

Artery Research Vol. **25(S1)**; 2019, *p.* S95 DOI: https://doi.org/10.2991/artres.k.191224.085; ISSN 1872-9312; eISSN 1876-4401

https://www.atlantis-press.com/journals/artres

P54 Age-specific, Pressure-independent Acute Changes in Carotid-femoral Pulse Wave Velocity During Head-up Tilt

Giacomo Pucci^{1,2,*}, Alberto Avolio³, Bart Spronck^{4,5}, Gaetano Vaudo⁶, Fabio Anastasio⁷, Anton H. Van den Meiracker A.H², Francesco U.S. Mattace-Raso²

ABSTRACT

Introduction: Acute, gravity-induced blood pressure (BP) changes during head-up tilt may generate concomitant variations in carotid-femoral pulse wave velocity (cf-PWV). We aimed to separate the pressure-dependent and -independent components of cf-PWV changes observed during head-up tilt.

Methods: 30 healthy individuals (age 48 ± 18 years (mean \pm SD), 38% males, BP $130/74 \pm 12/8$ mmHg) underwent head-up passive tilting at $a = 0^{\circ}$, 30° , and 60° . BP was taken at the upper arm, constantly kept at heart level. Aortic BP was reconstructed from radial tonometry (SphygmoCor). Stiffness index b0 was estimated at 0° . 1 Assumptions: [1] from MRI2, the effective cf-PWV travel distance (ETD, 80% of straight carotid-to-femoral distance) begins at heart level; [2] the change in DBP along the aorta is predictable from the hydrostatic pressure gradient (0.73 mmHg/cm) 3; [3] cf-PWV and hydrostatic pressure relate linearly, hence predicted cf-PWV can be calculated as the average of aortic (PWVaorta, using b0 and aortic DBP) and femoral (PWVfem, using b0 and femoral DBP, corresponding to aortic DBP + (ETD × sin(a)'0.73)) PWVs.

Results: Both young (24–48 years) and old (48–82 years) individuals showed increasing trends for peripheral SBP, DBP, PP, and central DBP with tilting; central SBP remained unchanged. Heart rate (HR) and cf-PWV increased with body tilt in both groups (Figure, left). b0 linearly correlated with age (R = 0.70, p < 0.01). After adjustment for HR4, observed-vs-predicted cf-PWV exponentially increased as a function of age ($R^2 = 0.38$, p < 0.01 for quadratic equation, p = 0.04, vs. linear; Figure, right).

Conclusion: With aging, the acute relationship between BP and cf-PWV becomes progressively nonlinear.

	Young			Old			P (trend)	P (Young vs	. Р	m/s	9					
	0°	30°	60°	0°	30°	60°	r (tiellu)	old)	(Interaction)	≥	6					
Peripheral SBP, mmHg	125 (6)	126 (8)	126 (9)	135 (15)	142 (20)	142 (21)	< 0.01	0.01	0.05	cf-P	1			•	,	
Peripheral DBP, mmHg	72 (7)	75 (8)	79 (9)	76 (9)	79 (10)	82 (10)	<0.01	0.30	0.94	cted	3				<i>/</i> ·	
Peripheral PP, mmHg	52 (8)	51 (9)	48 (9)	59 (13)	62 (14)	60 (14)	0.06	0.02	0.02	edic	0					
Central SBP, mmHg	107 (8)	107 (9)	107 (8)	125 (14)	127 (19)	125 (19)	0.64	0.01	0.92	/s pi		•			•	
Central DBP, mmHg	74 (7)	76 (8)	80 (9)	76 (8)	80 (10)	84 (11)	< 0.01	0.25	0.54	(eq)	-3		•	•		
HR bpm	62 (8)	65 (7)	74 (8)	63 (10)	65 (8)	73 (7)	<0.01	0.98	0.44	Observ	_6 L					
PWV, m/s	7.0 (1.3)	7.6 (1.3)	7.8 (1.7)	9.1 (1.9)	10.6 (2.8)	11.4 (3.4)	<0.01	<0.01	0.05	1 Ob	0	20	40 4	ge. Years	80	

REFERENCES

- [1] Spronck B, et al. J Hypertens 2017;35:98–104.
- [2] Sugawara J, et al. Am J Hypertens 2016;29:1237-44.
- [3] Gavish B, et al. J Hypertens 2011;29:2099-104.
- [4] Tan I, et al. Hypertension 2016;68:236-42.

Department of Medicine, University of Perugia - Unit of Internal Medicine, Terni University Hospital, Terni, Italy

²Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands

³Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia

⁴Department of Biomedical Engineering Yale University, New Haven, CT, United States

⁵Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands

Department of Medicine, University of Perugia, Unit of Internal Medicine, Terni University Hospital, Terni, Italy

⁷Unit of Cardiology, ASST-VAL Hospital of Sondrio, Sondrio, Italy

^{© 2019} Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).