability of almost periodic solutions
of Hopfield neural networks with neutral time-varying delays. In
details, we refer the reader to [25–30].

Very recently, a typical time delay called Leakage (or “forgetting”)
delaymay exist in the negative feedback terms of the neural network
system, and these terms are variously known as forgetting or leakage
terms [31,32]. Since time delays in the leakage term are difficult to
handle but have great impact on the dynamical behavior of neural
networks. Therefore, it is meaningful to consider neural networks
with time delays in leakage terms [34].

It is well known that both continuous time and discrete time neu-
ral networks play an equal roles in various applications [34]. But
it is troublesome to study the dynamical properties for continuous
and discrete time systems, respectively. In 1990, Hilger [35] pro-
posed the theory of time scales which can deal with both difference
and differential calculus in a consistent way. Thus it is significant
to investigate the dynamical behaviors of neural networks on time
scales. For instance, some authors [3,36–40] investigated periodic
solutions, almost periodic solutions and anti-periodic solutions of
some neural networks on time scales.
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In addition, we shall point out that in real word, almost periodicity
is universal than periodicity. Moreover, almost automorphic func-
tions, which were introduced by Bochner, are much more general
than almost periodic functions. In addition, the almost automor-
phic solutions of neural networks can be applied inmany areas such
as automatic control, image processing, psychophysics, robotics and
so on [41–45]. Almost automorphic solutions in the context of dif-
ferential equations were studied by several authors. We refer the
reader to [46–53]. However, to the best of our knowledge, there is
no paper published on the almost automorphic solutions of cellular
neural networks with neutral type delays and time-varying leakage
delays on time scales.

Inspired by the discussion above, in this paper, we consider the fol-
lowing cellular neural networks with neutral type delays and time-
varying leakage delays on time scales

x∆i (t) = –bi (t) xi (t – 𝜂i (t)) +
n

∑
j=1

aij (t) fj
(
xj (t)

)
+

n

∑
j=1

bij (t) fj
(
xj
(
t – 𝜏ij (t)

))
+

n

∑
j=1

cij (t) fj
(
x∆i

(
t – 𝜎ij (t)

))
+ Ii (t) ,

(1)

where 𝕋 is an almost periodic time scale, i = 1, 2,⋯ , n, n corre-
sponds to the number of units in a neural network, xi corresponds
to the state vector of the ith unit at time t, fj

(
xj (t)

)
denotes the out-

put of the jth unit on ith unit at time t, bij denotes the strength of
the jth unit on the ith unit at time t – 𝜏ij, Ii denotes the external bias
on the ith unit at time t, 𝜏ij corresponds to the transmission delay
along the axon of the jth unit, bi represents the rate with which the
ith unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs, 𝜂i > 0 with
t – 𝜂i (t) ∈ 𝕋 for all t ∈ 𝕋 denote s time delay in leakage term,
𝜏ij (t) ≥ 0, 𝜎ij (t) ≥ 0 correspond the transmission delays and satisfy
that for t ∈ 𝕋, t – 𝜏ij ∈ 𝕋, t – 𝜎ij ∈ 𝕋.
The main aim of this article is to establish some sufficient condi-
tions for the existence and global exponential stability of almost
automorphic periodic solutions of (1). By applying the existence
of the exponential dichotomy of linear dynamic equations on time
scales, a fixed point theorem and the theory of calculus on time
scales, we obtain a set of sufficient conditions for the existence and
exponential stability of almost automorphic solutions formodel (1).

For convenience, we denote by [a, b]𝕋 = {t|t ∈ [a, b] ∩ 𝕋}. For a
almost automorphic function f :𝕋 → ℝ, f + = supt∈ℝ | f (t) |, f – =
inft∈ℝ | f (t) |. We denote by ℝ the set of real numbers, by ℝ+ the
set of positive real numbers, by 𝕏 a real Banach space with the
norm ||.||. The initial conditions associated with system (1) are of
the form:

xi (s) = 𝜑i (s) , x ∆
i (s) = 𝜑 ∆

i (s) , s ∈ (–𝜏, 0]𝕋 , (2)

where 𝜏 = max {max1≤i≤n𝜂+i ,max(i,j) {𝜏+ij , 𝜎+ij }} , 𝜑i ∈
C1([–𝜏, 0]𝕋, ℝ) and i, j = 1, 2,⋯ , n.
The remainder of the paper is organized as follows. In Section 2,
we introduce some lemmas and definitions, which can be used to
check the existence of almost automorphic solutions of system (1).
In Section 3, we present some sufficient conditions for the existence

of almost automorphic solutions of (1). Some sufficient conditions
on the global exponential stability of almost automorphic solutions
of (1) are established in Section 4. An example is given to illustrate
the effectiveness of the obtained results in Section 5. A brief conclu-
sion is drawn in Section 6.

2. PRELIMINARY RESULTS

In this section, we would like to recall some basic definitions and
lemmas which are used in what follows.

Definition 2.1. [54] Let 𝕋 be a nonempty closed subset (time scale)
of ℝ. The forward and backward jump operators 𝜎, 𝜌 :𝕋 → 𝕋 and
the graininess 𝜇 :𝕋 → ℝ are defined, respectively, by

𝜎 (t) = inf {s ∈ 𝕋 : s > t} , 𝜌 (t)
= sup {s ∈ 𝕋 : s < t} and𝜇 (t) = 𝜎 (t) – t.

Lemma 2.1. [54] Assume that p, q :𝕋 → ℝ are two regressive func-
tions, then

i. e0 (t, s) ≡ 1 and ep (t, t) ≡ 1;

ii. ep(t, s) =
1

ep(s,t)
= e⊖p(s, t);

iii. ep(t, s)ep(s, r) = ep(t, r);

iv. (ep(t, s))∆ = p(t)ep(t, s).
Lemma 2.2. [54] Let f, g be Δ-differentiable functions on 𝕋, then

i. (𝜈1 f + 𝜈2g)∆ = 𝜈1 f∆ + 𝜈2g∆, for any constants 𝜈1, 𝜈2;
ii. ( fg)∆(t) = f∆(t)g(t) + f (𝜎(t))g∆(t) = f (t)g∆(t) + f∆(t)g (𝜎(t)).
Lemma 2.3. [54] Assume that p (t) ≥ 0 for t ≥ s, then ep (t, s) ≥ 1.
Definition 2.2. [54] A function p :𝕋 → ℝ is called regressive pro-
vided 1 + 𝜇 (t) p (t) ≠ 0 for all t ∈ 𝕋k; p :𝕋 → ℝ is called positively
regressive provided 1 + 𝜇 (t) p (t) > 0 for all t ∈ 𝕋k. The set of all
regressive and rd-continuous functions p :𝕋 → ℝ will be denoted by
R = R (𝕋,ℝ) and the set of all positively regressive functions and rd-
continuous functions will be denoted by R+ = R+ (𝕋,ℝ).
Lemma 2.4. [54] Suppose that p ∈ R+, then

i. ep (t, s) > 0, for all t, s ∈ 𝕋;
ii. if p (t) ≤ q (t) for all t ≥ s, then ep (t, s) ≤ eq (t, s) for all t ≥ s.

Lemma 2.5. [54] If p ∈ R and a, b, c ∈ 𝕋, then

[ep (c, .)]
∆ = –p [ep (c, .)]

𝜍

and

∫
b

a
p (t) ep (c, 𝜎 (t))Δt = ep (c, a) – ep (c, b) .

Lemma2.6. [54] Let a ∈ 𝕋k, b ∈ 𝕋 and assume that f :𝕋×𝕋k → ℝ
is continuous at (t, t)where t ∈ 𝕋k with t > a.Also assume that f∆ (t)



C. Xu et al. / International Journal of Computational Intelligence Systems 13(1) 1–11 3

is rd-continuous on [a, 𝜎 (t)] . Suppose that for each 𝜀 > 0, there exists
a neighborhood U of 𝜖 ∈ [a, 𝜎 (t)] such that

|f (𝜎 (t) , 𝜖) – f (s, 𝜖) – f∆ (t, 𝜖) (𝜎 (t) – s) |
≤ 𝜀|𝜎 (t) – s|, for all s ∈ U,

where f∆ denotes the derivative of f with respect to the first variable.
Then

i. g (t) : = ∫
t

a
f (t, 𝜖)Δ𝜖 implies g∆ (t) : = ∫

t

a
f∆ (t, 𝜖)Δ𝜖 +

f (𝜎 (t) , t) ;

ii. h (t) : = ∫
b

t
f (t, 𝜖)Δ𝜖 implies h∆ (t) : = ∫

b

t
f∆ (t, 𝜖)Δ𝜖 –

f (𝜎 (t) , t) .

Next, we recall some definitions of almost automorphic functions
on time scales.

Definition 2.3. [55] A time scale𝕋 is called an almost periodic time
scale if

Π : = {𝜖 ∈ ℝ : t ± 𝜖 ∈ 𝕋, ∀t ∈ 𝕋 ≠ {0} .

Definition 2.4. [54] Let 𝕋 be an almost periodic time scale.

i. A function f (t) :𝕋 → 𝕏 is said to be almost automorphic, if
for any sequence {sn}∞n=1 ⊂ Π, there is a subsequence {𝜖n}∞n=1 ⊂
{sn}∞n=1 such that g (t) = limn→∞ f (t + 𝜖n) is well defined for
each t ∈ 𝕋 and limn→∞ g (t – 𝜖n) = f (t) for each t ∈ 𝕋. Denote
by AA (𝕋,𝕏) the set of all such functions;

ii. A continuous function f :𝕋 × 𝕏 → 𝕏 is said to be almost auto-
morphic, if f (t, x) is almost automorphic in t ∈ 𝕋 uniformly
in x ∈ 𝔹, where 𝔹 is any bounded subset of 𝕏. Denote by
AA (𝕋 × 𝕏,𝕏) the set of all such functions.

Lemma 2.7. [53] Let f, g ∈ AA (𝕋,𝕏). Then we have the following

i. f + g ∈ AA (𝕋,𝕏) ;
ii. 𝛼 ∈ AA (𝕋,𝕏) for any constant 𝛼 ∈ ℝ;
iii. if 𝜑 :𝕏 → 𝕐 is a continuous function, then the composite func-

tion 𝜑 ∘ f :𝕋 → 𝕐 is almost automorphic.

Lemma 2.8. [34] Let f ∈ AA (𝕋 × 𝕏,𝕏) and f satisfies the Lipschitz
condition in x ∈ 𝕏 uniformly in t ∈ 𝕋. If 𝜑 ∈ AA (𝕋,𝕏), then
f (t, 𝜑 (t)) is almost automorphic.

Definition 2.5. [55] Let x ∈ ℝn and A (t) be a n×n matrix-valued
function on 𝕋, the linear system

x∆ (t) = A (t) x (t) , t ∈ 𝕋 (3)

is said to admit an exponential dichotomy on 𝕋 if there exist positive
constants ki, 𝛼i, i = 1, 2, projection P and the fundamental solution
matrix X (t) of (3) satisfying

|X (t) PX–1 (s) | ≤ k1e⊖𝛼1 (t, s) , s, t ∈ 𝕋, t ≥ s

and

|X (t) (I – P)X–1 (s) | ≤ k2e⊖𝛼2 (t, s) , s, t ∈ 𝕋, t ≤ s,

where |.| is a matrix norm on 𝕋, that is, if A =
(
aij
)
n×n

, then we can

take |A| =
(
∑n

i=1∑
n
j=1 |aij|

2
) 1
2 .

Lemma 2.9. [53] Suppose that A(t) ∈ AA(𝕋,ℝn×n) such that
{A–1 (t)}t∈𝕋 and {((I + 𝜇 (t))A (t))–1}

t∈𝕋
are bounded. Moreover,

suppose that g ∈ AA (𝕋,ℝn) and (3) admits an exponential
dichotomy, then the following system

x∆ (t) = A (t) x (t) + g (t) (4)

has a solution x (t) ∈ AA (𝕋,ℝn) and x (t) is expressed as follows

x (t) = ∫
t

–∞
X (t) PX–1 (𝜎 (s)) g (s)Δs

– ∫
+∞

t
X (t) (I – P)X–1 (𝜎 (s)) g (s)Δs,

where X (t) is the fundamental solution matrix of (3), I denotes the
n × n-identity matrix.

Lemma 2.10. [55] Let ci > 0 and –ci (t) ∈ R+, ∀t ∈ 𝕋. If
min1≤i≤n {inft∈𝕋 ci (t)} = m > 0, then the linear system

x∆ (t) = diag (–c1 (t) , –c2 (t) ,⋯ , –cn (t)) x (t) (5)

admits an exponential dichotomy on 𝕋.

Definition 2.6. [34] Let x∗ (t) =
(
x∗1 (t) , x∗2 (t) ,⋯ , x∗n (t)

)T be
an almost automorphic solution of (1) with initial value 𝜑∗ (t) =(
𝜑∗1 (t) , 𝜑∗2 (t) , ⋯ , 𝜑∗n (t)T. If there exist positive constants 𝜆 with
⊖𝜆 ∈ R+ and M > 1 such that for an arbitrary solution
x (t) = (x1 (t) , x2 (t) ,⋯ , xn (t))T of (1) with initial value 𝜑 (t) =
(𝜑1 (t) , 𝜑2 (t) ,⋯ , 𝜑n (t))T satisfies

||x – x∗|| ≤ M||𝜑 – 𝜑∗||e⊖𝜆 (t, t0) , t0 ∈ [–𝜏,∞)𝕋 , t ≥ t0.

Then the solution x∗ (t) is said to be globally exponentially stable.

3. EXISTENCE OF ALMOST
AUTOMORPHIC SOLUTIONS

In this section, we will establish sufficient conditions on the
existence of pseudo almost periodic solutions of (1). Let
X∗ = { f ∈ C1

(
𝕋,ℝ| f, f∆ ∈ AA (𝕋,ℝn)} with the norm

|| f ||X∗ = max {| f |1, | f∆|1}, where | f |1 = max1≤i≤n f +i , | f∆|1 =
max1≤i≤n

(
f ∆i

)+. Then X∗ is a Banach space. Let
𝜑0(t) =

(
𝜑01(t), 𝜑02(t),⋯ , 𝜑0n(t)

)T , where 𝜑0i (t) =

∫
t

–∞
e–bi (t, 𝜎 (s) Ii (s)Δs) , i = 1, 2,⋯ , n and L be a constant satisfy-

ing L ≥ max {||𝜑0||X∗ ,max1≤i≤n { fj (0)}} . Throughout this article,
we assume that

(H1) bi ∈ C
(
𝕋,ℝ+) with –bi ∈ R+ and inft∈𝕋 {1 – 𝜇 (t) bi (t)} =

b > 0, aij, bij, cij, Ii ∈ C (𝕋,ℝ), 𝜏ij, 𝜎ij ∈ C
(
𝕋,ℝ+) are almost auto-

morphic, where i, j = 1, 2,⋯ , n.
(H2) fj ∈ C (ℝ,ℝ) and there exist constants Lj > 0 and Mj > 0
such that for any u, v ∈ ℝ,

| fj (u) – fj (v) | ≤ Lj|u – v|, | fj (u) | ≤ Mj,
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where j = 1, 2,⋯ , n.
(H3)

max
1≤i≤n

{ 𝜚ib–i
,
(
1 +

b+i
b–i

)
𝜚i} ≤

1
2 , max

1≤i≤n
{ 𝜍ib–i

,
(
1 +

b+i
b–i

)
𝜍i} ≤ 1

where

𝜚i = b+i 𝜂+i +
n
∑
j=1

[
(
a+ij + b+ij + c+ij

) (
Lj + 1

)
] ,

𝜍i = b+i 𝜂+i +
n
∑
j=1

[
(
a+ij + b+ij + c+ij

)
Lj] .

Theorem 3.1. If (H1)–(H3) are satisfied. Then there exists a
unique almost automorphic solution of system (1) in 𝕏0 =
{𝜑 ∈ 𝕏∗|||𝜑 – 𝜑0||𝕏∗ ≤ L}.
Proof For any given 𝜑 ∈ 𝕏∗, we consider the following system

x∆i (t) = –bi (t) xi (t) + Θi (t, 𝜑) + Ii (t) , i = 1, 2,⋯ , n, (6)

where

Θi (t, 𝜑) = bi (t) ∫
t

t–𝜂i(t)
𝜑∆i (s)Δs +

n

∑
j=1

aij (t) fj
(
𝜑j (t)

)
+

n
∑
j=1

bij (t) fj
(
𝜑j

(
t – 𝜏ij (t)

))
+

n
∑
j=1

cij (t) fj
(
𝜑∆i

(
t – 𝜎ij (t)

))
, i = 1, 2,⋯ , n.

(7)

It follows from Lemma 2.10 that the linear system

x∆i (t) = –bi (t) xi (t) , i = 1, 2,⋯ , n, (8)

admits an exponential dichotomy on 𝕋. Thus, in view of
Lemma 2.9, we derive that system (6) has exactly one almost auto-
morphic solution as follows

x𝜑i (t) = ∫
t

–∞
e–bi (t, 𝜎 (s)) [Θi (s, 𝜑) + Ii (s)] Δs, i = 1, 2,⋯ , n, (9)

For 𝜑 ∈ 𝕏∗, then

||𝜑||𝕏∗ ≤ ||𝜑 – 𝜑0||𝕏∗ + ||𝜑0||𝕏∗ ≤ 2L. (10)

Define an operator as follows

Φ :𝕏∗ → 𝕏∗, (𝜑1, 𝜑2,⋯ , 𝜑n)
T →

(
x𝜑1 , x

𝜑
2 ,⋯ , x𝜑n

)T
. (11)

First we show that for any 𝜑 ∈ 𝕏∗, we have Φ𝜑 ∈ 𝕏∗. Note that,
for i = 1, 2, ⋅, n, we have

|Θi (s, 𝜑) =
||||
bi (s) ∫ ss–𝜂i(s)

𝜑∆i (𝜃)Δ𝜃 +
n
∑
j=1

aij (s) fj
(
𝜑j (s)

)
+

n
∑
j=1

bij (s) fj
(
𝜑j

(
s – 𝜏ij (s)

))
+

n
∑
j=1

cij (s) fj
(
𝜑∆i

(
s – 𝜎ij (s)

))||||

≤ b+i 𝜂+i ||𝜑||𝕏∗ +
n
∑
j=1

a+ij
(
| fj

(
𝜑j (s)

)
– fj (0) | + | fj (0) |

)
+

n
∑
j=1

b+ij
(
| fj

(
𝜑j

(
s – 𝜏ij (s)

))
– fj (0) | + | fj (0) |

)
+

n
∑
j=1

c+ij
(
| fj

(
𝜑 ∆
i
(
s – 𝜎ij (s)

))
– fj (0) | + | fj (0) |

)
≤ b+i 𝜂+i ||𝜑||𝕏∗ +

n
∑
j=1

a+ij
(
Lj||𝜑||𝕏∗ + | fj (0) |

)
+

n
∑
j=1

b+ij
(
Lj||𝜑||𝕏∗ + | fj (0) |

)
+

n
∑
j=1

c+ij
(
Lj||𝜑||𝕏∗ + | fj (0) |

)
= [b+i 𝜂+i +

n
∑
j=1

(
a+ij + b+ij + c+ij

)
Lj] ||𝜑||𝕏∗

+
n
∑
j=1

[a+ij + b+ij + c+ij
)
| fj (0) |

≤ 2L {b+i 𝜂+i +
n
∑
j=1

[
(
a+ij + b+ij + c+ij

) (
Lj + 1

)
]} .

(12)

Thus we get

|
(
Φ
(
𝜑 – 𝜑0

))
i
(t) |

= |||∫
t

–∞
e–bi (t, 𝜎 (s))Θi (s, 𝜑)Δs

|||

≤ ∫
t

–∞
e–bi (t, 𝜎 (s)) |Θi (s, 𝜑) |Δs

≤ 2L ∫
t

–∞
e–b–i (t, 𝜎 (s)) {b

+
i 𝜂+i +

n

∑
j=1

[
(
a+ij + b+ij + c+ij

)
(
Lj + 1

)
] } Δs

≤ 2L𝜚i
b–i

, i = 1, 2,⋯ , n.

(13)

On the other hand, for i = 1, 2,⋯ , n, we have

|
(
Φ
(
𝜑 – 𝜑0

))∆
i
(t) |

=
||||

(
∫
t

–∞
e–bi (t, 𝜎 (s))Θi (s, 𝜑)Δs

)∆

t

||||
= |||Θi (t, 𝜑) – bi (t) ∫

t

–∞
e–bi (t, 𝜎 (s))Θi (s, 𝜑)Δs

|||

≤ |Θi (t, 𝜑) | + |bi (t) | ∫
t

–∞
e–bi (t, 𝜎 (s)) |Θi (s, 𝜑) |Δs

≤ 2L𝜚i

(
1 +

b+i
b–i

)
, i = 1, 2, … , n.

(14)

It follows from (H3) that

||Φ𝜑 – 𝜑0||𝕏∗ ≤ max
1≤i≤n

{ 𝜚ib–i
,
(
1 +

b+i
b–i

)
𝜚i} ≤ L (15)

which implies thatΦ𝜑 ∈ 𝕏∗. Next, we show thatΦ is a contraction.
For any 𝜑 = (𝜑1, 𝜑2,⋯ , 𝜑n)

T , 𝜓 = (𝜓1, 𝜓2,⋯ , 𝜓n)
T ∈ 𝕏∗, for

i = 1, 2,⋯ , n, we denote
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ϒi (s, 𝜑, 𝜓)

= bi (t) ∫
s

s–𝜂i(s)

(
𝜑 ∆
i (s) – 𝜓 ∆

i (s)
)
Δs

+
n
∑
j=1

aij (t) [fj
(
𝜑j (t)

)
– fj

(
𝜓j (t)

)
]

+
n
∑
j=1

bij (t) [fj
(
𝜑j

(
t – 𝜏ij (t)

))
– fj

(
𝜓j

(
t – 𝜏ij (t)

))
]

+
n
∑
j=1

cij (t) [fj
(
𝜑 ∆
i
(
t – 𝜎ij (t)

))
– fj

(
𝜓 ∆
i
(
t – 𝜎ij (t)

))
] .

(16)

Then

| (Φ𝜑 – Φ𝜓)i (t) |

= |||∫
t

–∞
e–bi (t, 𝜎 (s))ϒi (s, 𝜑, 𝜓)Δs

|||

≤ ∫
t

–∞
e–bi (t, 𝜎 (s)) |ϒi (s, 𝜑, 𝜓) |Δs

≤ ∫
t

–∞
e–bi (t, 𝜎 (s)) {b

+
i 𝜂+i +

n

∑
j=1

[
(
a+ij + b+ij + c+ij

)
Lj]}

Δs||𝜑 – 𝜓||𝕏∗

≤ 𝜍i
b–i

||𝜑 – 𝜓||𝕏∗ , i = 1, 2,⋯ , n

(17)

and

| (Φ𝜑 – Φ𝜓) ∆i (t) |

= |||∫
t

–∞
e–bi (t, 𝜎 (s)) (ϒi (s, 𝜑, 𝜓)) ∆t Δs|||

= |||ϒi (s, 𝜑, 𝜓) – bi (t) ∫
t

–∞
e–bi (t, 𝜎 (s))ϒi (s, 𝜑, 𝜓)Δs

|||

≤ |ϒi (s, 𝜑, 𝜓) | + |bi (t) | ∫
t

–∞
e–bi (t, 𝜎 (s)) |ϒi (s, 𝜑, 𝜓) |Δs

≤ {b+i 𝜂+i +
n
∑
j=1

[
(
a+ij + b+ij + c+ij

)
Lj]} ||𝜑 – 𝜓||𝕏∗

+ b+i ∫
t

–∞
e–bi (t, 𝜎 (s))

× {b+i 𝜂+i +
n
∑
j=1

[
(
a+ij + b+ij + c+ij

)
Lj]} Δs||𝜑 – 𝜓||𝕏∗

≤
(
1 +

b+i
b–i

)
||𝜑 – 𝜓||𝕏∗ , i = 1, 2,⋯ , n

(18)

In view of (H3), we get that ||Φ𝜑 – Φ𝜑|| < ||𝜑 – 𝜓||. Then Φ is a
contraction. ThusΦ has a fixed point in𝕏0, that is, (1) has a unique
almost automorphic solution in 𝕏0. The proof of Theorem 3.1 is
completed.

4. EXPONENTIAL STABILITY OF ALMOST
AUTOMORPHIC SOLUTIONS

In this section, we will obtain the exponential stability of the almost
automorphic solutions of system (1).

Theorem 4.1. Suppose that (H1)–(H3) are fulfilled. Then the almost
automorphic solution of system (1) is globally exponentially stable.

Proof By Theorem 3.1, we know that (1) has an almost automor-
phic solution x (t) = (x1 (t) , x2 (t) ,⋯ , xn (t))T with initial con-
dition 𝜑 (t) = (𝜑1 (t) , 𝜑2 (t) ,⋯ , 𝜑n (t))T. Suppose that y (t) =(
y1 (t) , y2 (t) ,⋯ , yn (t)

)T is an arbitrary solution of (1) with ini-
tial condition 𝜓 (t) = (𝜓1 (t) , 𝜓2 (t) ,⋯ , 𝜓n (t))T. Denote u (t) =
(u1 (t) , u2 (t) ,⋯ , un (t))T, where ui (t) = yi (t) – xi (t) , i =
1, 2,⋯ , n. Then it follows from (1) that

u∆i (t) = –bi (t) ui (t – 𝜂i (t)) +
n
∑
j=1

aij (t) [fj
(
yj (t)

)
– fj

(
xj (t)

)
]

+
n
∑
j=1

bij (t) [fj
(
yj
(
t – 𝜏ij (t)

))
– fj

(
xj
(
t – 𝜏ij (t)

))
]

+
n
∑
j=1

cij (t) [fj
(
y ∆
i
(
t – 𝜎ij (t)

))
– fj

(
x ∆
i
(
t – 𝜎ij (t)

))
] ,

i = 1, 2, ⋅, n.
(19)

The initial condition of (19) is

𝜙i (s) = 𝜑i (s) – 𝜓i (s) , 𝜙 ∆
i (s)

= 𝜑 ∆
i (s) – 𝜓 ∆

i (s) , s ∈ [–𝜏, 0]𝕋 , i = 1, 2,⋯ , n.
(20)

Rewrite (19) as the form

u∆i (t) = –bi (t) ui (t) + bi (t) ∫
t

t–𝜂i(t)
u∆i (s)Δs

+
n
∑
j=1

aij (t) [fj
(
yj (t)

)
– fj

(
xj (t)

)
]

+
n
∑
j=1

bij (t) [fj
(
yj
(
t – 𝜏ij (t)

))
– fj

(
xj
(
t – 𝜏ij (t)

))
]

+
n
∑
j=1

cij (t) [fj
(
y∆i

(
t – 𝜎ij (t)

))
– fj

(
x∆i

(
t – 𝜎ij (t)

))
] ,

i = 1, 2, … , n.
(21)

It follows from (21) that for i = 1, 2,⋯ , n and t ≥ t0, t0 ∈ [–𝜏, 0]𝕋 ,

ui (t) = ui (t0) e–bi (t, t0) + ∫
t

t0

e–bi (t, 𝜎 (s)) {bi (s) ∫
s

s–𝜂i(s)
u∆i (𝜗)Δ𝜗

+
n

∑
j=1

aij (s) [fj
(
yj (s)

)
– fj

(
xj (s)

)
]

+
n

∑
j=1

bij (s) [fj
(
yj
(
s – 𝜏ij (s)

))
– fj

(
xj
(
s – 𝜏ij (s)

))
]

+
n

∑
j=1

cij (s) [fj
(
y ∆
i
(
s – 𝜎ij (s)

))
– fj

(
x ∆
i
(
s – 𝜎ij (s)

))
]} Δs,

(22)

where i = 1, 2,⋯ , n. For𝜇 ∈ ℝ, defineΠi (𝜔) andΓi (𝜔) as follows

Πi (𝜔) = b–i – 𝜔 – e𝜔sups∈𝕋𝜇(s) [b+i 𝜂+i e𝜔𝜂
+
i +

n
∑
j=1

a+ij Lj

+
n
∑
j=1

b+ij Lje
𝜔𝜏+ij +

n
∑
j=1

c+ij Lje
𝜔𝜍+ij ] ,

(23)
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Γi (𝜔) = b–i – 𝜔 –
(
b+i e

𝜔sups∈𝕋𝜇(s) + b–i – 𝜔
)

[b+i 𝜂+i e𝜔𝜂
+
i +

n
∑
j=1

a+ij Lj +
n
∑
j=1

b+ij Lje
𝜔𝜏+ij +

n
∑
j=1

c+ij Lje
𝜔𝜍+ij ] ,

(24)

where i = 1, 2,⋯ , n. By (H3), we get

Πi (0) = b–i – [b+i 𝜂+i +
n

∑
j=1

(
a+ij + b+ij + c+ij

)
Lj] > 0, (25)

Γi (0) = b–i –
(
b+i + b–i

)
[b+i 𝜂+i +

n

∑
j=1

(
a+ij + b+ij + c+ij

)
Lj] > 0.

(26)

Since Πi (𝜔) and Γi (𝜔) are continuous on [0, +∞) and
lim𝜔→+∞Πi (𝜔) = –∞, lim𝜔→+∞ Γi (𝜔) = –∞, then there exist
𝜔i, 𝜔∗i > 0 such that Πi (𝜔i) = 0, Γi

(
𝜔∗i

)
= 0 and Πi (𝜔) > 0 for

𝜔 ∈ (0, 𝜔i), Γi (𝜔) > 0 for 𝜔 ∈
(
0, 𝜔∗i

)
, i = 1, 2,⋯ , n. By choos-

ing a positive constant 𝜔0 = min {𝜔1, 𝜔2,⋯ , 𝜔n, 𝜔∗1, 𝜔∗2,⋯ , 𝜔∗n},
we get Πi (𝜔0) ≥ 0 and Γi (𝜔0) ≥ 0, i = 1, 2,⋯ , n. Thus we
can choose a positive constant 0 < 𝜉 < min {𝜔0,min1≤i≤n {b–i }}
such that

Πi
(
𝜉
)
> 0, Γi

(
𝜉
)
> 0, i = 1, 2,⋯ , n,

which implies that

e𝜉sups∈𝕋𝜇(s)

b–i – 𝜉

[b+i 𝜂+i e𝜉𝜂
+
i +

n
∑
j=1

a+ij Lj +
n
∑
j=1

b+ij Lje
𝜉𝜏+ij +

n
∑
j=1

c+ij Lje
𝜉𝜍+ij ] < 1

(27)

and

[1 +
b+i e

𝜉sups∈𝕋𝜇(s)

b–i – 𝜉
]

[b+i 𝜂+i e𝜉𝜂
+
i +

n
∑
j=1

a+ij Lj +
n
∑
j=1

b+ij Lje
𝜉𝜏+ij +

n
∑
j=1

c+ij Lje
𝜉𝜍+ij ] < 1,

(28)

where i = 1, 2,⋯ , n. Let

M = max
1≤i≤n

{
b–i

b+i 𝜂+i +∑n
j=1

(
a+ij + b+ij + c+ij

)
Lj
} (29)

By (H3), we know thatM > 1. Then we get

1
M < e𝜉sups∈𝕋𝜇(s)

b–i – 𝜉

[b+i 𝜂+i e𝜉𝜂
+
i +

n
∑
j=1

a+ij Lj +
n
∑
j=1

b+ij Lje
𝜉𝜏+ij +

n
∑
j=1

c+ij Lje
𝜉𝜍+ij ] .

(30)

Moreover, we have that e⊖𝜉 (t, t0) > 1, where t ∈ [–𝜏, t0]𝕋. Then

||u||𝕏∗ ≤ Me⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–𝜏, t0]𝕋 . (31)

We claim that

||u||𝕏∗ ≤ Me⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, +∞]𝕋 . (32)

To prove this (32), we show that for any p > 1, the following
inequality holds

||u||𝕏∗ ≤ pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, +∞]𝕋 . (33)

which implies that

|ui (t) | ≤ pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, +∞]𝕋 . (34)

and

|u∆i (t) | ≤ pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, +∞]𝕋 .
(35)

By way of contradiction, assume that (33) does not hold. Now we
consider the two cases.

Case 1. (34) is not true and (35) is true. Then there exists t∗ ∈
(t0, +∞)𝕋 and i∗ ∈ {1, 2,⋯ , n} such that

|ui∗ (t∗) | ≥ pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ ,
|ui∗ (t) | < pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, t∗]𝕋 ,

|uk (t) | < pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for k ≠ i∗, t ∈ [–t0, t∗]𝕋 ,
k = 1, 2,⋯ , n.

Therefore, there exists a constant 𝛾1 ≥ 1 such that

|ui∗ (t∗) | = 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ ,
|ui∗ (t) | < 𝛾1pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, t∗]𝕋 .

|uk (t) | < 𝛾1pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for k ≠ i∗, t ∈ [–t0, t∗]𝕋 ,
k = 1, 2,⋯ , n.

By (22), for i = 1, 2,⋯ , n, we get

|ui∗ (t∗) | =
||||
ui∗ (t0) e–bi∗ (t

∗, t0) + ∫
t∗

t0

e–bi∗ (t
∗, 𝜎 (s))

{bi∗ (s) ∫
s

s–𝜂i∗ (s)
u∆i∗ (𝜗)Δ𝜗

+
n
∑
j=1

ai∗j (s) [fj
(
yj (s)

)
– fj

(
xj (s)

)
]

+
n
∑
j=1

bi∗j (s) [fj
(
yj
(
s – 𝜏i∗j (s)

))
– fj

(
xj
(
s – 𝜏i∗j (s)

))
]

+
n
∑
j=1

ci∗j (s) [fj
(
y∆i∗

(
s – 𝜎i∗j (s)

))
– fj

(
x∆i∗

(
s – 𝜎i∗j (s)

))
] } Δs

||||
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≤ e–bi∗ (t
∗, t0) ||𝜑 – 𝜓||𝕏∗ + 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗

×
||||∫

t∗

t0

e–bi∗ (t
∗, 𝜎 (s)) e𝜉 (t∗, 𝜎 (s)) {b+i∗ ∫

s

s–𝜂i∗ (s)
e𝜉 (𝜎 (s) , 𝜗)Δ𝜗

+
n
∑
j=1

a+i∗jLje𝜉 (𝜎 (s) , s) +
n
∑
j=1

b+i∗jLje𝜉
(
𝜎 (s) , s – 𝜏i∗j (s)

)
+

n
∑
j=1

c+i∗jLje𝜉
(
𝜎 (s) , s – 𝜎i∗j (s)

)
} Δs

||||
≤ e–bi∗ (t

∗, t0) ||𝜑 – 𝜓||𝕏∗ + 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗

×
||||∫

t∗

t0

e–bi∗⊕𝜉 (t
∗, 𝜎 (s)) {b+i∗𝜂

+
i∗ e𝜉 (𝜎 (s) , s – 𝜂i∗ (s))

+
n
∑
j=1

a+i∗jLje𝜉 (𝜎 (s) , s) +
n
∑
j=1

b+i∗jLje𝜉
(
𝜎 (s) , s – 𝜏i∗j (s)

)
+

n
∑
j=1

c+i∗jLje𝜉
(
𝜎 (s) , s – 𝜎i∗j (s)

)
} Δs

||||
≤ e–bi∗ (t

∗, t0) ||𝜑 – 𝜓||𝕏∗ + 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗

×
||||∫

t∗

t0

e–bi∗⊕𝜉 (t
∗, 𝜎 (s)) {b+i∗𝜂

+
i∗ e

𝜉
(
𝜂+i∗+supt∈𝕋𝜇(s)

)

+
n
∑
j=1

a+i∗jLje
𝜉supt∈𝕋𝜇(s) +

n
∑
j=1

b+i∗jLje
𝜉
(
𝜏+i∗ j+supt∈𝕋𝜇(s)

)

+
n
∑
j=1

c+i∗jLje
𝜉
(
𝜍+i∗ j+supt∈𝕋𝜇(s)

)
}Δs

||||

= 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ { 1
𝛾1pM

e–bi∗⊕𝜉 (t
∗, t0) + e𝜉supt∈𝕋𝜇(s)

×[b+i∗𝜂
+
i∗ e

𝜉𝜂+i∗ +
n
∑
j=1

a+i∗jLj +
n
∑
j=1

b+i∗jLje
𝜉𝜏+i∗ j +

n
∑
j=1

c+i∗jLje
𝜉𝜍+i∗ j]

× ∫
t∗

t0

e–bi∗⊕𝜉 (t
∗, 𝜎 (s))Δs}

(36)

≤ 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ { 1Me–(bi∗–𝜉) (t
∗, t0) + e𝜉supt∈𝕋𝜇(s)

×[
(
b+i∗𝜂

+
i∗ e

𝜉𝜂+i∗ +
n
∑
j=1

a+i∗jLj +
n
∑
j=1

b+i∗jLje
𝜉𝜏+i∗ j +

n
∑
j=1

c+i∗jLje
𝜉𝜍+i∗ j

)
× 1
–
(
bi∗ – 𝜉

) ∫
t∗

t0

(
–
(
bi∗ – 𝜉

))
e–(bi∗–𝜉) (t

∗, 𝜎 (s))Δs]}

= 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ {[ 1M – e𝜉supt∈𝕋𝜇(s)

b–i∗ – 𝜉

(
b+i∗𝜂

+
i∗ e

𝜉𝜂+i∗

+
n
∑
j=1

a+i∗jLj +
n
∑
j=1

b+i∗jLje
𝜉𝜏+i∗ j +

n
∑
j=1

c+i∗jLje
𝜉𝜍+i∗ j

)
] e–(bi∗–𝜉) (t

∗, t0)

+ e𝜉supt∈𝕋𝜇(s)

b–i∗ – 𝜉

(
b+i∗𝜂

+
i∗ e

𝜉𝜂+i∗ +
n
∑
j=1

a+i∗jLj +
n
∑
j=1

b+i∗jLje
𝜉𝜏+i∗ j

+
n
∑
j=1

c+i∗jLje
𝜉𝜍+i∗ j

)
}

< 𝛾1pMe⊖𝜉 (t∗, t0) ||𝜑 – 𝜓||𝕏∗ ,
(37)

which is a contradiction.

Case 2. (35) is not true and (34) is true. Then there exists t∗∗ ∈
(t0, +∞)𝕋 and i∗∗ ∈ {1, 2,⋯ , n} such that

|u∆i∗∗ (t
∗∗) | ≥ pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ ,

|u∆i∗∗ (t) | < pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, t∗∗]𝕋 ,

|u∆k (t) | < pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for k ≠ i∗∗, t ∈ [–t0, t∗∗]𝕋 ,
k = 1, 2,⋯ , n.

Therefore, there exists a constant 𝛾2 ≥ 1 such that

|u∆i∗∗ (t
∗∗) | = 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ , |ui∗∗ (t) |

< 𝛾2pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for all t ∈ [–t0, t∗∗]𝕋 .

|u∆k (t) | < 𝛾2pMe⊖𝜉 (t, t0) ||𝜑 – 𝜓||𝕏∗ , for k ≠ i∗∗,
t ∈ [–t0, t∗∗]𝕋 , k = 1, 2,⋯ , n.

By (22), for i = 1, 2,⋯ , n, we have

|u∆i∗∗ (t
∗∗) | = ||–bi∗∗ (t∗∗) ui∗∗ (t0) e–bi∗∗ (t

∗∗, t0) + bi∗∗ (t∗∗)

∫
t∗∗

t∗∗–𝜂i∗∗
u∆i∗∗ (s)Δs

+
n
∑
j=1

ai∗∗j (t∗∗) [fj
(
yj (t∗∗)

)
– fj

(
xj (t∗∗)

)
]

+
n
∑
j=1

bi∗∗j (t∗∗) [fj
(
yj
(
t∗∗ – 𝜏i∗∗j (t∗∗)

))
– fj

(
xj
(
t∗∗ – 𝜏i∗∗j (t∗∗)

))
]

+
n
∑
j=1

ci∗∗j (t∗∗) [fj
(
y∆i∗∗

(
t∗∗ – 𝜎i∗∗j (t∗∗)

))
– fj

(
x∆i∗∗

(
t∗∗ – 𝜎i∗∗j (t∗∗)

))
]

– bi∗∗ (t∗∗) ∫
t∗∗

t0

e–bi∗∗ (t
∗∗, 𝜎 (s))

× {bi∗∗ (s) ∫
s

s–𝜂i∗∗
u∆i∗∗ (𝜗)Δ𝜗

+
n
∑
j=1

ai∗∗j (s) [fj
(
yj (s)

)
– fj

(
xj (s)

)
]

+
n
∑
j=1

bi∗∗j (s) [fj
(
yj
(
s – 𝜏i∗∗j (s)

))
– fj

(
xj
(
s – 𝜏i∗∗j (s)

))
]

+
n
∑
j=1

ci∗∗j (s) [fj
(
y∆s

(
s – 𝜎i∗∗j (s)

))
– fj

(
x∆i∗∗

(
s – 𝜎i∗∗j (s)

))
] } Δs

||||
≤ e–bi∗∗ (t

∗∗, t0) e–b∗∗i (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗

+𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗

×
(
b+i∗∗ ∫

s

s–𝜂i∗∗
e𝜉 (𝜎 (s) , 𝜗)Δ𝜗
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+
n
∑
j=1

a+i∗∗jLje𝜉 (𝜎 (t
∗∗) , t∗∗)

+
n
∑
j=1

b+i∗∗jLje𝜉
(
𝜎 (t∗∗) , t∗∗ – 𝜏i∗∗j (t∗∗)

)
+

n
∑
j=1

c+i∗∗jLje𝜉
(
𝜎 (t∗∗) , t∗∗ – 𝜎i∗∗j (t∗∗)

))
+b+i∗∗𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗

{∫
t∗∗

t0

e–bi∗∗ (t
∗∗, 𝜎 (s)) e𝜉 (t∗∗, 𝜎 (s))

×[b+i∗∗ ∫
s

s–𝜂i∗∗
e𝜉 (𝜎 (s) , 𝜗)Δ𝜗 +

n

∑
j=1

a+i∗∗jLje𝜉 (𝜎 (s) , s)

+
n
∑
j=1

b+i∗∗jLje𝜉
(
𝜎 (s) , s – 𝜏i∗∗j (s)

)
+

n
∑
j=1

c+i∗∗jLje𝜉
(
𝜎 (s) , s – 𝜎i∗∗j (s)

)
]Δs}

≤ e–bi∗∗ (t
∗∗, t0) ||𝜑 – 𝜓||𝕏∗ + 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗

×
(
b+i∗∗𝜂

+
i∗∗e𝜉

(
t∗∗, t∗∗ – 𝜂i∗∗ (t∗∗) +

n
∑
j=1

a+i∗∗jLje𝜉 (𝜎 (t
∗∗) , t∗∗)

+
n
∑
j=1

b+i∗∗jLje𝜉
(
𝜎 (t∗∗) , t∗∗ – 𝜏i∗∗j (t∗∗)

)
+

n
∑
j=1

c+i∗∗jLje𝜉
(
𝜎 (t∗∗) , t∗∗ – 𝜎i∗∗j (t∗∗)

))
+b+i∗∗𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ {∫

t∗∗

t0

e–bi∗∗⊕𝜉 (t
∗∗, 𝜎 (s))

×[b+i∗∗𝜂
+
i∗∗e𝜉 (𝜎 (s) , s – 𝜂i∗∗ (s)) +

n
∑
j=1

a+i∗∗jLje𝜉 (𝜎 (s) , s)

+
n
∑
j=1

b+i∗∗jLje𝜉
(
𝜎 (s) , s – 𝜏i∗∗j (s)

)
+

n
∑
j=1

c+i∗∗jLje𝜉
(
𝜎 (s) , s – 𝜎i∗∗j (s)

)
]Δs}

≤ e–bi∗∗ (t
∗∗, t0) ||𝜑 – 𝜓||𝕏∗ + 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗

×
(
b+i∗∗𝜂

+
i∗∗e𝜉𝜂i∗∗ +

n
∑
j=1

a+i∗∗jLj +
n
∑
j=1

b+i∗∗jLje
𝜉𝜏i∗∗ j

+
n
∑
j=1

c+i∗∗jLje
𝜉𝜍i∗∗ j

)
×
(
1 + b+i∗∗e

𝜉supt∈𝕋𝜇(s) ∫
t∗∗

t0

e–bi∗∗⊕𝜉 (t
∗∗, 𝜎 (s))Δs

)
≤ 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ {

b+i∗∗
M e–bi∗∗⊕𝜉 (t

∗∗, t0)

+
(
b+i∗∗𝜂

+
i∗∗e

𝜉𝜂+i∗∗ +
n
∑
j=1

a+i∗∗jLj

+
n
∑
j=1

b+i∗∗jLje
𝜉𝜏+i∗∗ j +

n
∑
j=1

c+i∗∗jLje
𝜉𝜍+i∗∗ j

)
×
(
1 + b+i∗∗je

𝜉supt∈𝕋𝜇(s) ∫
t∗∗

t0

e–bi∗∗⊕𝜉 (t
∗∗, 𝜎 (s))Δs

)
}

≤ 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ {[ 1M – e𝜉supt∈𝕋𝜇(s)

b–i∗∗ – 𝜉(
b+i∗∗𝜂

+
i∗∗e

𝜉𝜂+i∗∗ +
n
∑
j=1

a+i∗∗jLj +
n
∑
j=1

b+i∗∗jLje
𝜉𝜏+i∗∗ j

+
n
∑
j=1

c+i∗∗jLje
𝜉𝜍+i∗∗ j

)
]

× b+i∗∗e–(bi∗∗–𝜉) (t
∗∗, t0) +

⎛⎜⎜⎝1 +
b+i∗∗je

𝜉supt∈𝕋𝜇(s)

b–i∗∗j – 𝜉

⎞⎟⎟⎠(
b+i∗∗𝜂

+
i∗∗e

𝜉𝜂+i∗∗ +
n
∑
j=1

a+i∗∗jLj +
n
∑
j=1

b+i∗∗jLje
𝜉𝜏+i∗∗ j

+
n
∑
j=1

c+i∗∗jLje
𝜉𝜍+i∗∗ j

)
}

< 𝛾2pMe⊖𝜉 (t∗∗, t0) ||𝜑 – 𝜓||𝕏∗ ,

(38)

which is also a contradiction. Based on the two cases above, we can
conclude that (33) holds. Let p → 1, then (32) holds. We can take
⊖𝜆 = ⊖𝜉, then 𝜆 > 0 and⊖𝜆 ∈ R+. Then we derive

||u||𝕏∗ ≤ M||𝜑 – 𝜓||𝕏∗e⊖𝜆 (t, t0) , t ∈ [–𝜏,∞)𝕋 , t ≥ t0, (39)

whichmeans that the almost automorphic solution of (1) is globally
exponentially stable. The proof of Theorem 4.1 is completed.

Remark 4.1

In [2–4,7], the scholars considered the almost periodic solution for
different type neural networks. In [5,8,10,11,39], the authors investi-
gated anti-periodic solutions to various neural networks. The research
topic of [2–5,7,8,10,11,39] did not involve almost automorphic solu-
tion. In this article, we have analyzed the almost automorphic
solutions to cellular neural networks with neutral type delays and
time-varying leakage delays on time scales. The obtained theoreti-
cal results in [2–5,7,8,10,11,39] cannot be applied to system (1) to
derive the existence and the exponential stability of almost automor-
phic solutions for system (1). From this viewpoint, we can say that the
main results on the existence and the exponential stability of almost
automorphic solutions for system (1) are completely new and comple-
ment previous publications.

5. AN EXAMPLE

Considering the following cellular neural networks with neutral
type delays and time-varying leakage delays on time scales

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

x∆1 (t) = –b1 (t) x1 (t – 𝜂1 (t)) +
2
∑
j=1

a1j (t) fj
(
xj (t)

)
+

2
∑
j=1

b1j (t) fj
(
xj
(
t – 𝜏1j (t)

))
+

2
∑
j=1

c1j (t) fj
(
x∆1

(
t – 𝜎1j (t)

))
+ I1 (t) ,

x∆2 (t) = –b2 (t) x2 (t – 𝜂2 (t)) +
2
∑
j=1

a2j (t) fj
(
xj (t)

)
+

2
∑
j=1

b2j (t) fj
(
xj
(
t – 𝜏2j (t)

))
+

2
∑
j=1

c2j (t) fj
(
x∆2

(
t – 𝜎2j (t)

))
+ I2 (t) ,

(40)



C. Xu et al. / International Journal of Computational Intelligence Systems 13(1) 1–11 9

where f1 (u1) = sin0.3u1, f2 (u2) = sin0.2u2 and

[ a11 (t) a12 (t)
a21 (t) a22 (t)

] = [ 0.01 + 0.04 cos√2t 0.02 + 0.01 cos√3t
0.01 + 0.03 cos√5t 0.01 + 0.02 cos√3t

] ,

[ b11 (t) b12 (t)
b21 (t) b22 (t)

] = [ 0.01 + 0.02 cos√5t 0.02 + 0.03 cos√2t
0.02 + 0.03 cos√3t 0.02 + 0.03 cos√3t

] ,

[ c11 (t) c12 (t)
c21 (t) c22 (t)

] = [ 0.02 + 0.02 cos√5t 0.02 + 0.03 cos√2t
0.03 + 0.01 cos√3t 0.03 + 0.02 cos√2t

] ,

[ b1 (t) b2 (t)
𝜂1 (t) 𝜂2 (t)

] = [ 0.02 + 0.01 cos√2t 0.03 + 0.01 cos√3t
0.02 + 0.01 cos√5t 0.01 + 0.02 cos√2t

] ,

[ I1 (t)I2 (t)
] = [ 0.03 + 0.01 sin√5t

0.04 + 0.01 sin√3t
] .

Then we get L1 = 0.3, L2 = 0.2,M1 = 0.3,M2 = 0.2 and

[
a+11 a+12
a+21 a+22

] = [
0.05 0.03
0.04 0.03

] , [
b+11 b+12
b+21 b+22

] = [
0.03 0.05
0.05 0.05

] ,

[
c+11 c+12
c+21 c+22

] = [
0.04 0.05
0.04 0.05

] , [
b–1 b–2
𝜂+1 𝜂+2

] = [
0.1 0.2
0.3 0.3

] .

It is not difficult to verify that all assumptions in Theorems 4.1 are
fulfilled. Thus we can conclude that (1) has an almost automorphic
solution, which is globally exponentially stable. The results are ver-
ified by the numerical simulations in Figures 1 and 2.

6. CONCLUSIONS

In this paper, we investigate a class of cellular neural networks with
neutral type delays and time-varying leakage delays. Applying the
existence of the exponential dichotomy of linear dynamic equations
on time scales, a fixed point theorem and the theory of calculus
on time scales, we establish a series of sufficient conditions for the
existence and exponential stability of almost automorphic solutions

for the cellular neural networks with neutral type delays and time-
varying leakage delays on time scales. We show that the existence
and global exponential stability of almost automorphic solutions
for system (1) only depends on time delays 𝜂i (i = 1, 2,⋯ , n) (the
delays in the leakage term) and does not depend on time delays
𝜏ij
(
i, j = 1, 2,⋯ , n

)
and 𝜎ij

(
i, j = 1, 2,⋯ , n

)
, which implies that

the delays in the leakage term do harm to the existence and global
exponential stability of almost automorphic solutions. To the best of
our knowledge, it is the first time to deal with the almost automor-
phic solution for cellular neural networks with neutral type delays
and time-varying leakage delays on time scales. The idea of this
manuscript can be applied directly to investigate a lot of numer-
ous network systems. The theoretical predictions of thismanuscript
show that under a suitable parameter condition, the cellular neu-
ral networks with neutral type delays and leakage delays will dis-
play almost automorphic oscillatory phenomenon. In real life, the
almost automorphic oscillatory behavior plays an important role in
helping us process visual information successfully. It can be effec-
tively applied in predicting the law of brain cell activity, which is
useful to serve the diagnosis of diseases. In addition, we know that
the quaternion-valued cellular neural networks can be regarded as
a generalization of real-valued and complex-valued cellular neu-
ral networks. So far, there are very few publications that consider
almost automorphic solutions of quaternion-valued cellular neural
networks. In the near future, we will focus on this topic.
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Figure 1 The relation of t and x1.
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Figure 2 The relation of t and x2.
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