

Evaluation of the Use of Cloud Storage on Academic Website Using SWOT Analysis and Balanced Score Card

Eri Rustamaji State Islamic University Syarif Hidayatullah Jakarta, Indonesia eri.rustamaji@uinjkt.ac.id.

Viranda Adhiazni State Islamic University Syarif HidayatullahJakarta, Indonesia viranda.adhiazni 16@mhs.uinjkt.ac.id

Firna Helfira State Islamic University Syarif Hidayatullah Jakarta, Indonesia Firna.helfira16@mhs.uinjkt.ac.id Aprilia Dian State Islamic University Syarif Hidayatullah Jakarta, Indonesia Aprilia.dian16@mhs.uinjkt.ac.id

Tesa Jamilatul Qomariah State Islamic University Syarif Hidayatullah Jakarta, Indonesia tesa.jamilatul16@mhs.uinjkt.ac.id

Fandi Setiadi State Islamic University Syarif Hidayatullah Jakarta, Indonesia

Abstract-Data security and data leakage is an important issue in a dangerous technology in Cloud Storage systems on Cloud Computing. Academic website also faced problems like data leakage and system hacked for certain purposes. To achieve an appropriate level of data security standard on the Cloud Storage for academic website, the strengths and weaknesses in data security of Cloud Storage on academic website was evaluated using SWOT analysis. The analysis is based on four layers that exist in the cloud storage structure. namely access Cloud Storage. This is important since in recent years, many incident took place on attacks layer, application layer interfaces, management layer, and storage layer. The study also evaluates the performance of cloud storage by measuring the academic website using IT Balanced Scorecard which based on four perspectives of IT Balanced Scorecard. This study focuses only on Cloud Storage website of Academic Information System (AIS) UIN Jakarta, since many hacking incident on student accounts while there is no evaluation results on the website AIS Cloud usage.

Keywords: Cloud Computing, Cloud Storage, data security

I. INTRODUCTION

Cloud storage technology makes full use of the existing different storage devices in the system to provide users with data storage, data retrieval, data backup and other functions through application software ran by a user terminal. In recent years, attacks and data leakage in cloud storage system within Cloud Computing seemed to be increased [1].

In previous research,[1], use risk analysis to the 4 layers in Cloud Storage technology. The result showed that the technology developed very fast, and cloud storage security technology is facing unprecedented challenge. However, cloud storage security is not just a technical issue. It also involves standardization, management, laws and regulations and other problems. [2], analyze safety hazards of Cloud Computing. In this analysis discussed traditional and approved security solutions and procedure evaluation parameters. It was discussed also the procedure for evaluating parameter are determined. Those will be provided as one packaged solution. [3] get the result that in multi-layer cloud network, any device can augment its resources by taking off his duties to the public cloud, private cloud, or even the user's device. However, it is difficult to handle access control on data stored in different clouds that offer variety of access control.

This research is focused on the cloud storage system UIN Jakarta Academic Information System (AIS) website. We evaluated it by using SWOT analysis approach and methods of IT Balanced Scorecard as performance measurement on the application of information technology. This research focuses on strategic objectives of the academic website with measurement dimensions variable adapted to the academic website

II. LITERATURE STUDY

A. Cloud Storage

Cloud Storage operates through a Web-based API that is implemented remotely through interaction with the infrastructure of in-house cloud storage client applications for input / output (I / O) and read / write operations (R / W) [4]. Standard Cloud Storage can help to overcome the problems of accessibility, security and portability issues and the costs associated with growing data sets [5].

The advantage of Cloud Storage in the academic field are to minimize investment costs in academic

fandi.setiadi16@mhs.uinjkt.ac.id Sutian Zaenal State Islamic University Syarif Hidayatullah Jakarta, Indonesia sutian.zaenal15@mhs.uinjkt.ac.id

Nurbojatmiko State Islamic University Syarif Hidayatullah Jakarta, Indonesia Nurbojatmiko@uinjkt.ac.id

infrastructure, to enable the development and implementation of applications quickly that is increasing productivity in the academic field, and to facilitate the integration of the academic system services with various devices [5].

B. Four Layer Cloud Storage

The structure of cloud storage system consists of four layers:

Figure 1. Layer in Cloud Storage [1].

Storage layer

Storage layer is the most basic part of cloud storage. The storage device can be in Fiber Channel FC storage devices. This could also be an IP storage device such as NAS and iSCSI, or direct-attached storage (DAS) devices such as SCSI or SAS.

• Management layer

Management layer implements collaboration between multiple storage devices in cloud storage through clusters, distributed file systems, and grid computing technology. This enable multiple storage devices provide the same services and to have bigger and better data access performance.

• Application interface layer

Application interface layer is the most flexible part of cloud storage. In the actual type of business, different cloud storage operators can develop a different application service interface, and providing a wide range of services.

Access layer

Each authorized user can access the cloud storage system through a standard public application interface and enjoy the cloud storage service. The types and methods of access provided by cloud storage are the results from different operating unit.

C. IT Balanced Scored Card

Balanced Score Card (BSC) is the effective tools of performance management. It uses measurable indicators for assessing organization's implementation and strategic targets [6]. The BSC develops the four views index. They are learning and growth, internal processes, customers, and finances. BSC goal is balancing the financial target as a result of past performance, and three other indices (future display index) [7].

USER	BUSINESS
ORIENTATION	CONTRIBUTION
How do users view the IT	How does management
department?	view the IT department?
Mission	Mission
To be the preferred	To obtain a reasonable
supplier of information	business contribution from
systems	IT investment
Objectives	Objectives
• Preferred supplier	Control of IT
of applications	expenses
• Preferred supplier	• Business value of IT
of operations vs	projects
proposes of best	• Provision of new
solution from	business capabilities
whatever source	-
• Partnership with	
users	
• User satisfaction	
OPERATION	FUTURE
EXCELLENCE	ORIENTATION
How effective and	How well is IT positioned to
efficient are the IT	meet future needs?
processes?	Mission
Mission	To develop opportunities to
To deliver effective and	answer future challenges
efficient IT applications	Objectives
and services	Training and education of
Objectives	IT staff
Efficient and effective	Expertise of IT staff
developments	Research into emerging
Efficient and effective	technologies
operations	

IT Balanced Scorecard: the outcome of measures and performance drivers [8]. IT Balanced Scorecard to provide a comprehensive and structured presentation and review. It will allow related managers to monitor the strategy of IT implementation based on the value of each IT perspective [9].

D. SWOT Analysis

SWOT is an abbreviation for Strength (Strength), Weakness (Weakness), Opportunity (Opportunity), and Threat (Threat) which is a strategic factor specific to a particular company [10]

Figure 2. SWOT Diagram [11]

SWOT analysis is used to determine the position currently experienced by the company, and to determine the strategic directions can be taken by company using a SWOT Analysis Diagram. SWOT can also be used to produce a number of possible alternative strategies. The TOWS matrix (TOWS is just another way of saying SWOT) describes how the external opportunities and threats faced by a particular company can be matched with the company's internal strengths and weaknesses that can produce four possible alternative sets of strategies.

Table2. SWOT matrix [12]			
INTERNAL	Strengths (S)	Weaknesses (W)	
FACTORS	List 5-10 internal	List 5-10 internal	
(IFAS)	strengths here	weaknesses here	
EXTERNAL			
FACTORS			
(EFAS)			
Opportunities (O)	SO Strategies	SO Strategies	
List 5-10 external	Generate strategies	Generate strategies	
opportunities here	here that use	here that take	
	strengths to take	advantage of	
	advantage of	opportunities by	
	opportunities	overcoming	
		weaknesses	
Threats (T)	ST Strategies	WT Strategies	
List 5-10 external	Generate strategies	Generate strategies	
threats here	here that use	here that minimize	
	strengths to avoid	weaknesses and	
	threats	avoid threats	

E. Academic Information System

information is very Academic important information for students. Some academic information has a certain deadline, therefore, it must be delivered to the student as soon as possible[13]. Web Services technology offers convenience of bridging information resources no matter what technology used by each source [14]. Academic information systems can clarify the academic path of students during their studies and increasing integrity and transparency by providing equal information to all stakeholders. This also adds convenience by allowing access from anywhere through web [15]. In the Academic Web, electronic resources from this organization are very informative and can be used as sources of new media for science and contribute to promote scientific knowledge [16].

III. METHOD

Method used in this study can be explained as follows:

1) LiteratureStudy

At this stage, the study was done on literature related to cloud storage, risk analysis, performance measurement, Balanced Scorecard and IT Balanced Scorecard. From the literature, it is expected to learn the description of risk analysis in the cloud storage and performance measurement of academic website using IT Balanced Scorecard

2) Data collection

Methods used for data collection was interview. Interview was conducted to the Pustipanda UIN Jakarta. The interviews is about cloud storage, cloud storage risks on the web academic, advantages and disadvantages of cloud storage academic web and how to cope if the risk occurs in the cloud storage academic web.

3) Data processing

The result of interviews with Pustipanda was compared to IT perspective Balanced Scorecard. The result constitute the basis for formulating key performance indicator (KPI) of cloud storage academic website. Then create SWOT matrix to learn the internal strengths and weaknesses of cloud storage academic website. The KPI and target that was set are mapped into four perspective of IT BSC which are contributions from organizations, user orientation, operational improvement, and future contributions.

Later each KPI was measured. Actual condition value is obtained from the following calculation: each answer on scale 1-5 is multiplied by its weight. Each result for all answer is added up. Then the total value is divided by the number of respondents. Then the total value multiplied by 20% (20% because of the scale there are 5, then 100%: 5). To calculate the weighted results using the formulation of strategic objectives as follows: 1) weight = weight value comes from the academic website management, 2) the result of interest = (result size / 100) x weight, 3) the results of the average size = result of achievement of data processing from each perspective of IT Balanced Scorecard, 4) total is the percentage of each perspective.

Data analysis and determination of the level of performance

The measurement results are then analyzed so it can be determined which aspects are less supportive to the achievement of the strategic plan so that corrective action can be taken. Its measurement results is in the form of scorecard that contains values to each IT perspective BSC which will determine the level of academic web performance.

Figure 3. Research Method

IV. RESULTS AND DISCUSSION

The information system object for the research is a web-based academic information system. The function of this system is to provide data sources and academic administration that covers institution data, student data, lecturers'data, scholarship data, lecture scheduling, academic transcripts, study plan cards, study results cards, summary data, and academic transaction report for students.

Security on the academic system is good enough because the system utilize Secure Storage Layer (SSL), encrypting visitors so that it is difficult to be hacked. Programming language uses the Java language, the Linux operating system and the Tomcat service. Some anticipation if there hacked data, namely by using SSL, separating the database server, application server and streaming database server.

A. SWOT Analysis 4 Layers Cloud Storage

Cloud storage for academic website has an advantage to be accessed from anywhere.

There are some network factors need to be considered, namely 1) problem compilation related to connection of internet service provider (ISP), 2) user accessing the academic systems is increasing, 3) storage space crash the systems. Cloud storage in academic systems contain four layers. Namely, storage layer, management layer, application layer, and interface of access layer. The following is SWOT analysis for academic systems of four layers cloud storage.

Table 3. SWOT Matrix Academic Cloud Storage

	Sys	stem	
Strengths	Weakness	Opportunity	Threats (T)
(S)	(W)	(0)	
-Cloud	-Can occur	-Rejuvenation	-Server
Academic	hang when	device	down can
System	visiting	-mirroring	occur if a
Storage can	crowded and	and routines	visit to the
be accessed	space is full	perform data	bustling
anywhere,	of	backup	academic
-Backup	uncontrolled	internet	system
Data	storage.	bandwidth	
SO	ST	WO	WT
Already	-Using the	-create	using java
using SSL	SSL	multiple	in operation
in	-Separate	virtual	
anticipation	database	storage space	
	server,		
	application,		
	streaming		
	database		
	-Network		
	aspect: install		
	a firewall		

B. Data processing

The composition of KPI was started by studying the perspective of IT BSC. The perspective was aligned with strategic goal of academic information systems so that the KPI for academic information systems is displayed in Table 4.

Table 4. Key Performance Indicator			
BSC IT Perspective	Key Performance Indicator		
Contributions Or	ganization		
Achieve organizational	Improving the		
contribution that is the business	effectiveness of		
value of information technology	academic administrative		
and the effectiveness from the	services		
application information systems			
User Orientation			
Providing information systems	-Operator system of		
on-demand to achieve user	satisfaction		
satisfaction	-Increase the system		
	operator competency		
Operational Improvement			
Providing maximum IT products	Improving the quality of		
and services for effective and	information systems		
efficient information systems			
Future Orientation			
Answering the challenges of the	Increase IT staff		
future by educating and training	expertise		
the IT staff as well a research on			
the development of IT			

Then for the KPI that had been set, targets are determined specifically for each KPI. KPIs and targets were reassembled into their respective IT perspective Balanced Scorecard as shown in Table 5

KPI targets derived from the translation of each IT Balanced Scorecard perspective so that it comes into several sizes. Next step is determining the final value of the balanced scorecard prior to calculation of IT balanced score card.

rapie 5. rargel KP	Table	5.	Target	KP
--------------------	-------	----	--------	-----------

DOCIT	I IZDI	\mathbf{T} $(0/1)$
BSCIT	KPI	Target (%)
Perspective		
Contributions	Improving the	80
Organization	effectiveness of	
	academic	
	administrative services	
User Orientation	-Operator system of	75
	satisfaction	
	-increase the system	80
	operator competency	
Operational	System Quality	78
Improvement	Improvement	
Future Orientation	Increase IT staff	75
	expertise	

Table 6. Value End Performance Balanced Scorecard

Value (Score)%	Scale	Category
73-85	5	Excellent
59-72	4	Best
45-58	3	Good
31-44	2	Bad
17-30	1	Very Bad

Table 7. Results of Data Processing Perspective User Orientation

Strategic Goals	Strategic size	Stra tegic targ et	Actual conditi ons	Achiev ement
	BANK Officer appearance	75%	73%	74%
	Officer control in matters	80%	68%	74%
	Speed of response officers	80%	67%	74%
Duranidina	seriousness and patience officer	80%	67%	74%
informatio	alacrity of officer	80%	68%	74%
n systems on-demand	on-demand solve problems.	75%	60%	68%
to achieve user	The credibility of the officer.	75%	71%	73%
n	Hear any complaints properly.	75%	68%	72%
	Friendly and courteous attitude of the officers.	75%	75%	75%
	An understanding of the user's problem.	75%	69%	75%
Total			731%	
Average				73%

Total of 15 questionnaires were sent out, and returned as much as 15 questionnaires, a total of 15 questionnaires were answered. Table 7 s / d Table 10 is a recapitulation of the calculation data processing for each IT perspective Balanced Scorecard.

Table 8. Results of Data Processing PerspectiveContributions Organization

Strategic Goals	Strategic size	Strategic target	Actual conditi ons	Achiev ement
Achieve organizational contribution that is the business value of information	The procedure for applying clear	80%	72%	76%
technology and the effectiveness	Supplies adequate physical	80%	75%	78%
from the application information systems	Services via telephone.	80%	57%	69%
5,5101115	Certainty of time.	80%	57%	69%
Total			291%	
Average				73%

 Table 9. Results of Data Processing Perspective

 Operational Excellence

	operation	Idi Encono		
Strategic Goals	Strategic size	Strategic target	Actual conditi ons	Achiev ement
Providing maximum IT products and services for effective and efficient information systems	Easy operation and to facilitate student activities and lectures.	78%	83%	81%
	Easily accessible anywhere and anytime.	78%	79%	79%
	Fast access and fast download process.	78%	67%	73%
	Network is not easy down.	78%	45%	62%
	Data confidentialit y secured and not easily hacked.	78%	61%	70%
Total			363%	
Average				73%

Table 10.	Results of Data Processing Perspective
	Future Orientation

Strategic Goals	Strategic size	Strategic target	Actual conditi ons	Achiev ement
Answering the challenges of the future	timely and accurate informatio n.	75%	72%	74%
by educating and training the IT staff as well a research on the developmen t of IT	The informatio n is presented in accordanc e with the needs and activities.	75%	73%	74%
	Timely delivery of informatio n.	75%	61%	68%
Total				216%
Average				72%

Furthermore, the weighting of the strategic objectives for each perspective of the IT Balanced Scorecard were determined. The weights are set based on observations during the study in PUSTIPANDA which was then approved by the management. Weights are determined to find the results of interest of each outcome measure. The weights are obtained under the agreement and approval of the parties. Furthermore, target fulfilment level results at each IT perspective Balanced Scorecard will be determined (Table 12) as well as the results of performance measurement of academic website.

Table 11. Results of Strategic Objectives Weighting

Perspe ctive	Strategic Goals	Wei ght	Resu lt Size	Resu lts Goal s
User Orienta tion	Answering the challenges of the future by educating and training the IT staff as well a research on the development of IT	50%	73%	54.7 5%
Contri butions Organi zation	Providing maximum IT products and services for effective and efficient information systems	55%	73%	58.4 %
Operati onal excelle nce	Achieve organizational contribution that is the business value of information technology and the effectiveness from the application information system	53%	73%	56.9 4%
Future Orienta tion	Providing information systems on-demand to achieve user satisfaction	50%	72%	54%

Table 12. Results of Measurement	
----------------------------------	--

Perspective	Results Goals
User Orientation	54.75%
Contributions Organization	58.4%
Operational Improvement	56.94%
Future Orientation	54%
Total	224.09%
Average	56.02%

C. Analysis of Data

The results of data processing of 15 respondents in the four perspectives of the IT balanced scored card showed that on user orientation, the contribution of organizational and operational excellence have 73% which is in the position of 'Very Good'. However to the perspective of the future orientation, the value is 72% so it is in a position "Good". In addition, when viewed from the weighting of the strategic objectives, the four perspectives has a score of 54-58% so that only occupy the position of "Good enough". The position is obtained from the value of final performance on the method of Balanced Scored Card

V. CONCLUSIONS

The measurement results was obtained from the four IT balanced scored card perspectives on the AIS UIN Jakarta academic web. The perspective of User Orientation gets 54.75%, Organizational Contributions get 58.4%, Operational Perfection gets 56.94% and Future Orientation gets 54% with each category at "Good" level

The perspective results from the four perspectives of the IT Balanced Score Card for academic web in average is 56.02% where the score is at the level of "Good enough".

REFERENCES

- [1 Diao Zhe, Wang Qinghong, Su Naizheng, Zhang Yuhan, "Study on Data Security Policy Based on Cloud Storage", *IEEE International Conference on Big Data Security on Cloud*, pp. 145-149, 2017.
- [2] S. H. L. Kanickam, L. Jayasimman and A. N. Jebaseeli, "A Survey on Layer Wise Issues and Challenges in Cloud Security," 2017 World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli, 2017, pp. 168-171.
- [3] W. Su, W. Liu, C. Chen and T. Chen, "Cloud access control in multi-layer cloud networks," 2015 IEEE International Conference on Consumer Electronics - Taiwan, Taipei, 2015, pp. 364-365..
- [4] Munjal, Meenaakshi. Cloud Storage in Education. International Journal of Computer Science and Management Research. 3.2014. 3818-3823.
- [5] Goyal, Nitika & Goyal, Deepam. Cloud Computing in Educational Research. International Journal of Recent Engineering Research and Development. 2016. 1. 1-5..
- [6] Lizhong Tong, Rong Xiao and Huajie Li, "The evaluation of lean logistics performance based on balanced score card and unascertained sets," 2015 International Conference on Logistics, Informatics and Service Sciences (LISS), Barcelona, 2015, pp. 1-7..
- [7] H. Kazemkhanlou and H. Ahadi, "An integrated approach using data envelopment analysis and balanced score card to supply chain performance evaluation," 2015 International Conference on Industrial Engineering and Operations Management (IEOM), Dubai, 2015, pp. 1-8.

- [8] A. Cram, 2007. "The IT Balanced Scorecard Revisited,"ISACA Inf. Syst. J. Control, vol. 3, pp. 1-5.
- [9] R. Derrouiche, S. Gamoura, D. Damand and H. Bouguessas, "Towards a collaborative supply chain balanced score card framework to analyse collaborative value-added," 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 2017, pp. 427-431.
- [10] Rauch, Peter. (2007). SWOT analyses and SWOT strategy formulation for forest owner cooperation in Austria. *European Journal of Forest Research*. 126. 2007. 413-420. 10.1007/s10342-006-0162-2..
- [11] Boonyarat Phadermrod, Richard M. Crowder, Gary B. Wills, Importance-Performance Analysis based SWOT analysis, *International Journal of Information Management*, Volume 44, 2019, Pages 194-203.
- [12] Gürel, Emet. SWOT ANALYSIS: A THEORETICAL REVIEW. Journal of International Social Research. 2017. 10. 994-1006. 10.17719/jisr.2017.1832..

- [13] M. L. Pandini, Z. Arifin and D. M. Khairina, "Design web service academic information system based multiplatform," 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering, Semarang, 2014, pp. 297-302.
- [14] R. Somya, D. Manongga and M. A. Ineke Pakereng, "Service-Oriented Business Intelligence (SoBI) for Academic and Financial Data Integration in University," 2018 International Seminar on Application for Technology of Information and Communication, Semarang, 2018, pp. 1-5..
- [15] H. Hajjar and A. Hajjar, "Software for Academic Registration for IUT SAIDA: Web-Based Online Academic Registration and Management," 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, 2016, pp. 338-343.
- [16] Y. M. Solomentsev et al., "Research of the academic web space in the Russian federation," 2016 IEEE Conference on Quality Management, Transport and Information Security, Information Technologies (IT&MQ&IS), Nalchik, 2016, pp. 221-223.