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1.  INTRODUCTION

Many multimedia analysis algorithms rely on probability distri-
butions that characterize audio or image features as generally high 
dimensions. For example, music analysis methods, such as automatic 
music transcription (AMT) [1] and music classification [2], in these 
applications, having sufficient similarity (or equivalent difference) 
between distributions becomes crucial. The classical distance or 
difference of probability density includes Kullback Leibler diver-
gence, Kolmogorov distance, Bhattacharyya distance (also known as 
Hellinger distance), etc. Recently, the framework of optimal trans-
portation and Wasserstein distance [3] are also called earth mover’s 
distance (EMD) [4], which has aroused great interest in computer 
vision [5], machine learning [6] and data fusion. Wasserstein distance 
calculates the best warped starter to map the measure m to the second 
n for a given input probability. Optimality corresponds to a loss func-
tion that measures the predicted value of the displacement in the 
warped starter. Generally, considering the accumulation of m and n, 
Wasserstein distance calculates the definition of the displacement of 
every particle from traces of its mass to the displacement of m to n.

In this paper, the applications of Wasserstein Barycenter [7] algo-
rithm in music transcription and classification are discussed. The 
first application described in this paper is music transcription. 
In this study, we use non-negative matrix factorization (NMF) 
as the method of converting audio signal to musical instrument  
digital interface (MIDI) format and Wasserstein Barycenter as the 
algorithm of data fusion. The second is music classification, first 
we used jSymbolic software to extract the key features, and then 
input these features into our traditional machine learning model 
including eXtreme gradient boosting (XGB), back propagation 

neural network (BPNN), support vector machine (SVM). Finally, 
we propose Wasserstein Barycenter as the ensemble method of 
these models. Wasserstein distance, also known as EMD, is used 
to measure the distance between two distributions. Compared 
with Kullback Leibler (KL) and Jenson-Shannon (JS)–divergence, 
Wasserstein distance has the advantage that even if the support sets 
of two distributions do not overlap or overlap very little, it can still 
reflect the distance between the two distributions.

The remaining sections are organized as follows: In Section 2, we 
first review some of the theorems in the literature and mainly pres-
ent the theorems of Wasserstein Barycenter, methodology of music 
transcription and model of music classification. Section 3 conducts 
experiment result of music transcription and music classification. 
Section 4 introduces the evaluation methods and the comparison 
of different models. In Section 5, we summarize our work and pres-
ent future research directions in the field.

2.  RELATED WORK

Materials show that the Wasserstein distance presents a useful meth-
odology for quantifying geometric differences between the differ-
ent distributions. In particular, they are mostly applied as variables 
in content-based image retrieval [8], modeling and visualization of 
image intensity value [9–12], estimated average probability metrics 
(i.e. Barycenter of gravity) [13,14], cancer detection [15,16], super 
resolution [17] and other applications. Recent advances in varia-
tion minimization [18,19], particle approximation [20], multi-scale 
schemes [21,22], and entropy regularization [5,6,23], transmission 
metrics can be effectively utilized to pattern recognition, machine 
learning and signal processing issues. Moreover, Wang et al. [10] 
describes a theory for computing the transport distance (expressed as  

A RT I C L E  I N F O
Article History

Received 13 August 2019 
Accepted 18 October 2019 

Keywords

Multimedia analysis
Wasserstein Barycenter
fusion

A B S T R AC T
Optimal transport distance, otherwise known as Wasserstein distance, recently has attracted attention in music signal processing 
and machine learning as powerful discrepancy measures for probability distributions. In this paper, we propose an ensemble 
approach with Wasserstein distance to integrate various music transcription methods and combine different music classification 
models so as to achieve a more robust solution. The main idea is to model the ensemble as a problem of Wasserstein Barycenter, 
where our two experimental results show that our ensemble approach outperforms existing methods to a significant extent. Our 
proposal offers a new visual angle on the application of Wasserstein distance through music transcription and music classification 
in multimedia analysis and fusion tasks.

© 2020 The Authors. Published by Atlantis Press SARL. 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: jincong0623@cuc.edu.cn

http://https://www.atlantis-press.com/journals/ijndc
https://doi.org/10.2991/ijndc.k.200217.001
https://www.atlantis-press.com/journals/ijndc
http://creativecommons.org/licenses/by-nc/4.0/
mailto:jincong0623%40cuc.edu.cn?subject=


	 C. Jin et al. / International Journal of Networked and Distributed Computing 8(2) 58–66	 59

linear optimal transport) between N image data sets requiring 
N minimized distance problems. Rabin et al. [14] and Bonneel  
et al. [23] proposes the truth that these problems are easy to solve 
for distribution of one-dimension, and introduces a change in the 
local distance defined as the Sliced Wasserstein distance. Finally, 
recent work [24–26] shows that the transmission frames can be 
treated as a reversible signal conversion framework allowing signal 
classes to be more linearly separated for various pattern recognition 
and machine learning tasks.

Due to the benefits of using the above transport distances and 
Wasserstein distance, and taking into account the flexibility and 
strength of Wasserstein Barycenter [7] algorithm, ensemble meth-
ods using Wasserstein Barycenter in dealing with data fusion have 
been described with applications in music transcription and music 
classification.

Various research groups of polyphonic pitch detection used differ-
ent techniques for music transcriptions. Yeh et al. [27] presented a 
cross pitch estimation algorithm based on the score function of a 
pitch candidate set. Nam et al. [28] posed a transcription approach 
which uses deep belief networks to calculate a mid-level time-pitch 
representation. Duan et al. [29] and Emiya et al. [30] proposed a 
model of spectral peak, non-peak region and the residual noise via 
Maximum Likelihood (ML) methods. More recently, Peeling and 
Godsill [31] raised a F0 estimation function and an inhomogeneous 
Poisson in the frequency domain. In spectrogram factorization-
based multi-pitch detection, resulting in harmonic and inharmonic 
NMF, Vincent et al. [32] merged harmonic constraints in the NMF 
model. Bertin et al. [33] presented a Bayesian model based on 
NMF, and each pitch in harmonic positions is treated as a model 
of Gaussian components. Fuentes et al. [34] modeled each note as 
a weighted amount of narrowband log spectrum, and switched to 
log frequency with the convoluted PLCA algorithm. Abdallah and 
Plumbley [35] combined machine learning and dictionary learning 
via non-negative sparse coding.

Since the emergence of the Internet, music classification has been 
a widely studied field. Researchers around the world have put a lot 
of energy into the field of music classification. Although research-
ers have proposed different algorithms from different perspectives, 
most of them rely on excellent and well-designed designs and the 
construction of appropriate classifiers for music data. Traditional 
music classification methods are based on supervised machine 
learning [36]. They used k-Nearest Neighbor (KNN) and Gaussian 
Mixture model. The above methods as well as Mel-frequency 
Cepstral coefficients were used for noisy classification. Lee et al. 
[37] introduced a multiclass SVM approach that translated mul-
tiple classification problems into a single optimization problem 
rather than breaking it down into multiple binary classification 
problems. There are many favorable properties of Wasserstein dis-
tance, which are recorded in theories [3] and practice [38]. With 
the recent success of Deep Neural Networks (DNN), a number of 
studies apply these techniques to speech and other forms of audio 
data. Hussain and Haque [39] developed SwishNet— a fast CNN 
for audio data classification and segmentation. AzarNet, a DNN 
was created by Azar et al. [40] to recognize classical music. Liu  
et al. [41] fully exploited of low-level information in the audio 
from spectrograms to develop a new CNN algorithm. Nasrullah 
and Zhao [42] reviewed the classification method of artists under 
this framework and conducted an empirical study on the impact of 

introducing time structure into feature representation. Under the 
comprehensive conditions, they applied the convolutional recur-
sive neural network to the music artist recognition data set and 
established the classification architecture.

Based on the recent works on EMD [4] and Wasserstein Barycenter 
[7], we propose a converged method and have concrete theoretical 
and practical advantages in music transcription and classification. 
We derive mathematical results that enable Wasserstein Barycenter 
ensemble to be applied in music transcription and music classi-
fication. Finally, we prove through experiments that Wasserstein 
Barycenter ensemble outperform the commonly used models such 
as SVM, XGB and BPNN.

3.  METHODOLOGY

Our idea of music signal processing ensemble is inspired by the 
recent study on EMD and Wasserstein Barycenter in the area of 
machine learning. Here, we introduce their formal definitions 
first. And then we propose music classification models with com-
pared classifiers.

3.1. � Music Transcription with Earth  
Mover’s Distance

Let X = {x1, x2, ..., xn1} and Y = {y1, y2, ..., yn1} be two sets of weighted 
points in Rd with non-negative weights ai and bj for each ai ∈X and 
bj ∈Y respectively, and WX and WY be their corresponding total 
weights. The EMD [4,43] between X and Y is 
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Roughly speaking, EMD is an example of the least cost and maxi-
mum flow problem in the Euclidean space Rd. Therefore, the prob-
lem of computing EMD can be solved by linear programming [44]. 
In addition, several faster algorithms have been proposed by using 
the techniques developed in computational geometry [43,45,46]. 
Following EMD, we have the definition of Wasserstein Barycenter.

3.2. � Music Classification with  
Compared Classifiers

3.2.1.  Multiclass SVM

Support vector machine is a useful technique for data classification. 
Even though it is considered that neural networks are easier to use 
than this; however, sometimes unsatisfactory results are obtained. 
A classification task usually involves with training and testing data 
which consist of some data instances. Each instance in the train-
ing set contains one target values and several attributes. The goal 
of SVM is to produce a model which predicts target value of data 
instances in the testing set which are given only the attributes.
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Classification in SVM is an example of Supervised Learning. Known 
labels help indicate whether the system is performing in a right way 
or not. This information points to a desired response, validating 
the accuracy of the system, or be used to help the system learn to 
act correctly. A step in SVM classification involves identification as 
which are intimately connected to the known classes. This is called 
feature selection or feature extraction. Feature selection and SVM 
classification together have a use even when prediction of unknown 
samples is not necessary. They can be used to identify key sets which 
are involved in whatever processes distinguish the classes.

Computing the SVM classifier amounts to minimizing an expres-
sion of the form 
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Minimizing (2) can be rewritten as a constrained optimization prob-
lem with a differentiable objective function in the following way.

For each i ∈ {1, ..., n}, we introduce a variable zi = max(0, 1 −  
yi(w · xi − b)). Note that zi is the smallest non-negative number 
satisfying yi(w · xi − b) ≥ 1 − zi.

Thus we can rewrite the optimization problem as to minimize 
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 for all i. This is called the dual problem. Since the 

dual maximization problem is a quadratic function of the ci subject 
to linear constraints, it is efficiently solvable by quadratic program-
ming algorithms. Here, the variables ci are defined such that 
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Moreover, ci = 0 exactly when 
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margin, and 0 < ci < (2nl)−1 when ci lies on the margin’s boundary. 
It follows that 

�w  can be written as a linear combination of the sup-
port vectors.

The offset b can be recovered by finding an 
�
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(Note that y yi i
-1 =  since yi = ±1.)

Sub-gradient decent algorithms for the SVM work directly with the 
expression 
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Note that f is a convex function of �w  and b. As such, traditional 
gradient descent (or SGD) methods can be adapted, where instead 

of taking a step in the direction of the function’s gradient, a step 
is taken in the direction of a vector selected from the function’s 
sub-gradient. This approach has the advantage that, for certain 
implementations, the number of iterations does not scale with n, 
the number of data points.

Coordinate descent algorithms for the SVM work from the  

dual problem, which is to maximize f c c c y c x x y cn i
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all i. For each i ∈ {1, ..., n}, iteratively, the coefficient ci is adjusted 

in the direction of 
¶
¶

f
ci

. Then, the resulting vector of coefficients 

( )¢ ¢c cn1, ,…  is projected onto the nearest vector of coefficients that 
satisfies the given constraints. The process is repeated until a 
near-optimal vector of coefficients is obtained. The resulting algo-
rithm is extremely fast in practice, although few performance guar-
antees have been proven.

One of the major strengths of SVM is that the training is relatively 
easy. No local optimal, unlike in neural networks. It scales relatively 
well to high dimensional data and the trade-off between classifier 
complexity and error can be controlled explicitly. The weakness 
includes the need for a good kernel function.

3.2.2.  Multilevel Wasserstein means

For any given subset Θ ⊂ Rd, let P(Θ) denote the space of Borel prob-
ability measures on Θ. The Wasserstein space of order r ∈ [1, ∞) 

of probability measures on Θ is defined as P G P x dG xr
r( ) = ( ) : ( ) <Θ Θ∈ ∞{ }∫ � � 

P G P x dG xr
r( ) = ( ) : ( ) <Θ Θ∈ ∞{ }∫ � � , where ||⋅|| denotes Euclidean metric in Rd. 

Additionally, for any k ≥ 1 the probability simplex is denoted as 
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Finally, let Ok(Θ)(resp., ek(Θ)) be the set of probability measures 
with at most (resp., exactly) k support points in Θ.

• Wasserstein distances

For any elements G and G′ in Pr(Θ) where r ≥ 1, the Wasserstein 
distance of order r between G and G′ is defined as: 

      W G G x y d x y G Gr
r r( ) inf ( ), = ( , ) , ,2

1
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where ∏(G, G′) is the set of all probability measures on Θ × Θ that 
have marginals G and G′. In other words, W G Gr

r ( ), ′  is the optimal 
cost of moving mass from G to G′, where the cost of moving unit 
mass is proportional to r, the power of Euclidean distance in Θ. 
When G and G′ are two discrete measures with finite number of 
atoms, fast computation of Wr (G, G′) can be achieved. The details 
of this are deferred to the Supplement.

By a recursion of concepts, we can speak of measures of mea-
sures, and define a suitable distance metric on this abstract space:  
the space of Borel measures on Pr(Θ), to be denoted by Pr(Pr(Θ)). 
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This is also a Polish space (that is, complete and separable metric 
space) as Pr(Θ) is a Polish space. It will be endowed with a 
Wasserstein metric of order r that is induced by a metric Wr on 
Pr(Θ) as follows: for any D, D′ ∈ Pr(Pr(Θ)), 

	   W D D W G G d G Gr Pr
r
r r
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where the infimum in the above ranges over all p ∈ ∏(D, D′) such 
that ∏(D, D′) is the set of all probability measures on Pr(Θ) × Pr(Θ) 
that has marginals D and D′. In words, Wr(D, D′) corresponds to 
the optimal cost of moving mass from D to D′ where the cost of 
moving unit mass in its space of support Pr(Θ) is proportional to 
the r-power of the Wr distance in Pr(Θ). Note a slight notational 
abuse –Wr is used for both Pr(Θ) and Pr(Pr(Θ)), but it should be 
clear which one is being used from context.

• Wasserstein barycenter

Next, we present a brief overview of Wasserstein barycenter  
problem. Given probability measures (P1, P2, ..., PN ∈ P2(Θ)), for  
N ≥ 1, their Wasserstein barycenter PN,l is such that 
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where l ∈∆N denote weights associated with P1, P2, ..., PN. When 
P1, P2, ..., PN are discrete measures with finite number of atoms and 
the weights l are uniform, it was shown by Gramfort et al. [50] that 
the problem of finding Wasserstein barycenter PN ,l  over the space 
P2(Θ) is reduced to search only over a much simpler space Oi(Θ), 
where l s N

i

N

i= 1
=1∑ − +  and si is the number of components of Pi 

or all 1 ≤ i ≤ N.

Efficient algorithms for finding local solutions of the Wasserstein 
barycenter problem over Ok(Θ) for some k ≥ 1 have been studied 
recently in Cuturi and Doucet [48].

3.2.3.  eXtreme gradient boosting

eXtreme gradient boosting, proposed by Dr. Chen in 2016, is a 
large-scale machine learning method for tree boosting and the 
optimization of gradient boosting decision tree (GBDT). As a lot 
of researches have mentioned, GBDT is an ensemble learning algo-
rithm, which aims to achieve accurate classifications by combining a 
number of iterative computation of weak classifiers (such as decision 
trees). However, unlike GBDT, XGB can take advantage of multi-
threaded parallel computing by using central processing unit (CPU) 
automatically to shorten the process of iteration. Besides, additional  
regularization terms help decrease the complexity of the model.

In Supervised Learning, there are objective function as well as 
predictive function. In XGB, objective function in Equation (10) 
consists of training loss L(f) which measures whether model is fit 
on training data and regularization Ω(f) which measures com-
plexity of model. If there is no regularization or regularization 
parameter is zero, the model returns to the traditional gradient 
tree boosting. 
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When it comes to L(f): 
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where yi denotes the true value and �yi  denotes the predicted value. 
If a model after an iteration is: 
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And the model after t times iteration: 
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where ft(xi) is a predictable function newly added in the t times 
iteration.

The formula of second-order Taylor expansion is: 
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When it comes to Ω( f ): 
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In Equation (17), q(xi)
 structure function, which describes the struc-

ture of a decision tree w is the weight of the leaves on the tree. 
Equation (18) describes the complexity of a tree. g  is a coefficient 
of leaf nodes, taking pre-processing to prune leaves while optimiz-
ing the objective function. l is another coefficient to prevent the 
model from over-fitting.

Define Pi = {i|q(xi) = j} as the sample set for each leaf j. Then the 
objective function can be simplified as: 
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When structures of trees q are known, this equation has solutions: 
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Blessed with traits mentioned above, XGB has the following advan-
tages compared to traditional methods:

	 (i)	 Avoiding over-fitting. According to Biasvariance trade-off, the 
regularization term simplifies the model. Simpler models tends 
to have smaller variance, thus avoiding overfitting as well as 
improving accuracy of the solution.

	 (ii)	 Supporting for parallelism. Before training, XGB sorts the data 
in advance, and saves it as a block structure. When splitting 
nodes, we can calculate the greatest gain of each feature with 
multi-threading by using this block structure.

	 (iii)	 Flexibility. XGB supports user-defined objective function and 
evaluation function as long as the objective function is second-
order derivable.

	 (iv)	 Built-in cross validation. XGB allows cross validation in each 
round of iterations. Therefore, the optimal number of iterations 
can be easily obtained.

	 (v)	 Process of missing feature values. For a sample with missing fea-
ture values, XGB can automatically learn its splitting direction.

3.2.4.  Back propagation neural network

Back propagation neural network is a multi-layer feedforward neural 
network trained by error back propagation learning algorithm. It was 
firstly coined by Rumelhart and McClelland in 1986. Blessed with 
strong ability of nonlinear mapping, generalization and fault tolerance, 
it has become one of the most widely used neural network models. 
The core of BPNN mainly includes two parts: the forward propagation 
of signals as well as the reverse propagation of errors. In the former, 
input signals as input cells activate the cells of hidden layer and transfer 
information to them with weights. The hidden layer also acts on the 
output layer in this way, thus finally getting the output results. If those 
results are not fit on the expected output results, it turns to the latter 
process. The output layer error will be back-propagated layer by layer. 
The weights of the network are adjusted at the same time to make the 
output of the forward propagation process closer to the ideal output.

• Forward propagation

First, we need to introduce activation functions. It helps to solve 
complex non-linear problems. The widely used activation function 
is the sigmoid function: 
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1

x
e x+ - � (22) 

		  sigmoid sigmoid sigmoid′ −( ) = ( )[1 ( )]x x x � (23)

In input layer, the input and output of the ith cell are the same. And 
the number of input cells is n1. 

			   O Ii i= � (24)

In hidden layer, the input and output of the ith cell are as follows. 
And the number of input cells is n2. 

		       I Oj
i

n

ji i j=
=1

1

∑ +w d � (25) 

			         O Ij j= ( )sigmoid � (26)

wji is the weight connecting the ith input cell and the ith hidden cell. 
dj represents the thresholds of the jth hidden cell.

In output layer, the input and output of the kth cell are as follows: 

		       I Oj
i

n

kj j k=
=1

1

∑ +w d � (27) 

			        O Ik k= ( )sigmoid � (28)

wkj is the weight connecting the jth hidden cell and the output cell. 
dk represents the thresholds of the output cell.

• Back propagation

We define the expected output as E O O
k

n

k k= 1
2 =1

3
2∑ −( )�  and the number of the output 

cells is n3. After training, the total error is: 

		      E O O
k

n

k k= 1
2 =1

3
2∑ −( )� � (29)

According to the chain rule, we can adjust the weights. 
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Similarly, other weights can also be adjusted in this way.

4.  EXPERIMENT

4.1.  Experiment of Music Transcription

4.1.1.  Database and data preprocessing

In this section, we start to describe training data and experimental 
settings, and then conduct the state-of-the-art method to merge 
different transcription results. In this experiment, we use anaconda3 
and python3.5 to perform the transcription, and sklearn toolbox to 
deal with data; while adopted pycharm to merge the data of differ-
ent transcription results.

In data preparation period, the instrumental sound records in 
studio were described as dry source; however, most of scenes were 
not ideal. For a large amount of ground noise would be added to 
dry source during recording due to the sound card device or back-
ground. What’s more, some instrumental sound was recorded in 
different scenes and added different noises. We chose three clas-
sical music pieces by Bach, Mozart and Beethoven and prepro-
cessed them with filter noise, distortion noise, reverb noise and  
dynamic noise.
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4.1.2.  Experimental settings

In this paper, we first propose a method based on NMF. Then 
we employed a fresh and simple Time-frequency representation, 
using the effectiveness of spectral features when highlighting 
the start time of notes. In addition, we adopted the NMF model 
to input the proposed features. In our system, we used different 
audio signals recorded in different scenes with a sample rate of 
48 kHz. We split the frame with a hamming window of 8192 
samples and a jump size of 1764 samples. The 16,384-point 
DFT was calculated on every frame via double zero padding. 
Smoothing the spectrum through a median filter covered 100 ms. 
The algorithm is updated and iterated 50 times. Each row of the 
transcription results showed: onset time, offset time, notations 
of MIDI are as follows in Figure 1.

4.2.  Experiment of Music Classification

4.2.1.  Database and data preprocessing

As for data sets, we selected classical music from five composers. 
They are Haydn, Mozart, Beethoven, Bach and Schubert. We get 
200 pieces of music from each composer, a total of 1000 pieces. We 
use 90% of each composer’s data as a training set and the remain-
ing 10% is used as testing set. Music pieces are all in MIDI format.

4.2.2.  Experimental settings

In this experiment, we use python 3, an interpretative scripting 
language. We mainly use sklearn toolbox to deal with data, which 
is simple but efficient tools for data mining and data analysis. It is 
not only accessible to beginners but also reusable in various con-
texts. Matplotlib toolbox is used to draw the receiver operating 
characteristic curve (ROC curve).

4.2.3.  Features extraction

In this paper, we use jSymbolic as an open-source platform for 
extracting features from symbolic music. These features can serve 
as inputs to machine learning algorithms, or they can be analyzed 
statistically to derive musicological insights. jSymbolic implements 
246 unique features, comprising 1497 different values, making  
it by far the most extensive symbolic feature extractor to date. 

These features are designed to be applicable to a diverse range of 
music, and may be extracted from both symbolic music files as a 
whole and from windowed subsets of them.

Features extracted with jSymbolic can be roughly divided into eight 
categories, which are: range, repeated notes, vertical perfect fourths, 
rhythmic variability, parallel motion, vertical tritones, chord dura-
tion, number of pitches. And the following is a brief introduction 
of some of them.

•• Pitch Statistics: How common are various pitches and pitch 
classes relative to one another? How are they distributed and how 
much do they vary?

•• Chords and Vertical Intervals: What vertical intervals are present? 
What types of chords do they represent? What kinds of harmonic 
movement are present?

•• Rhythm: Information associated with note attacks, durations and 
rests, measured in ways that are both dependent and indepen-
dent of tempo. Information on rhythmic variability, including 
rubato, and meter.

5.  RESULTS AND COMPARISON

5.1.  Comparison of Music Transcription

5.1.1.  Ensemble and comparison

First, we examined data sets in four scenes (adding filter noise, 
distortion noise, reverb noise and dynamic noise) under which 
we could get reasonable clusters. Then, we used the Wasserstein 
Barycenter algorithm as our ensemble method to obtain results. 
For example, we put forward the transcription data with reverb 
noises before ensemble. While, we generated the 10 transcription 
data adding with different reverb noises and then merged them 
through Wasserstein means algorithm.

We show that ensemble method is more robust than single 
transcription method in four scenes through Proportional 
Transportation Distance (PTD). The experimental results are 
evaluated objectively by using PTD described above. The PTD is 
computed by first dividing each point’s weight by the total weight 
of its point set, and then the EMD of resulting point sets is calcu-
lated [52]. According to the EMD and PTD method, we present 
notation as sets of weighted points. The weight represents note 
duration. Each note stands for a point distributed in the x and y 
coordinates, representing the start time and pitch, respectively.  
We use the Euclidean distance as the ground distance.

5.1.2.  Evaluation

We conducted the evaluation by calculating precision (P = Ntp/(Ntp 
+ Nfp)), recall (R = Ntp/(Ntp + Nfn)), F-measure (F = 2PR/(P + R)) and 
accuracy (A = Ntp/(Ntp + Nfp + Nfn)), where Ntp, Nfp and Nfn are the 
numbers of true positives, false positives and false negatives respec-
tively. If the pitch is correct and its starting time is within 50 ms 
of the ground truth, we computed the notes as true positives [53].

The results are shown in Table 1. First of all, we averaged preci-
sion, recall, F-measure and accuracy of unmerged data from three Figure 1 | The transcription result.
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5.2.2.  Evaluation

In order to evaluate the performance of the models described in 
Section 3.2, we compute precision, recall, F-measure, accuracy and 
area under curve (AUC) as the evaluation metrics of these classifiers. 
Experiment results can be seen from Table 2. The best performance 
in terms of all metrics is observed for ensemble model based on 
Wasserstein Barycenter. As we can see, WB ensemble achieves a clas-
sification effect better than other classifiers in each evaluation metric. 
There is no notable difference in AUC between XGB and BPNN, with 
0.55 and 0.54 representatively. In contrast, SVM and WB ensemble 
reach to 0.85 and 0.86, higher than XGB and BPNN. In terms of 
accuracy, XGB has achieved 63%, nearly the same accuracy with WB 
ensemble, which has reached to 65%. However, in other evaluation 
metrics, SVM obviously performs better than XGB and BPNN.

Among the models that use manually crafted features, the one 
with the least performance is the BPNN model. This is expected 
since BPNN mainly deal with the classification of big data while 
our datasets are very small. SVMs outperform random forests in 
terms of AUC. However, the XGB version of the gradient boosting 
algorithm performs the best among the feature engineered meth-
ods with the relatively high accuracy.

6.  CONCLUSION

In this paper we showed that Wasserstein Barycenter is effective in 
multiple scenes ensemble in music transcription and multiple classi-
fiers ensemble in music classification. Here, we proposed two appli-
cations of Wasserstein Barycenter ensemble. For music transcription, 
in different scenes and pieces of music, we presented their effective-
ness in ensemble results, as well as in improving the robustness and 
accuracy of music transcriptions. In addition, for music classifica-
tion, we compare the performance of single classifiers and ensemble 
model for music style classification with different composers. Then, 
we also conduct an objective evaluation to compare diverse scenes 
and diverse models through measuring the differences between 
music signal data and the ground truth scores. Finally, we drew a 
conclusion that our crowdsourcing method is very useful in improv-
ing the robustness and accuracy of music signal processing results.
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Table 1 | Performance comparison on the real data set

Precision Recall F-measure Accuracy

Filter 0.4321 0.6667 0.3766 0.3232
Reverb 0.4405 0.6829 0.3841 0.3927
Dynamic 0.4272 0.6977 0.3385 0.3431
Distortion 0.4137 0.6914 0.3278 0.3703
Ensemble 0.6241 0.9231 0.7371 0.6642

Table 2 | Performance comparison on classifiers and their ensemble

Classifiers Accuracy Precision Recall F-measure AUC

SVM 0.46 0.43 0.45 0.4 0.85
XGB 0.63 0.31 0.4 0.35 0.55
BPNN 0.43 0.18 0.26 0.22 0.54
WB ensemble 0.65 0.44 0.47 0.44 0.86

Figure 2 | ROC curves for the best performing models and their ensemble.

composers in four scenes. Then, we compared the values of them 
in four scenes with those of merged data. It can be seen that the 
ensemble method is better than single transcription method in four 
scenes and the rates of precision, recall, F-measure and accuracy 
are obviously higher than those of unmerged data. It has increased 
nearly two times in F-measure and accuracy and 1.5 times in pre-
cision and recall.

5.2.  Comparison of Music Classification

5.2.1.  Ensemble and comparison

In this section, we combine different classifiers including SVM, 
XGB and BPNN to the ensemble classifier called Wasserstein 
Barycenter ensemble, which is based on Wasserstein Barycenter 
described above. Such an ensemble scheme which combines 
the prediction powers of different classifiers makes the overall 
system more robust. In our case, each classifier outputs a pre-
diction probability for each of the classification labels. Hence 
averaging the predicted probabilities from the different classi-
fiers would be a straightforward way to do ensemble learning.

The methodologies described in Section 3.2 that introduce dif-
ferent models of classification and the Wasserstein Barycenter 
algorithm, which makes sense to combine the models via 
ensemble. The performance of SVM, XGB, BPNN and WB 
ensemble is shown in Figure 2. ROC curve of BPNN has more 
twists and turns, compared with that of XGB, and ROC curve 
of WB ensemble is more smooth than that of SVM. The ROC 
curve for the WB ensemble model is above that of SVM, XGB 
and BPNN as illustrated in Figure 2. As shown in Table 2, this 
WB ensemble is beneficial and is observed to outperform the all 
individual classifiers.
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