
International Journal of Computational Intelligence Systems
Vol. 13(1), 2020, pp. 44–55

DOI: https://doi.org/10.2991/ijcis.d.200117.001; ISSN: 1875-6891; eISSN: 1875-6883
https://www.atlantis-press.com/journals/ijcis/

New Ant Colony Optimization Algorithm for the Traveling
Salesman Problem

Wei Gao*

College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, PR China

ART I C L E I N FO
Article History

Received 09 Oct 2019
Accepted 27 Dec 2019

Keywords

Computational intelligence
optimization

New ant colony optimization
algorithm

Meeting strategy
Performance
Traveling salesman problem

ABSTRACT
As one suitable optimization method implementing computational intelligence, ant colony optimization (ACO) can be used to
solve the traveling salesman problem (TSP). However, traditional ACO hasmany shortcomings, including slow convergence and
low efficiency. By enlarging the ants’ search space and diversifying the potential solutions, a new ACO algorithm is proposed. In
this new algorithm, to diversify the solution space, a strategy of combining pairs of searching ants is used. Additionally, to reduce
the influence of having a limited number of meeting ants, a threshold constant is introduced. Based on applying the algorithm to
20 typical TSPs, the performance of the new algorithm is verified to be good. Moreover, by comparison with 16 state-of-the-art
algorithms, the results show that the proposed new algorithm is a highly suitable method to solve the TSP, and its performance
is better than those of most algorithms. Finally, by solving eight TSPs, the good performance of the new algorithm has been
analyzedmore comprehensively by comparison with that of the typical traditional ACO. The results show that the new algorithm
can attain a better solution with higher accuracy and less effort.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

As a computational intelligence optimization method, ant colony
optimization (ACO) [1] is a swarm intelligence algorithm inspired
by the foraging behavior of real ants. The first proposed algorithm
of ACO, called the ant system (AS) [2], was developed by three
Italian scholars (Dorigo, Colorni, and Maniezzo) in 1991. As the
original version of various ACO algorithms, the AS has several
obvious merits, including its robustness and its status as a con-
structive greedy heuristic [1]. Therefore, the AS has been a heavily
researched topic from its creation and has been used to solve dif-
ficult combinatorial optimization problems, such as the traveling
salesman problem (TSP). However, as a heuristic algorithm, the AS
has several shortcomings [1], including slow convergence and dif-
ficulty in expanding the search space. To solve the TSP well, sev-
eral scholars have proposed many corrective algorithms for ACOs,
such as the elitist AS [3], the ant colony system [4], the rank-based
AS [5], the max–min AS [6], the novel max–min AS [7], the adap-
tive dynamic AS [8], the moderate AS [9], an improved ACO algo-
rithm [10], the cooperative genetic AS [11], a hybrid method of ant
colony optimization and the genetic algorithm (ACO-GA) [12], a
hybrid method of ant colony optimization and the cuckoo search
algorithm (ACO-CS) [12], a hybrid max–min ant system inte-
grated with an inequality constraint on four vertices and three lines
(HMMAS) [13], a modified AS [14], a nearest neighbor ant colony
system (NNACS) [15], a hybrid elitist-ant system (HEAS) [16], a
hybrid method based on ant colony optimization and the 3-Opt

*Email: wgaowh@163.com

algorithm (ACO-3Opt) [17], and a parallel ACO algorithm based
on a quantum dynamic mechanism [18], and so on. The details of
these algorithms are as follows. The elitist AS [3] introduced the
idea of the elitist strategy in the context of the AS to give extra
emphasis to the best path found so far to improve the global search-
ing of AS. However, the elitist AS cannot provide a good solution
to the slow convergence of AS. The ant colony system [4] was built
on the AS to improve efficiency by using a local pheromone update
in addition to the pheromone update applied at the end of the con-
struction process. On the other hand, it cannot greatly decrease the
probability of being trapped in a local minimum. To avoid prema-
ture convergence, the rank-basedAS [5] introduced a ranking strat-
egy into AS by weighting the contribution of an ant to the trail level
update. However, this system does not provide a good solution to
the slow convergence of AS. The max–min AS [6] improved the
pheromone update method of AS by only allowing the best ant to
update the pheromone trails and by limiting the value of pheromone
on the paths to avoid premature convergence of the search. Nev-
ertheless, this system also does not solve the problem of slow con-
vergence, and more parameters need to be determined. To select
suitable parameters of the max–min AS, the novel max–min AS [7]
used the objective function value to set the pheromone trail value.
However, its convergence rate needs to be improved. The adap-
tive dynamic AS [8] improved AS by modifying the pheromone
updating rule and the transition rule with evenness of solution,
interesting and acceleration to avoid premature convergence. How-
ever, this does not solve the problem of slow convergence. Inspired
by adaptive behavior, the moderate AS [9] was developed with a
new transition rule that can enhance the capability of AS to find

https://doi.org/10.2991/ijcis.d.200117.001
https://www.atlantis-press.com/journals/ijcis/
http://creativecommons.org/licenses/by-nc/4.0/


W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 45

new solutions to avoid premature convergence, but its convergence
rate needs to be improved. An improved version of the ACO algo-
rithm [10] was proposed based on a candidate list strategy for
rapid convergence speed and a dynamic updating rule for heuristic
parameters using entropy to improve performance. However, this
algorithm is very complex, and its performance cannot be verified
well. The cooperative genetic AS [11] combined both the genetic
algorithm (GA) and ACO in a cooperative manner to improve
performance: in this system, the mutual information exchanged
between two algorithms at the end of the current iteration. How-
ever, this algorithm is also very complex, and more parameters are
required. In a hybrid method of ACO and GA (ACO-GA) [12],
the GA utilizes all effective paths of ACO and then identifies an
effective and efficient way to obtain a better solution in the search
space.Moreover, similar toACO-GA, in the hybridmethod of ACO
and the CS algorithm (ACO-CS) [12], the CS was used in ACO
to search for a better solution. Nevertheless, the above two hybrid
algorithms are very complex, and more verification of their per-
formance is needed. In the hybrid max–min AS integrated with an
inequality constraint on four vertices and three lines (HMMAS)
[13], the MMA was used to search for an approximate result, and
with the approximate one, the inequality constraint on four ver-
tices and three lines was used in a local search to obtain a bet-
ter approximation. However, the performance of this algorithm is
not very good, and it cannot be used for large-scale problems. For
the modified AS [14], the adaptive tour construction and adap-
tive pheromone updating strategies are embedded into the AS to
achieve better solutions. Nonetheless, deep verification of it is lack-
ing, and the convergence rate should be improved. To reduce com-
puting time and without sacrificing the optimality properties of the
solutions, a NNACS [15] was proposed by implementing enhanced
pheromone updating rules in the ant colony system for which a
large number of inefficient solutions are eliminated at the outset on
the basis of proximity-based neighborhoods. However, currently,
the NNACS only focuses on problems of small to moderate sizes.
The HEAS [16] introduced an external memory into an elitist-AS,
called an elite pool, which contains high-quality and diverse solu-
tions to maintain a balance between diversity and quality of the
search to enhance the performance of the algorithm. However, this
algorithm is very complex, andmore parameters are required. In the
hybrid ACO-3Opt [17], the 3-Opt algorithm was combined with
ACO to avoid local minima, and it can improve the quality of the
obtained solutions and the robustness of the algorithm. However,
the ACO-3Opt is very complex, and its performance is affected by
many factors. Finally, for the parallel ACO algorithm based on a
quantum dynamic mechanism [18], to improve the performance of
ACO, the improved 3-opt operator was used to provide superior
local search ability, and several antibody diversification schemes
were incorporated to improve the balance between exploitation and
exploration. However, this algorithm is very complex, and finding
a suitable parameter setting for it is hard.

Because the TSP is a well-known NP-hard combinatorial optimiza-
tion problem that is computationally difficult, in addition to ACO,
many other new metaheuristic optimization algorithms have been
applied to solve it, such as the quantum heuristic algorithm (QHA)
[19], the discrete artificial bee colony algorithm with a neighbor-
hood operator (DABC-NO) [20], the shrinking blob algorithm
(SBA) [21], the discrete cuckoo search algorithm (DCSA) [22],
the random-key cuckoo search (RKCS) [23], the African buffalo

optimization (ABO) [24], the discrete bat algorithm (DBA) [25], the
fruit fly optimization algorithm (FFOA) [26], a hybrid algorithm
using a GA and amultiagent reinforcement learning heuristic (GA-
MRLH) [27], the artificial atom algorithm (AAA) [28], the greedy
flower pollination algorithm (GFPA) [29], the imperial competi-
tive algorithm (ICA) [30], the black hole algorithm (BHA) [31], the
simulated annealing-based symbiotic organisms search optimiza-
tion algorithm (SA-SOSOA) [32], the discrete symbiotic organisms
search algorithm (DSOSA) [33], the hybrid discrete artificial bee
colony algorithm with a threshold acceptance criterion (DABC-
TAC) [34], a minimum spanning tree-based heuristic (MSTH)
[35], a genetic algorithm with local operators (GAL) [36], a new
hybrid optimization algorithm based on wolf pack search and
local search (WPS-LS) [37], discrete spider monkey optimization
(DSMP) [38], discrete pigeon-inspired optimization (DPIO) [39],
and the parthenogenetic algorithm (PGA) [40], and so on. For
those algorithms, many are newly proposed metaheuristic algo-
rithms, such as QHA, SBA, DCSA, RKCS, ABO, DBA, FFOA, AAA,
GFPA, ICA, BHA, DSOSA, MSTH, DSMP, DPIO, and PGA. Most
of them have simple structure and are easy to be applied. Using
those newmetaheuristic algorithms, the results for solving TSPs are
perfect in terms of the solution quality and speed for most algo-
rithms, except GFPA which mainly considers the robustness of the
solutions. However, the theoretical bases of those new metaheuris-
tic algorithms are all lacking. Moreover, the verifications are not
enough and more experiments should be conducted. For example,
only the small-scale problems have been solved by some algorithms
(including SBA, RKCS, ABO, FFOA, AAA, ICA, BHA, MSTH, and
DSMP), and only large-scale problems have been solved by some
algorithms (including DPIO and PGA). Furthermore, some algo-
rithms have their specific shortcomings. For example, for QHA
[19], an open question still remains as to whether the quadratic or
faster speedup can still be achieved when employing structural or
geometrical information on city-pair costs, and the performance of
GFPA [29] will decrease quickly as the number of cities increases.
For the hybrid algorithms, DABC-NO [20] has combined neigh-
borhood operator into newly proposed metaheuristic algorithm
(discrete artificial bee colony algorithm) to improve solution qual-
ity for TSP, and results are perfect in terms of the solution qual-
ity and speed. However, only the small-scale problems have been
solved by DABC-NO. The GA-MRLH [27] is the combination of
genetic algorithm and a multiagent reinforcement learning heuris-
tic, and its results for solving TSPs are good in terms of the solu-
tion quality and speed. However, the algorithm is very complex and
more parameters are needed. The SA-SOSOA [32] is a new hybrid
algorithm based on the simulated annealing and symbiotic organ-
isms search optimization algorithm, and its results for solving TSPs
are good in terms of the solution quality and speed. However, its
theoretical basis lacks and more experiments should be conducted.
DABC-TAC [34] is a hybrid discrete ABC, which uses acceptance
criterion of threshold accepting method, and its results for solv-
ing TSPs are also good in terms of the solution quality and speed.
However, this algorithm is very complex and more parameters are
needed. GAL [36] is a hybrid algorithm of genetic algorithm with
local operators and its results for solving TSPs are good in terms
of the solution quality and speed too. However, the algorithm is
also very complex and more parameters are needed. At last, WPS-
LS [37] is a new hybrid algorithm based on wolf pack search and
local search, and its results for solving TSPs are good in terms of



46 W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55

the solution quality and robustness of the solutions. However, this
algorithm is very complex and only the small-scale problems have
been solved.

As mentioned previously, ACO was introduced by means of a
proof-of-concept application to the TSP. Therefore, ACO has been
applied to many combinatorial optimization problems [41]. First,
classical problems other than the TSP, such as assignment prob-
lems, scheduling problems, graph coloring, the maximum clique
problem, and vehicle routing problems, were addressed. More
recent applications include electrical engineering problems, cluster-
ing problems, and civil engineering problems [42].

Intuitively, the most important theme in improvement algorithms
for ACO is the balance between intensification and diversifica-
tion. However, excessive emphasis on intensification can make
ants converge to a local optimum, while excessive emphasis on
diversification can lead to an unstable state [43]. To overcome the
shortcomings of traditional ACO methods, a meeting strategy has
been introduced to favor search diversification andmaintain inten-
sification at an appropriate level. In other words, this new strategy
is to adjust the trade-off between intensification and diversifica-
tion. Thus, a new ACO algorithm is proposed. To verify the new
algorithm, the results of the new ACO algorithm for 20 TSPs are
compared to the best known solutions and the results of 16 state-of-
the-art algorithms. Furthermore, the computing effectiveness and
efficiency of the new algorithm are compared with those of typical
traditional ACOwhen the algorithm is used to solve eight generally
used TSPs.

The paper is organized as follows. After this introduction, the typ-
ical traditional ACO is introduced in Section 2. The details of the
proposed new ACO algorithm are given in Section 3. Section 4
presents the experimental results obtained from the newACO algo-
rithm and compares it to certain state-of-the-art heuristic methods.
Section 5 contains the statistical analysis of two algorithms (tradi-
tional ACO and the new ACO algorithm). Finally, the study’s con-
clusions are presented in Section 6.

2. TRADITIONAL ACO

By application to the TSP, the main steps of traditional ACO are
introduced as follows. First, when t = 0, the ants, of which there are
m, are randomly positioned at different cities, of which there are n.
At this time, the intensity of pheromone (𝜏) on all paths is the same;
this state can be described as

𝜏 = c (1)

where c is a constant.

The next step for each ant is selecting another city that it has not yet
visited using some rules. There are two main rules followed by the
ants, which are

1. The pheromone intensity on the path between cities i and j at
time t is 𝜏ij(t), which is information provided by the algorithm.

2. The heuristic information controlling the move from city i to j
is 𝜂ij, which can be determined by a heuristic algorithm accord-
ing to the problem to be solved. Generally, it can be given as

𝜂ij =
1
dij

(2)

where dij is the length of the path between cities i and j.

By using the two rules, at time t, the ant k at city i selects the next city
j, which it has not yet visited, according to the following probability:

Pkij (t) =
𝜏𝛼ij (t) 𝜂

𝛽
ij

∑
j∈Nk

i

𝜏𝛼ij (t) 𝜂
𝛽
ij

, if j ∈ Nk
i (3)

where 𝛼 and 𝛽 are two parameters that determine the relative influ-
ence of the pheromone trail and the heuristic information, and Nk

i
is the feasible neighborhood of ant k when it is at city i, that is, the
set of cities that ant k has not visited yet.

However, to avoid visiting a city more than one time, for each ant k,
there exists one tabu list set tabu (k), which records the cities visited
by this ant.

After the ant completes one cycle (visiting all cities), the pheromone
intensity on all paths should be updated. That is, after the paths of
the ants have been built, the pheromones for all ants are updated
using the following equation:

𝜏ij (t + 1) = 𝜌𝜏ij (t) +
m

∑
k=1

Δ𝜏kij (4)

where 𝜌 is the residual ratio of the pheromone. However, to avoid
infinite accumulation of the pheromone, 𝜌 must be less than 1.
Δ𝜏kij is the increase of the trail level on edge

(
i, j
)
caused by ant k.

Depending on the problem, there are three descriptions of Δ𝜏kij , as
follows:

Δ𝜏kij = {
Q
Tk
, if ant k travels on edge

(
i, j
)

0, otherwise
(5)

Δ𝜏kij = {
Q
dij
, if ant k travels on edge

(
i, j
)

0, otherwise
(6)

Δ𝜏kij = {Q, if ant k travels on edge
(
i, j
)

0, otherwise
(7)

where Q is the quantity of pheromone laid by an ant per tour and
Tk is the length of the tour that ant k has found.

In the three descriptions above, global information is used for the
first, while local information is used for the other two descriptions.
Generally, the first description is used.

The procedure of traditional ACO is a kind of iterative process, and
its pseudocode is as follows.



W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 47

Begin
Initialization of parameters: 𝛼, 𝛽, 𝜌, Q, c, m and n
𝜏ij = c, ∆𝜏ij = 0, 𝜂ij = 1/dij are determined by a heuristic algorithm,

tabuk = 𝜑
For every cycle, do:
Random assignment of ants to cities
While tabuk is not full, do:
For every ant k, do:
Select the next city by probability pk[tabu[k][index–1]][j]

according to Eq. (3)

Move the ant to the selected city
Save the selected city in tabuk
For every ant k, do:
Compute the length of the tour
Save the shortest path
For every path, do:
Calculate ∆𝜏kij (index) according to Eqs. (5–7)
For every path, do:
Update pheromone 𝜏ij according to Eq. (4)
∆𝜏ij = 0
tabuk = 𝜑(empty the visited list)
End cycle

Output the optimal path and its length
End

By using C++, the traditional ACO can be implemented in this
study.

3. NEW ACO ALGORITHM

ThenewACOalgorithm is described in detail as follows for applica-
tion to the TSP. In the traditional ACO, for each ant k, at the begin-
ning, the number of cities in the set tabu(k) is small; thus, the ant
selects the next cities with high flexibility. In contrast, at the end of
the search process, the city number in the set tabu(k) is large, and
the ant selects the next cities without any diversification. Thus, the
ants will move along certain paths and lose the ability to explore
other potential paths. Additionally, the convergence of the algo-
rithm will be accelerated, which is biased by positive feedback, but
diversification will be weakened. To improve the search diversifica-
tion and maintain the necessary intensification, a meeting strategy
is introduced into the traditional ACO, and a new ACO algorithm
is proposed. The meeting strategy is as follows.

When approximately half of the cities have been visited by ants
based on the same operations as in the traditional ACO, all ants
should be evaluated to determine whether they canmeet with other
ants. This determination can be made easily based on the number
of cities that are stored in the ants’ tabu lists. Two ants are a pair of
meeting ants if the union of the cities in their tabu lists covers all
the cities in the problem. Then, the meeting ants will quit the cur-
rent search iteration, and a new tour will be created by the meet-
ing ants; this tour can be easily realized by combining the two ants’
tabu lists. If the number of cities in the combined tabu list is larger
than the number of all cities, the repeated cities in the new tabu list
should be eliminated to guarantee that the number of cities in the
new tabu list is equal to the number of all cities. Thus, according
to the cities in the combined tabu list, the new tour can be con-
structed. Additionally, the pheromone values will be added to the
new combined tours. Unfortunately, in real practice, the number of
ants in each iteration is finite, and the number ofmeeting ants is also

limited. To normalize the search process, a threshold constant v is
applied. If the number of meeting ants surpasses the threshold con-
stant, the search process will stop, and the pheromone values will
be deposited on the new tour. If the number of meeting ants does
not exceed the threshold constant, the search process will continue
until all tours are generated, and the pheromone update law is the
same as that of the traditional ACO.

In this algorithm, the pheromone updates according to the follow-
ing equation:

𝜏ij (t + 1) = 𝜌𝜏ij (t) +
v

∑
k=1

Δ𝜏kij (8)

To diversify the search process, the pheromone values of all paths
should be limited to an interval [𝜏min, 𝜏max], which is as follows:

𝜏ij = {
𝜏min, if 𝜏ij ≤ 𝜏min

𝜏max, if 𝜏ij ≥ 𝜏max
(9)

where 𝜏min and 𝜏max are the pheromone extent values, which can be
determined from experiments. A detailed description of 𝜏min and
𝜏max can be found in reference [6].

Because the cities on the new tour generated by the meeting ants
are visited by two ants and not by one ant, as in the traditional
ACO, the time to create a new tour will be reduced by approxi-
mately half. Moreover, a limiting strategy for the pheromone val-
ues is used. Because the meeting strategy is used, at the end of the
search process, the ant selects the next cities with a certain amount
of diversification, and its ability to explore other potential paths will
not be lost. Additionally, the convergence of the algorithm will be
accelerated, which is biased by the positive feedback. Therefore, in
this new ACO algorithm, the search time will be greatly reduced,
and the search diversification of the ant colony will be expanded
enormously. The flow chart of the new ACO algorithm is shown in
Figure 1.

Figure 1 Flow chart of new ant colony
optimization algorithm.



48 W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55

In this new algorithm, the termination condition is that the length
difference for the optimal paths of neighboring iterations is less than
10−5. In addition, to avoid infinite iteration, the maximum number
of iterations N is given.

By using C++, the proposed new ACO algorithm can be imple-
mented in this study.

4. SIMULATION EXPERIMENTS

To verify the computing performance of the proposed new ACO
algorithm, a number of TSP instances are used. All of these TSPs are
available from the TSPLIB benchmark library, which can be found
on the web at

www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

For numerous studies on ACO for the TSP, the selection of algo-
rithm parameters is performed through a series of experiments. By
means of these experiments, a law of selecting parameters can be
obtained easily. Based on this selection law and using trial calcula-
tions, the parameters of the new algorithm can be determined to be:

𝛼 = 1, 𝛽 = 2, 𝜌 = 0.5, Q = 100,m = n, N = 2000, 𝜏min = 0.00001,
𝜏max = 20, 𝜏0 = 1, v = 1.

As shown in this configuration, the number of ants is set to the same
as the number of cities, and the threshold constant is set to 1 to
achieve peak performance for the algorithm. Because the newACO
algorithm is a random search algorithm, the average results from
30 runs are obtained. Experiments are conducted on a laptop with
Intel Core-i5-4200U, 3.4 GHz CPU and 32 GB of RAM. The results
are summarized in Table 1.

In Table 1, the first column shows the names of the instances, the
second column shows the number of cities, the third column shows
the optimal solution taken from the TSPLIB, the column “best”
shows the best solution found by the algorithm, the column “aver-
age” gives the average solution of the 30 independent runs of the

algorithm, the column “PDbest (%)” gives the percentage deviation
of the best solution from the optimal solution over 30 runs, and the
column “PDavg (%)” denotes the percentage deviation of the average
solution from the optimal solution over 30 runs. PDbest and PDavg
are given by the formulas:

PDbest (%) =
best solution – optimal solution

optimal solution
× 100 (10)

PDavg (%) =
average solution – optimal solution

optimal solution
× 100 (11)

The column “iterations” gives the average number of iterations over
30 runs, and the column “times” gives the average CPU computing
times over 30 runs.

As shown in Table 1, for all 20 selected TSP instances, most of the
best solutions found by the new algorithm are the given optimal
solutions, except for seven instances (Bier127, Pr136, Ch150, A280,
Lin318, Rd400, and Rat575), which are shown in bold in column
PDbest (%). However, the percentage deviations of the best solutions
for those seven instances (Bier127, Pr136, Ch150, A280, Lin318,
Rd400, andRat575) are all very small, less than 0.5% (except for that
of Rat575, which is only 1.62%). In other words, 95% of the values
of PDbest (%) are less than 0.5%, which means that the best solu-
tion found in the 30 trials approximates the given optimal solution
with a percentage deviation of less than 0.5%.Moreover, most of the
average solutions found by the new algorithm in 30 trials approxi-
mate the given optimal solutions, except for five instances (includ-
ing Att48, Eil51, Berlin52, Eil76, and Eil101), the average solutions
of which are the same as the given optimal solutions. Furthermore,
most of the values of PDavg (%) are less than 1%, except for three
instances (including KroA200, Rd400, and Rat575). In other words,
85% of the values of PDavg (%) are less than 1%, which means that
the average solution found in the 30 trials approximates the given
optimal solution with a deviation of less than 1%. The value of
0 shown in bold in column PDavg (%) indicates that all solutions

Table 1 Results for 20 TSPs by new ant colony optimization algorithm.

Instances Size (Cities) Optimal
Solution

Solution by New Ant Colony Optimization Algorithm
Best Average PDbest (%) PDavg (%) Iterations Times (s)

Att48 48 33,522 33,522 33,522 0 0 105.4 7.1
Eil51 51 426 426 426 0 0 113.2 7.3
Berlin52 52 7542 7542 7542 0 0 115.6 7.4
St70 70 675 675 677.45 0 0.36 133.6 8.8
Pr76 76 108,159 108,159 108238.12 0 0.07 137.4 9.2
Eil76 76 538 538 538 0 0 138.6 9.3
KroA100 100 21,282 21,282 21312.34 0 0.14 157.3 10.4
Eil101 101 629 629 629 0 0 158.1 10.5
Lin105 105 14,379 14,379 14398.63 0 0.14 162.8 10.7
Pr124 124 59,030 59,030 59221.23 0 0.32 201.5 12.1
Bier127 127 118,282 118,284 118483.31 0 0.17 206.3 12.5
Ch130 130 6110 6110 6125.52 0 0.25 215.8 13.1
Pr136 136 96,772 96,774 97088.62 0 0.33 247.1 13.7
Ch150 150 6528 6531 6564.25 0.05 0.56 405.2 19.7
KroA200 200 29,368 29,378 29682.72 0.03 1.07 557.5 27.1
Tsp225 225 3916 3916 3938.51 0 0.57 579.3 31.6
A280 280 2579 2581 2603.81 0.08 0.96 650.1 37.3
Lin318 318 42,029 42,084 42392.79 0.13 0.87 700.3 46
Rd400 400 15,281 15,314 15521.29 0.22 1.57 744.6 55.5
Rat575 575 6773 6883 6933.75 1.62 2.37 865.7 68.7

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/


W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 49

found in the 30 trials have the same length as the given optimal
solutions. Moreover, according to the computing times and num-
ber of iterations, the computing speed of the new algorithm is fast.
The longest computing time and the largest number of iterations are
68.7 s and 865.7, respectively. There are only five instances whose
computing times are longer than 30 s, and only six instances whose
number of iterations are larger than 500. Therefore, the numerical
values presented in Table 1 show that the new ACO algorithm can
indeed provide good solutions for TSPs at a fast speed.

Finally, from Table 1, it can be found that, as the scale of the TSP
problem increases, the corresponding computing time will increase
too. However, their increasing rates are different. For example,
when the scale of the TSP problem increases from 51 to 200, which
increases about four times. However, the corresponding comput-
ing time increases from 7.3 to 27.1, which increases only about 3.7
times. In this increasing range for the problem scale which increases
149, the computing time increases 19.8. The rate of the increasing
time to the increasing scale is 0.13. Moreover, when scale of the
TSP problem increases from 400 to 575, the corresponding com-
puting time increases from 55.5 to 68.7. In this range, the rate of
the increasing time to the increasing scale is only 0.07 which is
much less than 0.13. That is to say, as the problem scale increases,
the increase of the computing time will become slow. Therefore,
the computing efficiency of newACO algorithmwill improve as the
scale of the TSP problem increases, and which is an advantage of
the new ACO algorithm.

To verify the computational performance of the new ACO algo-
rithm proposed in this paper, the computational results of the
algorithm have been compared with those of 16 state-of-the-art
algorithms from the literature, most of which have been proposed
in the past three years, as summarized in Table 2.

It should be noted that, in Table 2, algorithms 1 to 17 represent the
new algorithm in this paper, HMMAS [13], HEAS [16], ACO-3Opt
[17], DABC-NO [20], DCSA [22], RKCS [23], ABO [24], DBA [25],
FFOA [26], GA-MRLH [27], AAA [28], ICA [30], BHA [31], SA-
SOSOA [32], DSOSA [33], and DABC-TAC [34], respectively.

From Table 2, according to the PDbest and PDavg, of the 17 algo-
rithms (including the new ACO algorithm proposed in this study),
the BHA and HMMAS are the worst-performing algorithms. Their
best solutions and average solutions are both poor. However, due
to its limited results, the BHA performs more poorly than the
HMMAS. Moreover, the SA-SOSOA, DBA, DCSA, and the algo-
rithm proposed here are the four well-performing ones, and most
of their best solutions are equal to the optimal solutions. Further-
more, the average solutions of those algorithms approach the opti-
mal solutions; in fact, a number of their average solutions are equal
to the optimal solutions. Therefore, the results of the algorithm pro-
posed here outperform most state-of-the-art algorithms.

To compare the results more clearly, the results of four good state-
of-the-art algorithms (1, 6, 9, and 15, which are the proposed
new algorithm, DCSA, DBA, and SA-SOSOA, respectively) for the
same 15 TSPs (Eil51, Berlin52, St70, Pr76, Eil76, KroA100, Eil101,
Lin105, Pr124, Bier127, Ch130, Pr136, Lin318, Rd400, and Rat575)
are summarized in Figure 2 and Table 3. In Table 3, the last line
denotes the average values of PDbest and PDavg for the 15 TSPs,
which are shown in bold.

As shown in Figure 2, for PDbest, the proposed new algorithm is
almost the best, and PDbest is zero in most instances. The SA-
SOSOA is the best; its PDbest values are zero or negative for all
instances except one. However, for PDavg, the proposed new algo-
rithm is not a better one, and the SA-SOSOA is the best. Moreover,
as shown in Table 3, for 15 TSPs, using the algorithm proposed
here, there are only three best results that are not the optimal solu-
tions, and the average value of PDbest is 0.13. Moreover, there are
only four average solutions that are equal to the optimal solutions,
and the average value of PDavg is 0.44. For the DCSA, there are
four best results that are not the optimal solutions, and the average
value of PDbest is 0.21, which is larger than that of the algorithm
proposed here. In addition, there are eight average solutions that
are equal to the optimal solutions, and the average value of PDavg
is 0.42, which is similar to that of the algorithm proposed here. In
other words, although the number of average solutions obtained
by the DCSA that are equal to the optimal solutions is more than
that of the new algorithm proposed here, the average value of PDavg
is not less than that of the algorithm proposed here for large val-
ues of its PDavg. Therefore, the algorithm proposed here is better
than the DCSA. Moreover, for the DBA, there are also three best
results that are not the optimal solutions, and the average value of
PDbest is 0.13, which is the same as that of the algorithm proposed
here. There are six average solutions that are equal to the optimal
solutions, and the average value of PDavg is 0.34, which is smaller
than that of the DCSA or the algorithm proposed here. Therefore,
the algorithm proposed here performs more poorly than the DBA.
Finally, for the SA-SOSOA, there are three best results that are not
the optimal solutions, and the average value of PDbest is only 0.005,
which is much less than that of the DBA. Moreover, there are only
five average solutions that are different from the optimal solutions,
and the average value of PDavg is only 0.16, which is also much less
than that of the DBA. Therefore, the SA-SOSOA is the best algo-
rithm for those 15 TSPs. Moreover, the new algorithm proposed in
this study is a highly suitable method to solve the TSP, and its per-
formance is better than most state-of-the-art algorithms, except for
a few algorithms, such as the DBA and the SA-SOSOA.

5. DISCUSSION

To verify the performance of the new ACO algorithm, the compre-
hensive comparison study of the new ACO algorithm and tradi-
tional ACO is discussed.

Based on testing and experience, the parameters of the traditional
ACO are as follows:

𝛼 = 1, 𝛽 = 2, 𝜌 = 0.5, Q = 100,m = 50, N = 2000, 𝜏0 = 1.
For comparison, the parameters of the new ACO algorithm are as
follows:

𝛼 = 1, 𝛽 = 2, 𝜌 = 0.5,Q = 100,m = 50,N = 2000, 𝜏min = 0.00001,
𝜏max = 20, 𝜏0 = 1, v = 1.

It must be noted that to make the comparison fairer, the same
parameters are used for both algorithms. However, the parameters
used in this study may not be the most suitable values for both
algorithms.



50 W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55

Table 2 Comparison with 16 state-of-the-art algorithms.

Instances Algorithm Numbers
1 2 3 4 5 6

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

Att48 0 0 – – 0 0.53 – – – – – –
Eil51 0 0 3.04 5.65 0 0.7 0 0.08 0 0.39 0 0
Berlin52 0 0 0.03 0.03 0 0.11 0 0 0 0 0 0
St70 0 0.36 1.6 4.81 0 0 0.15 0.42 0 0.66 0 0
Pr76 0 0.07 0.36 1.78 0 0.32 – – 0 0.47 0 0
Eil76 0 0 2.14 3.73 0 2.42 0 0.34 – – 0 0
KroA100 0 0.14 0.42 0.68 0 0.11 0 0.21 0 1.11 0 0
Eil101 0 0 8.89 11.78 – – 0 0.25 1.71 2.95 0 0.22
Lin105 0 0.14 0.11 1.29 – – 0 0.1 – – 0 0
Pr124 0 0.32 0.84 1.15 – – – – – – 0 0
Bier127 0 0.17 1.39 2.24 0 0.91 – – – – 0 0.06
Ch130 0 0.25 1.49 3.39 0 2.54 – – – – 0 0.42
Pr136 0 0.33 4.47 9.13 – – – – – – 0.01 0.24
Ch150 0.05 0.56 0.4 3.39 0 0.34 0.64 1.12 – – 0 0.33
KroA200 0.03 1.07 2.15 6.94 0.17 1.07 0.56 0.94 – – 0.04 0.26
Tsp225 0 0.57 4.03 7.35 0 9.34 – – 9.28 15.03 0 1.09
A280 0.08 0.96 11.67 13.75 0 0.54 – – 25.66 28.44 0 0.51
Lin318 0.13 0.87 7.9 10.75 2.38 5.09 – – – – 0.22 0.96
Rd400 0.22 1.57 8.19 9.44 0 1.44 1.94 2.18 – – 1.08 1.65
Rat575 1.62 2.37 11.85 14.36 0 0 3.4 3.53 – – 1.81 2.71

Instances Algorithm Numbers
7 8 9 10 11 12

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

Att48 – – 0 0.17 – – – – 0 0.18 0 0.4
Eil51 0 0.21 0 0.23 0 0 0 0.36 0 0.33 0 0.52
Berlin52 0 0 0 0.98 0 0 0 0 0 0.12 0 0.28
St70 0 0.34 0.15 0.49 0 0 0 0.33 0 0.66 0 0.67
Pr76 0 0 0 0.22 0 0 – – 0 1.29 0.17 1.21
Eil76 0 0.2 0 4.65 0 0.14 0.37 1.12 0 1.36 – –
KroA100 0 0 0.14 4.14 0 0 0 0.35 0 0.34 – –
Eil101 0 0.33 1.75 1.75 0 0.54 0.95 2.07 0 2.16 – –
Lin105 – – 0.28 0.51 0 0 0 0.33 0 0.05 – –
Pr124 – – – – 0 0.012 – – 0 0.3 – –
Bier127 0 0.44 0 0.49 0 0.08 – – 0.33 0.98 – –
Ch130 0.26 0.87 0 3.23 0 0.23 – – 0.36 1.54 – –
Pr136 0.28 0.97 – – 0 0.23 – – – – – –
Ch150 – – 0 1.12 0 0.34 0.46 1.38 0 0.71 – –
KroA200 – – 0 2.67 0 0.27 – – 0.23 0.86 – –
Tsp225 – – 0 1.69 0 0.73 – – 0.1 1.67 – –
A280 – – – – 0 0.3 – – 0.62 2.96 – –
Lin318 – – 0.17 0.73 0.29 1.03 – – 0.54 2.3 – –
Rd400 – – 0.13 0.15 0.35 1.2 – – – – – –
Rat575 – – 0 0.55 1.31 1.93 – – – – – –

Instances Algorithm Numbers
13 14 15 16 17

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

PDbest
(%)

PDavg
(%)

Att48 – – 2.03 2.84 0 0 – – – –
Eil51 0.94 1.64 2.79 7.73 0 0 0 0.45 0 –
Berlin52 0.03 0.03 8.87 12.12 −0.03 0 0 0.01 0 –
St70 – – 7.15 18.16 0 0 0 0.62 0 –
Pr76 – – – – 0 0.98 0 0.36 0 –
Eil76 1.86 2.49 5.25 50.05 0 0 0.74 1.75 0 –
KroA100 0.01 0.05 – – 0 0.67 0 0.6 0 –
Eil101 2.7 3.53 14.53 42.67 0 0 1.75 3.43 0.05 –
Lin105 0.02 0.66 – – 0 0 0.01 0.37 – –
Pr124 – – – – −0.08 0 0 0.68 0 –
Bier127 0.5 0.87 – – 0 0 – – – –
Ch130 1.55 2.5 – – 0 0 – – – –
Pr136 – – – – 0 0.13 0.69 0.93 0 –
Ch150 0.41 0.55 – – – 0 0.21 0.38 0.22 –
KroA200 1.14 1.6 – – – 0 0.37 0.96 0.05 –
Tsp225 – – – – – – 0.47 – 0 –
A280 – – – – – – – – 0.24 –
Lin318 3.45 4.75 – – 0 0 0.41 2.24 0.26 –
Rd400 – – – – 0.19 0.24 – – 0.26 –
Rat575 4.62 5.48 – – 0 0.43 4.43 5.08 0.75 –



W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 51

-0.5

0

0.5

1

1.5

2

2.5

3

Eil51 Berlin52 St70 Pr76 Eil76 KroA100 Eil101 Lin105 Pr124 Bier127 Ch130 Pr136 Lin318 Rd400 Rat575

PDbest of algorithm 1 PDavg of algorithm 1
PDbest of algorithm 6 PDavg of algorithm 6
PDbest of algorithm 9 PDavg of algorithm 9
PDbest of algorithm 15 PDavg of algorithm 15

Figure 2 Comparison of four good state-of-the-art algorithms for 15 TSPs.

Table 3 Comparison results of four good algorithms.

Instances Algorithm Numbers
1 6 9 15

PDbest (%) PDavg (%) PDbest (%) PDavg (%) PDbest (%) PDavg (%) PDbest (%) PDavg (%)

Eil51 0 0 0 0 0 0 0 0
Berlin52 0 0 0 0 0 0 −0.03 0
St70 0 0.36 0 0 0 0 0 0
Pr76 0 0.07 0 0 0 0 0 0.98
Eil76 0 0 0 0 0 0.14 0 0
KroA100 0 0.14 0 0 0 0 0 0.67
Eil101 0 0 0 0.22 0 0.54 0 0
Lin105 0 0.14 0 0 0 0 0 0
Pr124 0 0.32 0 0 0 0.012 −0.08 0
Bier127 0 0.17 0 0.06 0 0.08 0 0
Ch130 0 0.25 0 0.42 0 0.23 0 0
Pr136 0 0.33 0.01 0.24 0 0.23 0 0.13
Lin318 0.13 0.87 0.22 0.96 0.29 1.03 0 0
Rd400 0.22 1.57 1.08 1.65 0.35 1.2 0.19 0.24
Rat575 1.62 2.37 1.81 2.71 1.31 1.93 0 0.43
Average 0.13 0.44 0.21 0.42 0.13 0.34 0.005 0.16

For comparison, eight TSPs selected from Table 1 are used in this
study: Eil51, St70, Pr76, KroA100, Lin105, Pr124, Bier127, and
Ch150. The best, worst and average results of 30 runs are obtained.
The results are shown in Table 4.

In Table 4, the “RE” denotes the percentage deviation of the solu-
tion obtained from the new ACO algorithm compared to the
solution obtained from traditional ACO, which is defined as

RE (%) = solution from traditional algorithm – solution fromnew algorithm
solution from traditional algorithm

× 100 (12)

As shown in Table 4, for all eight TSPs, the lengths found by the
new ACO algorithm (including best, worst, and average ones) are
all shorter than those found by traditional ACO. For the best results,
the RE is always less than 1, and its average value is only 0.13%. That
is, the differences between the best results of the two algorithms
are not very large. In other words, both algorithms can find rela-
tively suitable lengths for those eight TSPs. For the worst results,
the RE is generally less than 10 except for one, and its average
value is 5.27%, which is much larger than that of the best results.
In other words, the new ACO algorithm can find much shorter

lengths for the worst results compared to traditional ACO. More-
over, for the average results, the RE is always less than 3%, and its
average value is 1.77%, which is larger than that of the best results
but is much smaller than that of the worst results. However, as
for the difference between the best results and the worst results,
the RE is very large, generally larger than 70%, except for two
results. In addition, the RE’s average value is 81.56%, which is still
larger than 80%. In other words, the results found by the new ACO
 algorithm are more aggregated than those found by traditional
ACO. In other words, the new ACO algorithm is more stable than



52 W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55

traditional ACO. Therefore, the new ACO algorithm can signifi-
cantly improve traditional ACO.

Moreover, the statistical variation of the results for eight TSPs solved
by two algorithms over the 30 independent runs is shown in Table 5,
and the comparison of the results for eight TSPs solved by two algo-
rithms is also shown in Figure 3. In this study, two types of statistical
indexes are used, namely, the coefficient of variation and the rela-
tive error. The coefficient of variation, defined as the ratio between
the standard deviation and themean value, gives information on the
uniformity of solutions. The relative error, defined as the percent-
age deviation of the computing solution from the optimal solution
over 30 runs, gives information on the precision of solutions. In this
instance, to comprehensively study the problem, three relative error
indexes are used: PDbest, PDworst, and PDavg. These indexes denote
the percentage deviation of the best solution from the optimal solu-
tion over 30 runs, the percentage deviation of the worst solution
from the optimal solution over 30 runs, and the percentage devia-
tion of the average solution from the optimal solution over 30 runs.

As shown in Figure 3, for all eight TSPs, the results of the new ACO
algorithm (including the best, worst, and average ones) are better
than those of traditional ACO. Moreover, from Table 5, for tradi-
tional ACO, the average values of PDbest, PDworst, and PDavg are
0.14%, 6.48%, and 2.07%, respectively. In comparison, those for the
new ACO algorithm are 0.0075%, 0.82%, and 0.98%, respectively.
Thus, the computational relative errors of the new ACO algorithm
are much smaller than those of traditional ACO. In other words,
the computational precision of the new ACO algorithm is much
better than that of traditional ACO. Moreover, compared with the
coefficients of variation of traditional ACO, whose average value is
1.62, those of the new ACO algorithm are much smaller, with an

average value of 0.98. In otherwords, the uniformity of the solutions
of the new ACO algorithm is also much better. Therefore, the new
ACO algorithm can improve the computational results and com-
putational stability greatly for TSPs. Furthermore, compared with
the results of traditional ACO, as the TSPs become more complex
(greater length or more cities), the computing results are much bet-
ter, and the advantages of the new ACO algorithm are better. The
reason for this phenomenon may be that when the TSPs become
more complex (greater length or more cities), the meeting strategy
of the new ACO algorithm will be used more frequently, and thus,
the increased advantage of the method of computing results in the
new ACO algorithm compared with that of traditional ACOwill be
more noticeable.

To compare the computing speed of the two algorithms, the itera-
tions with the best results as shown in Table 4 for the two algorithms
are shown in Figure 4.

As shown in Figure 4, for all TSPs, the computing speeds of the new
ACO algorithm are all faster than those of traditional ACO. More-
over, as the number of cities increases, the difference between the
computing times for the two algorithms will also increase. There-
fore, as the complexity of the problem increases, the computational
efficiency of the new ACO algorithm increases. In other words, the
more complicated the problem, the better the computational effi-
ciency of the new ACO algorithm.

To study the computational efficiency more comprehensively, the
statistical results of the computing time for eight TSPs solved by two
algorithms over 30 independent runs are shown in Table 6. In this
study, two statistical indexes are used: the average computing times
and the coefficient of variation for computing times. The average

Table 4 Comparison results of the new ant colony optimization algorithm and traditional ant colony optimization for eight TSPs.

Instances Solutions by Traditional Ant Colony Optimization Solutions by New Ant Colony Optimization Algorithm
Best Worst Average Worst–Best Best (RE/%) Worst (RE/%) Average (RE/%) Worst–Best

(RE/%)

Eil51 426 447 437.2 21 426 (0) 426 (4.7) 426 (2.25) 0 (100)
St70 675 725 695.3 50 675 (0) 684 (5.66) 677.51 (2.57) 9 (82)
Pr76 108,316 121,574 109445.6 3258 108,159 (0.14) 108,527 (10.73) 108238.12 (1.1) 368 (88.74)
KroA100 21,282 22,163 21591.4 881 21,282 (0) 21,427 (3.43) 21316.46 (1.29) 145 (83.54)
Lin105 14,425 15,326 14746.1 901 14,379 (0.32) 14,522 (5.25) 14398.63 (2.36) 143 (84.13)
Pr124 59,112 61,361 59742.3 2249 59,030 (0.14) 60,167 (1.95) 59228.23 (0.87) 1137 (49.67)
Bier127 118,317 129,574 120862.7 11,257 118,284 (0) 118,742 (8.37) 118493.63 (1.97) 458 (95.99)
Ch150 6558 6732 6678.2 174 6532 (0.41) 6587 (2.17) 6568.25 (1.71) 55 (68.39)
Average of RE 0.13 5.27 1.77 81.56

Table 5 Comparison of statistical results for the new ant colony optimization algorithm and traditional ant colony optimization for eight
TSPs.

Instances Solutions by Traditional Ant Colony Optimization Solutions by New Ant Colony Optimization Algorithm
PDbest (%) PDworst (%) PDavg (%) Coefficient of

Variation
PDbest (%) PDworst (%) PDavg (%) Coefficient of

Variation

Eil51 0 4.93 2.63 1.43 0 0 0 0.92
St70 0 7.14 3.01 1.55 0 1.33 0.37 1.04
Pr76 0.15 12.4 1.19 1.79 0 0.34 0.07 0.96
KroA100 0 4.14 1.45 1.62 0 0.68 0.16 1.12
Lin105 0.32 6.59 2.55 1.59 0 0.99 0.14 0.91
Pr124 0.14 3.95 1.21 1.65 0 1.93 0.34 0.89
Bier127 0.03 9.55 2.18 1.74 0 0.39 0.18 1.03
Ch150 0.46 3.13 2.3 1.61 0.06 0.9 0.62 0.93
Average 0.14 6.48 2.07 1.62 0.0075 0.82 0.24 0.98



W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 53

0

2

4

6

8

10

12

14

Eil51 St70 Pr76 KroA100 Lin105 Pr124 Bier127 Ch150

PDbest of traditional algorithm PDbest of new algorithm
PDworst of traditional algorithm PDworst of new algorithm
PDavg of traditional algorithm PDavg of new algorithm

Figure 3 Comparison of new ant colony optimization algorithm and traditional ant colony optimization
for eight TSPs.

0

200

400

600

800

1000

1200
traditional ant colony optimization

new ant colony optimization algorithm

Figure 4 Iterations of traditional ant colony optimization and new
ant colony optimization algorithm for eight TSPs.

Table 6 Comparison of statistical results for computing time by the new ant colony optimization algorithm and traditional ant colony
optimization for eight TSPs.

Instances Solutions by Traditional Ant Colony Optimization Solutions by New Ant Colony Optimization Algorithm
Average Computing

Time (s)
Coefficient of Variation Average Computing

Time (s)
Coefficient of Variation

Eil51 12.4 1.21 7.3 0.88
St70 15.6 1.32 8.8 0.92
Pr76 16.7 1.43 9.2 0.95
KroA100 19.3 1.51 10.4 1.04
Lin105 20.1 1.45 10.7 0.98
Pr124 23.7 1.56 12.1 1.05
Bier127 25.1 1.59 12.5 1.09
Ch150 41.4 1.55 19.7 1.03

computing times provide information on the specific computing
speed. The coefficient of variation, defined as the ratio between the
standard deviation and the mean value, gives information on the
uniformity of the computing speed.

As shown in Table 6, for all eight TSPs, the computing times of
the new ACO algorithm are much less than those of traditional
ACO, and the coefficients of variation for the new ACO algorithm
are also less. To analyze the degree of reduction of computing time
by both algorithms, the reduction rate, which is the ratio of the
reduction value to the computing time by traditional ACO, is

obtained. For eight TSPs from Eil51 to Ch150, the reduction rates
are 41.1%, 43.6%, 44.9%, 46.1%, 46.8%, 48.9%, 50.2%, and 52.4%,
respectively. Therefore, as the complexity of the TSPs increases, the
reduction rate of the computing time for the two algorithms also
increases. Moreover, using the traditional ACO, as the scale of the
TSP problem increases from 51 to 100 and 100 to 150, the cor-
responding computing time increases from 12.4 to 19.3 and 19.3
to 41.4, respectively. And the corresponding rates of the increas-
ing time to the increasing scale are 0.14 and 0.44. However, for
the new ACO algorithm, in the same increasing ranges of the



54 W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55

problem scale, the corresponding computing time increases from
7.3 to 10.4 and 10.4 to 19.7, respectively. And the corresponding
rates of the increasing time to the increasing scale are only 0.06
and 0.18 which are much less than those of the traditional ACO.
And their rates of new algorithm to traditional ACO are 0.43 and
0.4 respectively. That is to say, the computational efficiency of the
new algorithm is much high than that of traditional ACO. And as
the scale of the TSP problem increases, the superiority of compu-
tational efficiency for the new algorithm will increase too. Thus,
the new ACO algorithm can be used in complicated combinatorial
optimization problems. The reason for this phenomenon may be
that as the complexity of the TSPs (greater length or more cities)
increases, the meeting strategy of the new algorithm will be used
more frequently. Then, the new tour will be generated by the meet-
ing ants quickly, and the number of new tours generated by the
meeting ants will increase quickly. Therefore, the rate of increase of
the computational efficiency for the new ACO algorithm will also
increase.

6. CONCLUSIONS

ACO is highly suitable for performing combinatorial optimization,
and is typically applied to the TSP. However, as a heuristic algo-
rithm, it has many shortcomings, such as slow convergence speed
and low searching efficiency. To overcome its shortcomings, a new
ACO algorithm is proposed that enlarges the ants’ search space and
diversifies the searched solutions. The main strategy used in this
new algorithm is to combine pairs of searching ants to increase the
diversification of the solutions.

To compare the results of the new ACO algorithm with the best
known solutions and the solutions found by some state-of-the-art
algorithms proposed in the literature, 20 typical TSPs are used. The
applications indicate that, for all the selected TSPs, the solutions
obtained by the new algorithm are better than most of the other
algorithms and the new algorithm is a very suitablemethod for solv-
ing the TSP. Finally, a comprehensive comparative study of the new
ACO algorithm and traditional ACO is discussed.

Based on the above studies, the following conclusions can be drawn.

1. For all 20 selected TSP instances, most of the best solutions
found by the new ACO algorithm are the given optimal solu-
tions, except for seven instances. In addition, most of the
average solutions found by the new ACO algorithm in 30 tri-
als approximate the given optimal solutions, except for five
instances.

2. The SA-SOSOA, DBA, DCSA, and the new algorithm pro-
posed here are well-performing algorithms, and most of their
best solutions are equal to the optimal solutions. Furthermore,
the average solutions of those algorithms approach the optimal
solutions. In fact, some of their average solutions are equal to
the optimal solutions.

3. The results found by the new ACO algorithm are more aggre-
gated than those found by traditional ACO. In other words,
the new ACO algorithm is more stable than traditional ACO.
Therefore, the new algorithm can significantly improve on the
traditional algorithm.

4. The computing precision of the new ACO algorithm is much
better than that of traditional ACO, and the computing speed
of the new ACO algorithm is also faster.

5. As the complexity of the problem increases, the computational
efficiency of the newACO algorithm increases. In other words,
the more complicated the problem, the better the computa-
tional efficiency of the new ACO algorithm.

Therefore, by comparison with traditional ACO and some state-of-
the-art algorithms, the new ACO algorithm has higher computing
precision, better computing stability, and faster computing speed.
However, the new algorithm has only been tested on TSPs that are
not very large. For large-scale TSPs, computational complexity will
increase quickly, and the effect on computation may be somewhat
detrimental. Therefore, comprehensive testing, especially for large-
scale TSPs and for other combinatorial optimization problems, is
our next task.

CONFLICT OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Literature search, study design, manuscript writing, data collection,
data analysis, and software are all conducted by Wei Gao.

ACKNOWLEDGMENTS

This study was funded by Fundamental Research Funds for the Central
Universities (grant number 2016B10214).

REFERENCES

[1] M. Dorigo, T. Stutzle, Ant Colony Optimization, The MIT Press,
Cambridge, 2004.

[2] M. Dorigo, V.Maniezzo, A. Colorni, Positive Feedback as a Search
Strategy (Technical Report No. 91-016), Politecnico di Milano,
Milano, Italy, 1991.

[3] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by
a colony of cooperating agents, IEEE Trans. Syst. Man. Cybern. B.
26 (1996), 29–41.

[4] M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative
learning approach to the traveling salesman problem, IEEE Trans.
Evol. Comput. 1 (1997), 53–66.

[5] B. Bullnheimer, R. Hartl, C. Strauss, A new rank-based version of
the ant system: a computational study, Cent. Eur. J. Oper. Res. 7
(1999), 25–38.

[6] T. Stützle, H.H. Hoos, Max-min ant system, Future Gener. Com-
put. Syst. 16 (2000), 889–914.

[7] Z.J. Zhang, Z.R. Feng, A novel max-min ant system algorithm for
traveling salesman problem, in Proceedings of Intelligent Com-
puting and Intelligent Systems (ICIS 2009), IEEE Press, Piscat-
away, 2009, pp. 508–511.

https://doi.org/10.7551/mitpress/1290.001.0001
https://doi.org/10.7551/mitpress/1290.001.0001
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1016/s0167-739x(00)00043-1
http://dx.doi.org/10.1016/s0167-739x(00)00043-1
http://dx.doi.org/10.1109/ICICISYS.2009.5357792.
http://dx.doi.org/10.1109/ICICISYS.2009.5357792.
http://dx.doi.org/10.1109/ICICISYS.2009.5357792.
http://dx.doi.org/10.1109/ICICISYS.2009.5357792.


W. Gao / International Journal of Computational Intelligence Systems 13(1) 44–55 55

[8] H.B. Mei, J. Wang, Z.H. Ren, An adaptive dynamic ant sys-
tem based on acceleration for TSP, in Proceedings of Compu-
tational Intelligence and Security, IEEE Press, Piscataway, 2009,
pp. 92–96.

[9] P. Guo, Z.J. Liu, Moderate ant system: an improved algorithm
for solving TSP, in Proceedings of Seventh International Con-
ference on Natural Computation, IEEE Press, Piscataway, 2011,
pp. 1190–1196.

[10] Z.C.S.S. Hlaing, M.A. Khine, Solving traveling salesman problem
by using improved ant colony optimization algorithm, Int. J. Inf.
Educ. Technol. 1 (2011), 404–409.

[11] G. Dong, W.W. Guo, K. Tickle, Solving the traveling salesman
problem using cooperative genetic ant systems, Expert Syst. Appl.
39 (2012), 5006–5011.

[12] A.Q. Ansari, Ibraheem, S. Katiyar, Comparison and analysis of
solving travelling salesman problem using GA, ACO and hybrid
of ACO with GA and CS, in Proceedings of IEEE Workshop on
Computational Intelligence: Theories, Applications and Future
Directions, IEEE Press, Piscataway, 2015, pp. 1–5.

[13] Y.Wang, Hybridmax-min ant systemwith four vertices and three
lines inequality for traveling salesman problem, Soft Comput. 19
(2015), 585–596.

[14] Y. Yan, H.S. Sohn, G. Reyes, A modified ant system to achieve
better balance between intensification and diversification for
the traveling salesman problem, Appl. Soft Comput. 60 (2017),
256–267.

[15] J.C. Thill, Y.C. Kuo, The nearest neighbor ant colony system: a
spatially-explicit algorithm for the traveling salesmanproblem, in:
J.-C. Thill (Ed.), Spatial Analysis and LocationModeling inUrban
and Regional Systems. Advances in Geographic Information Sci-
ence, Springer, Berlin, Heidelberg, 2018, pp. 301–322.

[16] G.M. Jaradat, Hybrid elitist-ant system for a symmetric travel-
ing salesman problem: case of Jordan, Neural Comput. Appl. 29
(2018), 565–578.

[17] Ş. Gülcü, M. Mahi, Ö.K. Baykan, et al., A parallel cooperative
hybrid method based on ant colony optimization and 3-opt algo-
rithm for solving traveling salesman problem, Soft Comput. 22
(2018), 1669–1685.

[18] X.M. You, S. Liu, Y.M. Wang, Quantum dynamic mechanism-
based parallel ant colony optimization algorithm, Int. J. Comput.
Int. Sys. 3 (2010), 101–113.

[19] J. Bang, J. Ryu, C. Lee, et al., A quantum heuristic algorithm for
the traveling salesman problem, J. Korean Phys. Soc. 61 (2012),
1944–1949.

[20] M.S. Kıran, H. İşcan, M. Gündüz, The analysis of discrete artifi-
cial bee colony algorithm with neighborhood operator on travel-
ing salesman problem, Neural Comput. Appl. 23 (2013), 9–21.

[21] J. Jones, A. Adamatzky, Computation of the travelling salesman
problem by a shrinking blob, Nat. Comput. 13 (2014), 1–16.

[22] A. Ouaarab, B. Ahiod, X.S. Yang, Discrete cuckoo search algo-
rithm for the travelling salesman problem, Neural Comput. Appl.
24 (2014), 1659–1669.

[23] A. Ouaarab, B. Ahiod, X.S. Yang, Random-key cuckoo search
for the travelling salesman problem, Soft Comput. 19 (2015),
1099–1106.

[24] J.B.Odili,M.N.M.Kahar, Solving the traveling salesman’s problem
using the African buffalo optimization, Comput. Intell. Neurosci.
2016 (2016), 1510256.

[25] Y. Saji, M.E. Riffi, A novel discrete bat algorithm for solving the
travelling salesman problem, Neural Comput. Appl. 27 (2016),
1853–1866.

[26] L. Huang, G.C. Wang, T. Bai, et al., An improved fruit fly opti-
mization algorithm for solving traveling salesman problem, Front.
Inform. Tech. El. Eng. 18 (2017), 1525–1533.

[27] M.M. Alipour, S.N. Razavi, M.R.F. Derakhshi, et al., A hybrid
algorithm using a genetic algorithm and multiagent reinforce-
ment learning heuristic to solve the traveling salesman problem,
Neural Comput. Appl. 30 (2018), 2935–2851.

[28] A.E. Yildirim, A. Karci, Applications of artificial atom algorithm
to small-scale traveling salesman problems, Soft Comput. 22
(2018), 7619–7631.

[29] Y.Q. Zhou, R. Wang, C.Y. Zhao, et al., Discrete greedy flower pol-
lination algorithm for spherical traveling salesman problem, Neu-
ral Comput. Appl. 31 (2019), 2155–2170.

[30] M.H. Chen, S.H. Chen, P.C. Chang, Imperial competitive algo-
rithm with policy learning for the traveling salesman problem,
Soft Comput. 21 (2017), 1863–1875.

[31] A. Hatamlou, Solving travelling salesman problem using black
hole algorithm, Soft Comput. 22 (2018), 8167–8175.

[32] A.E.S. Ezugwu, A.O. Adewumi, M.E. Frîncu, Simulated anneal-
ing based symbiotic organisms search optimization algorithm
for traveling salesman problem, Expert Syst. Appl. 77 (2017),
189–210.

[33] A.E.S. Ezugwu, A.O. Adewumi, Discrete symbiotic organisms
search algorithm for travelling salesman problem, Expert Syst.
Appl. 87 (2017), 70–78.

[34] Y.W. Zhong, J. Lin, L.J. Wang, et al., Hybrid discrete artificial bee
colony algorithmwith threshold acceptance criterion for traveling
salesman problem, Inf. Sci. 421 (2017), 70–84.

[35] S. Kumar, E. Munapo, M. Lesaoana, et al., A minimum spanning
tree based heuristic for the travelling salesman tour, Opsearch. 55
(2018), 150–164.

[36] K.M. Lo, W.Y. Yi, P.K. Wong, et al., A genetic algorithm with new
local operators for multiple traveling salesman problems, Int. J.
Comput. Int. Sys. 11 (2018), 692–705.

[37] R.Y. Dong, S.S.Wang, G.Y.Wang, et al., Hybrid optimization algo-
rithm based on wolf pack search and local search for solving trav-
eling salesman problem, J. Shanghai Jiao Tong Univ. 24 (2019),
41–47.

[38] M.A.H. Akhanda, S.I. Ayon, S.A. Shahriyar, et al., Discrete spider
monkey optimization for traveling salesman problem. Appl. Soft
Comput. 86 (2020), 105887.

[39] Y.W. Zhong, L.J. Wang, M. Lin, et al., Discrete pigeon-inspired
optimization algorithm with metropolis acceptance criterion for
large-scale traveling salesman problem, Swarm Evol. Comput. 48
(2019), 134–144.

[40] C. Jiang, Z.P. Wan, Z.H. Peng. A new efficient hybrid algorithm
for large scale multiple traveling salesman problems, Expert Syst.
Appl. 139 (2020), 112867.

[41] B. Christian, Ant colony optimization: introduction and recent
trends, Phys. Life Rev. 2 (2005), 353–373.

[42] M.B. Chandra, R. Baskaran, Survey on recent research and imple-
mentation of ant colony optimization in various engineering
applications, Int. J. Comput. Int. Sys. 4 (2011), 566–582.

[43] Y. Nakamichi, T. Arita, Diversity control in ant colony optimiza-
tion, Artif. Life Robot. 7 (2004), 198–204.

https://doi.org/10.1109/CIS.2009.276
https://doi.org/10.1109/CIS.2009.276
https://doi.org/10.1109/CIS.2009.276
https://doi.org/10.1109/CIS.2009.276
https://doi.org/10.1109/ICNC.2011.6022207
https://doi.org/10.1109/ICNC.2011.6022207
https://doi.org/10.1109/ICNC.2011.6022207
https://doi.org/10.1109/ICNC.2011.6022207
https://doi.org/10.7763/IJIET.2011.V1.67
https://doi.org/10.7763/IJIET.2011.V1.67
https://doi.org/10.7763/IJIET.2011.V1.67
http://dx.doi.org/10.1016/j.eswa.2011.10.012
http://dx.doi.org/10.1016/j.eswa.2011.10.012
http://dx.doi.org/10.1016/j.eswa.2011.10.012
https://doi.org/10.1109/WCI.2015.7495512
https://doi.org/10.1109/WCI.2015.7495512
https://doi.org/10.1109/WCI.2015.7495512
https://doi.org/10.1109/WCI.2015.7495512
https://doi.org/10.1109/WCI.2015.7495512
http://dx.doi.org/10.1007/s00500-014-1279-8
http://dx.doi.org/10.1007/s00500-014-1279-8
http://dx.doi.org/10.1007/s00500-014-1279-8
http://dx.doi.org/10.1016/j.asoc.2017.06.049
http://dx.doi.org/10.1016/j.asoc.2017.06.049
http://dx.doi.org/10.1016/j.asoc.2017.06.049
http://dx.doi.org/10.1016/j.asoc.2017.06.049
https://doi.org/10.1007/978-3-642-37896-6_13
https://doi.org/10.1007/978-3-642-37896-6_13
https://doi.org/10.1007/978-3-642-37896-6_13
https://doi.org/10.1007/978-3-642-37896-6_13
https://doi.org/10.1007/978-3-642-37896-6_13
http://dx.doi.org/10.1007/s00521-016-2469-3
http://dx.doi.org/10.1007/s00521-016-2469-3
http://dx.doi.org/10.1007/s00521-016-2469-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1080/18756891.2010.9727756
http://dx.doi.org/10.1080/18756891.2010.9727756
http://dx.doi.org/10.1080/18756891.2010.9727756
http://dx.doi.org/10.3938/jkps.61.1944
http://dx.doi.org/10.3938/jkps.61.1944
http://dx.doi.org/10.3938/jkps.61.1944
http://dx.doi.org/10.1007/s00521-011-0794-0
http://dx.doi.org/10.1007/s00521-011-0794-0
http://dx.doi.org/10.1007/s00521-011-0794-0
http://dx.doi.org/10.1007/s11047-013-9401-x
http://dx.doi.org/10.1007/s11047-013-9401-x
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1007/s00500-014-1322-9
http://dx.doi.org/10.1007/s00500-014-1322-9
http://dx.doi.org/10.1007/s00500-014-1322-9
https://doi.org/10.1155/2016/1510256
https://doi.org/10.1155/2016/1510256
https://doi.org/10.1155/2016/1510256
http://dx.doi.org/10.1007/s00521-015-1978-9
http://dx.doi.org/10.1007/s00521-015-1978-9
http://dx.doi.org/10.1007/s00521-015-1978-9
http://dx.doi.org/10.1631/fitee.1601364
http://dx.doi.org/10.1631/fitee.1601364
http://dx.doi.org/10.1631/fitee.1601364
http://dx.doi.org/10.1007/s00521-017-2880-4
http://dx.doi.org/10.1007/s00521-017-2880-4
http://dx.doi.org/10.1007/s00521-017-2880-4
http://dx.doi.org/10.1007/s00521-017-2880-4
http://dx.doi.org/10.1007/s00500-017-2735-z
http://dx.doi.org/10.1007/s00500-017-2735-z
http://dx.doi.org/10.1007/s00500-017-2735-z
http://dx.doi.org/10.1007/s00521-017-3176-4
http://dx.doi.org/10.1007/s00521-017-3176-4
http://dx.doi.org/10.1007/s00521-017-3176-4
http://dx.doi.org/10.1007/s00500-015-1886-z
http://dx.doi.org/10.1007/s00500-015-1886-z
http://dx.doi.org/10.1007/s00500-015-1886-z
http://dx.doi.org/10.1007/s00500-017-2760-y
http://dx.doi.org/10.1007/s00500-017-2760-y
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.1016/j.eswa.2017.06.007
http://dx.doi.org/10.1016/j.eswa.2017.06.007
http://dx.doi.org/10.1016/j.eswa.2017.06.007
http://dx.doi.org/10.1016/j.ins.2017.08.067
http://dx.doi.org/10.1016/j.ins.2017.08.067
http://dx.doi.org/10.1016/j.ins.2017.08.067
http://dx.doi.org/10.1007/s12597-017-0318-5
http://dx.doi.org/10.1007/s12597-017-0318-5
http://dx.doi.org/10.1007/s12597-017-0318-5
http://dx.doi.org/10.2991/ijcis.11.1.53
http://dx.doi.org/10.2991/ijcis.11.1.53
http://dx.doi.org/10.2991/ijcis.11.1.53
http://dx.doi.org/10.1007/s12204-019-2039-9
http://dx.doi.org/10.1007/s12204-019-2039-9
http://dx.doi.org/10.1007/s12204-019-2039-9
http://dx.doi.org/10.1007/s12204-019-2039-9
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1016/j.asoc.2019.105887
http://dx.doi.org/10.1016/j.swevo.2019.04.002
http://dx.doi.org/10.1016/j.swevo.2019.04.002
http://dx.doi.org/10.1016/j.swevo.2019.04.002
http://dx.doi.org/10.1016/j.swevo.2019.04.002
http://dx.doi.org/10.1016/j.eswa.2019.112867
http://dx.doi.org/10.1016/j.eswa.2019.112867
http://dx.doi.org/10.1016/j.eswa.2019.112867
http://dx.doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.1016/j.plrev.2005.10.001
http://dx.doi.org/10.2991/ijcis.2011.4.4.14
http://dx.doi.org/10.2991/ijcis.2011.4.4.14
http://dx.doi.org/10.2991/ijcis.2011.4.4.14
http://dx.doi.org/10.1007/bf02471207
http://dx.doi.org/10.1007/bf02471207

	New Ant Colony Optimization Algorithm for the Traveling Salesman Problem
	1 INTRODUCTION
	2 TRADITIONAL ACO
	3 NEW ACO ALGORITHM
	4 SIMULATION EXPERIMENTS
	5 DISCUSSION
	6 CONCLUSIONS


