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ABSTRACT
In sample surveys ratio estimator has found extensive applications to obtain more precise estimators of the population ratio,
population mean, and population total of the study variable in the presence of auxiliary information, when the study variable
is positively correlated with the auxiliary variable. The theory underlying the ratio method of estimation is same whether we
estimate the population ratio or population mean/population total, excepting the fact that in the latter case we assume the
advance knowledge of the population mean or total of the auxiliary variable in question. In this paper we use the term ratio
estimator for both the purposes. However, in spite of its simplicity the ratio estimator is accompanied by an unwelcome bias,
although the bias decreases with increase in sample size and is negligible for large sample sizes. In small samples the bias may be
substantial so as to downgrade its utility by affecting the reliability of the estimate. As pointed out by L.A. Goodman, H.O. Hartley,
J. Am. Stat. Assoc. 53 (1958), 491–508, in sample surveys where we draw very small samples from a large number of strata in
stratified random sampling with the ratio method of estimation in each stratum, the combined bias from all the strata may
assume serious proportions, affecting the reliability of the estimate. This calls for devising techniques either at estimation stage
or in the sampling scheme at the selection stage to reduce the bias or completely eliminating it to make it usable in practice. This
has motivated many research workers like E.M.L. Beale, Ind. Organ. 31 (1962), 27–28 and M. Tin, J. Am. Stat. Assoc. 60 (1965),
294–307 among others to construct estimators at the estimation stage removing the bias of O(1/n), where n is the sample size,
and thus reducing the bias to O

(
1/n2). Such estimators are termed as Almost Unbiased ratio-type estimators found in literature.

In this paper we have proposed a class of almost ratio type estimators following the techniques of E.M.L. Beale, Ind. Organ.
31 (1962), 27–28 and M. Tin, J. Am. Stat. Assoc. 60 (1965), 294–307 and made comparison with regard to bias and efficiency.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Large scale sample surveys are often conducted in countries around the world to assess the present status of certain sectors of economy for
future planning. In such surveys it is a general practice to adopt stratification to divide the heterogeneous population into homogeneous
groups called strata. Sometimes besides observing the main variable under study, observations on certain auxiliary variables stipulated at
planning stage or even during the course of investigation to improve the efficiency of the estimators of the parameters of the main variable
under study. The simplest method of using auxiliary information in case of a single auxiliary variable when the main variable under study
and auxiliary variable is positively correlated, is the ratio method of estimation, advocated by Cochran [3] among many [5] earlier workers
in sample surveys. It is well known that the ratio estimator of the population mean/total/ratio is a biased estimator although the bias may
be negligible for large sample sizes. Even for moderately large sample the bias may be substantial, more so in stratification where these
biases accumulate over strata to make the overall estimate sometimes unacceptable to be used for the purpose for which it is to be used
(Goodman and Hartley [7], Cochran [4]). This suggests to devise ways to construct estimators whose biases of O(1/n), n being the sample
size, is removed and the reduced bias becomes of O

(
1/n2). Beale [1] and Tin [14] devised ways to adjust the estimator for the bias by the

asymptotic series expansion of the ratio estimator under certain assumptions. These improved type of ratio estimators having first order
bias being removed are known in sampling theory literature as Almost Unbiased Ratio Type Estimators. De-graft Johnson [6] and David
[5] have made some extensive studies on ratio method of estimation.

Let there be a finite population U having N distinct and identifiable units {U1,U2, ... ,UN} indexed by paired values of the study variable y
and positively correlated auxiliary variable x such as (Y1,X1) , (Y2,X2) , ... , (YN,XN). Assume that both y and x are positively measured.

Draw a simple random sample without replacement of size n from the finite population of N units and the paired values on the sample units
are

(
y1, x1

)
,
(
y2, x2

)
, ... ,

(
yn, xn

)
.
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Define the population means of y and x as Y = 1
N

N

∑
i=1

Yi and X = 1
N

N

∑
i=1

Xi respectively and the population variances and covariance between

y and x as S 2
y = 1

N − 1

N

∑
i=1

(
Yi − Y

)2
, S 2

x = 1
N − 1

N

∑
i=1

(
Xi − X

)2
, and Sxy =

1
N − 1

N

∑
i=1

(
Xi − X

)(
Yi − Y

)
respectively. Define further

C 2
x = S 2

x

X
2 and C 2

y =
S 2
y

Y
2 as the population squared coefficients of variation of x and y respectively. Also, the population coefficient of

co-variation Cxy =
Sxy
YX

= 𝜌CxCy, 𝜌 being the coefficient of correlation between y and x. The population regression coefficient of y on x

𝛽 =
Sxy
S 2
x

. Further, the population ratio R = Y
X

.

The sample means of y and x are respectively y = 1
n

n

∑
i=1

yi x = 1
n

n

∑
i=1

xi. The sample variances y and x are s 2
y = 1

n − 1

n

∑
i=1

(
yi − y

)2 and

s 2
x =

1
n − 1

n

∑
i=1

(
xi − x

)2 respectively and sample covariance is sxy =
1

n − 1

n

∑
i=1

(
xi − x

) (
yi − y

)
Define c 2

x =
s 2
x

x 2 , c 2
y =

s 2
y

y 2 , and cxy =
sxy
xy

c 2
x , c 2

y , and cxy are consistent estimators of C 2
x , C 2

y , and Cxy respectively.

Also, sample ratio r = y
x

The ratio estimator of the population mean Y is given by

Ŷr =
y
x
X, (1)

where X is known in advance.

Expanding (1) in power series (Sukhatme et al. [12])

and using results V
(
y
)
= 𝜃C 2

y , V
(
x
)
= 𝜃C 2

x , and Cov
(
x, y

)
= 𝜃Cxy,

we have to O(1/n),

E
(
Ŷr

)
= Y [1 + 𝜃

(
C 2
x − Cxy

)
] , where (2)

𝜃 =
( 1
n −

1
N

)
.

Hence bias to O(1/n) is given by

Bias
(
Ŷr

)
= 𝜃Y

(
C 2
x − Cxy

)
Ŷr is a biased but consistent estimator of Y with bias being negligible in large samples.

Alternatively we may put

E
(
Ŷr

)
= Y + Y𝜃1 (C20 − C11) , (3)

where Cij =
𝜇ij

X
i
Y

j =
1
N
∑

(
Xi − X

)i
(Yi − Y)j

X
i
Y

j , and 𝜃1 =
N − n

(N − 1)n

For very large N, 𝜃1 ≈ 𝜃.

The variance of Ŷr to O(1/n) is given by (Sukhatme et al. [12])

V
(
Ŷr

)
= 𝜃Y 2 (

C 2
y + C 2

x − 2Cxy
)
, (4)
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Alternatively,

V
(
Ŷr

)
= 𝜃Y 2

(C02 + C20 − 2C11) (5)

Ŷr is more efficient than y if

𝜌 > 1
2
Cx
Cy

= 1
2√

C20
C11

, (6)

where 𝜌 is the correlation coefficient between y and x.

Beale [1] suggested an ingenious almost unbiased ratio type estimator given by

ŶrB = Ŷr [
1 + 𝜃sxy / xy
1 + 𝜃s 2

x / x
2 ] (7)

Tin [14] derived another almost unbiased estimator by subtracting the estimate of first order bias of O(1/n) from the estimator Ŷr itself to
get an estimator whose bias of O(1/n) is removed, so as to get his estimator having bias of O

(
1/n2). Thus Tin’s estimator is given by

ŶrT = Ŷr [1 + 𝜃
( sxy
xy

− s 2
x

x 2

)
] (8)

Beale’s estimator is in ratio form, which reduces to Tin’s form after its asymptotic expansion retaining terms up to O(1/n). It also eliminates

the bias of O(1/n) of the ratio estimator. Both Tin’s and Beale’s estimators use same information
sxy
xy

and
s 2
x

x 2 in their formulations.

Considering terms up to O
(

1/n2), Tin [14] has shown that Beale’s estimator is less biased and equally efficient compared to his estimator.
A disadvantage with Tin’s estimator is that it may take negative values for a positive population ratio, a situation pointed out by Beale in a
private communication with Tin [14] with a sample of size two. Such discerning picture has also been seen by drawing a sample of size 8
from a bivariate normal population having X = 5,Y = 15, S 2

x = 45, S 2
y = 500, and correlation coefficient 𝜌 = 0.4. The computed estimators

are r = 117.11, rb = 1.55 and rt = −64963.33 (privately communicated by Mr. Xiafei Zhang, Iowa State University).

Again, writing Beale’s estimator rb for R as

rb = r [
1 + 𝜃syx / yx
1 + 𝜃s 2

x / x
2 ] =

yx + 𝜃syx
x 2 + 𝜃s 2

x
,

we find that when x is small or even x = 0, Beale’s estimator is dominated by syx/s 2
x and hence will not give extreme values and thus has

a control to avoid extremes. As compared to Beale’s estimator, Tin’s estimator is dominated by s 2
x / x

2 and hence is extremely large when
x is small. The advantage with Beale’s estimator is that it can deal with case when x = 0. These thoughts were expressed by Professor
W.A. Fuller in a private communication.

As noted by Tin [14], Beale’s estimator seems to be a better estimator than his estimator as regards reducing the bias of the ratio estimator
and also in large samples there is marginal loss of efficiency compared to his estimator.

Beale’s estimator has been fruitfully applied in hydrological studies by Lee et al. [8] in load estimation using dense water quality data.
Assuming positive correlation between flux and flow Richards and Holloway [9] and Richards [10] used Beale’s estimator for flux estimation
in the Great Lakes region and other parts of United States, generally applying more complex strata. They showed that Beale’s estimator
generally exhibited greater estimation accuracy and lower bias. Carriquiry et al. [2] have studied the estimation of usual intake distributions
of intake of ratios of dietary components using Beale’s estimator.

In this paper Srivastava’s [11] class of estimators is considered to derive its Beale type and Tin type almost unbiased ratio type estimators and
to compare them with regard to bias and efficiency. Further, as a special case Swain’s [13] square root transformation estimator is discussed
at length to compare Beale type and Tin type estimators with regard to bias and efficiency. As exact comparisons are not possible we have
used asymptotic expansions and considered terms to O

(
1/n2).

2. A CLASS OF ALMOST UNBIASED RATIO TYPE ESTIMATORS

Srivastava [11] proposed a class of power transformation ratio estimators of the population mean Y, with known population mean X as

ts = y

(
X
x

)𝛼

, (9)

where 𝛼 is a real constant.
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Define,

y = Y (1 + eo) , x = X (1 + e1) , sxy = Sxy (1 + e2) , s 2
x = S 2

x (1 + e3)

E (ei) = 0, i = 0, 1, 2, 3

Expanding ts = y

(
X
x

)𝛼

in power series, assuming |ei| < 1 for all possible samples, i = 0, 1, 2, 3 and retaining terms up to degree four, we

have

ts = Y(1 + e0)(1 + e1)−𝛼

= Y(1 − 𝛼e1 +
𝛼(𝛼 + 1)

2 e 2
1 −

𝛼(𝛼 + 1)(𝛼 + 2)
6 e 3

1 +
𝛼(𝛼 + 1)(𝛼 + 2)

24 e 4
1

+ e0 − 𝛼e1e0 +
𝛼(𝛼 + 1)

2 e 2
1 e0 −

𝛼(𝛼 + 1)(𝛼 + 2)
6 e 3

1 e0 + ......)

= Y(1 − 𝜆1e1 + 𝜆2e 2
1 − 𝜆3e 3

1 + 𝜆4e 4
1 + e0 − 𝜆1e1e0 + 𝜆2e 2

1 e0 − 𝜆3e 3
1 e0 + ......), (10)

where 𝜆1 = 𝛼, 𝜆2 =
𝛼(𝛼 + 1)

2 , 𝜆3 =
𝛼(𝛼 + 1)(𝛼 + 2)

6 , 𝜆4 =
𝛼(𝛼 + 1)(𝛼 + 2)(𝛼 + 3)

24
After some lengthy derivations using traditional techniques adopted for asymptotic expansion of the ratio estimator (see Sukhatme et al.
[12]), we have to O

(
1/n2)

E (ts) = Y + Y [𝜃 (𝜆2C20 − 𝜆1C11) + 𝜃2 (−𝜆3C30 + 3𝜆4C2
20 + 𝜆2C21 − 3𝜆3C20C11

)
] , (11)

Now,

V (ts) = Y
2𝜃

(
𝜆2

1C20 − 2𝜆1C11 + C02
)

+Y
2𝜃2 {C2

20
(

2𝜆2
2 + 6𝜆1𝜆3

)
+ C2

11
(
𝜆2

1 + 4𝜆2
)
+ C20C02

(
𝜆2

1 + 2𝜆2
)
+ C30 (−2𝜆1𝜆2)}

+Y
2𝜃2 {C21

(
2𝜆2

1 + 2𝜆2
)
+ C20C11 (−6𝜆3 − 10𝜆1𝜆2) − 2𝜆1C12} (12)

When 𝜆
i
= 1 for i = 1, 2, 3, 4,

E
(
Ŷr

)
= Y + Y [𝜃 (C20 − C11) + 𝜃2 (−C30 + 3C2

20 + C21 − 3C20C11
)
] (13)

V
(
Ŷr

)
= Y

2𝜃 {C20 − 2C11 + C02}

+Y
2𝜃2 {8C2

20 + 5C2
11 + 3C20C02 − 2C30 + 4C21 − 16C20C11 − 2C12} (14)

The expressions for E
(
Ŷr

)
and V

(
Ŷr

)
are the same as those derived by Tin [14] and De-Graft Johnson [6].

Following Beale [1] we write an almost unbiased ratio estimator of Y using ts given by

tsB = y

(
X
x

)𝛼 ⎡
⎢
⎢
⎢
⎣

1 + 𝜆1𝜃
sxy
xy

1 + 𝜆2𝜃
s 2
x

x 2

⎤
⎥
⎥
⎥
⎦

(15)

Now,

1 + 𝜆1𝜃
sxy
xy

= 1 + 𝜆1𝜃C11(1 + e0)−1(1 + e1)−1(1 + e2)

= 1 + 𝜆1𝜃C11(1 − e0 + e2
0 − e3

0 + e4
0 + ....)(1 − e1 + e2

1 − e3
1 + e4

1 + ...)(1 + e2)
= B, say.

Further, (
1 + 𝜆2𝜃

s 2
x

x 2

)−1

= [1 + 𝜆2𝜃C20 (1 + e3) (1 + e1)
−2]−1

= 1 − 𝜆2𝜃C20
(

1 − 2e1 + 3e2
1 − 4e3

1 + e3 − 2e1e3
)
+ 𝜆2

2𝜃2C2
20

= A, say
Pdf_Folio:31
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Thus we write

tsB = y

(
X
x

)𝛼

(BA)

After some mathematical simplifications we write the expressions for the expected value and variance of tsB to O
(

1/n2) as

E (tsB) = Y + Y𝜃2 {C30 (3𝜆2 − 1) + C2
20
(

3 − 6𝜆2 + 𝜆2
2
)
+ C20C11 (3𝜆2 − 𝜆1𝜆2) + C21 (1 − 2𝜆1 − 𝜆2)} (16)

V (tsB) = Y
2𝜃

(
𝜆2

1C20 − 2𝜆1C11 + C02
)
+ Y

2𝜃2 {C2
11
(

4𝜆2 − 2𝜆1 − 𝜆2
1
)
+ 𝜆2

1C20C02}

+Y
2𝜃2 {C2

20
(

6𝜆4 + 6𝜆1𝜆3 + 6𝜆2 − 8𝜆1𝜆2 − 2𝜆2
1𝜆2 − 6

)
+ C20C11

(
2𝜆3

1 + 4𝜆2
1𝜆2 + 2𝜆1 − 2𝜆2 + 2𝜆1𝜆2 − 12𝜆3

)
} (17)

Substituting,

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 1,

E
(
ŶrB

)
= Y + Y𝜃2 {2C30 − 2C2

20 + 2C20C11 − 2C21} (18)

V
(
ŶrB

)
= Y

2
[𝜃 (C20 − 2C11 + C02) + 𝜃2 (C2

11 + C20C02 + 2C2
20 − 4C20C11

)
] (19)

Further, following Tin [14] we have another almost unbiased ratio-type estimator given by

tsT = y

(
X
x

)𝛼 (
1 + 𝜆1𝜃

sxy
xy

− 𝜆2𝜃
s 2
x

x 2

)
= y

(
X
x

)𝛼

[1 + 𝜆1𝜃C11 (1 + e0)
−1 (1 + e1)

−1 (1 + e2) − 𝜆2𝜃C20 (1 + e3) (1 + e1)
−2]

= y

(
X
x

)𝛼

[1 + 𝜆1𝜃C11
(

1 − e1 + e2
1 − e0 + e1e0 + e2

0 + e2 − e1e2 − e0e2
)
− 𝜆2𝜃C20

(
1 − 2e1 + 3e2

1 − 4e3
1 + e3 − 2e1e3

)
] (20)

Retaining terms up to O
(

1/n2)
E (tsT) = Y + Y𝜃2 {C30 (−𝜆3 + 2𝜆2 + 𝜆1𝜆2) + C2

20 (3𝜆4 − 4𝜆2 − 2𝜆1𝜆2)}

+Y𝜃2 {C20C11 (−𝜆3 + 𝜆1𝜆2 + 2𝜆2 + 𝜆1) + C21
(
−𝜆2

1 − 𝜆1
)
} (21)

V (tsT) = Y
2𝜃

(
𝜆2

1C20 − 2𝜆1C11 + C02
)
+ Y

2𝜃2 {C2
11
(

4𝜆2 − 2𝜆1 − 𝜆2
1
)
+ 𝜆2

1C20C02}

+Y
2𝜃2 {C2

20
(

6𝜆1𝜆3 + 2𝜆2 − 4𝜆1𝜆2 − 2𝜆2
1𝜆2

)
+ C20C11

(
2𝜆3

1 + 4𝜆2
1 + 4𝜆2 − 4𝜆1𝜆2 − 10𝜆3

)
} (22)

When

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 1

E
(
ŶrT

)
= Y + Y𝜃2 (2C30 − 3C2

20 + 3C20C11 − 2C21
)

(23)

V
(
ŶrT

)
= V

(
ŶrB

)
, (24)

Note: The expressions for E
(
ŶrB

)
, E

(
ŶrT

)
, V

(
ŶrB

)
, and V

(
ŶrT

)
are derived by Tin [14] using bivariate cumulants and by De-Graft

Johnson [6] using bivariate moments. Some of the higher order bivariate moments neglecting finite population correction factor for large
finite population mentioned by De-Graft Johnson [6] are given below:

E
(
e2

1e
2
0
)
= 1

n2

(
2C2

11 + C20C02
)
, E

(
e4

1
)
=

3C2
20

n2 , E
(
e3

1e0
)
= 1

n2 3C20C11

E (e1e2) =
1
n
C21
C11

, E (e1e3) =
1
n
C30
C20

, E (e0e2) =
1
n
C12
C11

.
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2.1. Comparison of Bias and Variance of the Class of Beale Type and Tin Type Almost
Unbiased Ratio-Type Estimators

Consider the situation when y and x follow a bivariate symmetric distribution with odd order moments being zero.

We have E (tsB) = Y + Y𝜃2 [
(

3 − 6𝜆2 + 𝜆2
2
)
C2

20 + (3𝜆2 − 𝜆1𝜆2)C20C11] = Y + Y𝜃2 (B1C2
20 + B2C20C11

)
,

Where B1 =
(

3 − 6𝜆2 + 𝜆2
2
)

and B2 = (3𝜆2 − 𝜆1𝜆2),

and

E (tsT) = Y + Y𝜃2 [(3𝜆4 − 4𝜆2 + −2𝜆1𝜆2)C2
20 + (−𝜆3 + 𝜆1𝜆2 + 2𝜆2 + 2𝜆1)C20C11]

= Y + Y𝜃2 (T1C2
20 + T2C20C11

)
,

Where T1 = (3𝜆4 − 4𝜆2 + −2𝜆1𝜆2) and T2 = (−𝜆3 + 𝜆1𝜆2 + 2𝜆2 + 2𝜆1)

Hence, tsB will be less biased than tsT

if |||B1 + B2
𝛽
R
||| <

|||T1 + T2
𝛽
R
||| (25)

Further,

V (tsB) < V (tsT)

if
𝛽
R > 6𝜆4 + 4𝜆2 − 4𝜆1𝜆2 − 6

6𝜆2 + 2𝜆3 − 6𝜆1𝜆2 − 2𝜆1 + 4𝜆2
1 − 4𝜆2

1𝜆2
. (26)

that is, if 𝜌 > 1
2
Cx
Cy

(6𝜆4 + 4𝜆2 − 4𝜆1𝜆2 − 6)(
6𝜆2 + 2𝜆3 − 6𝜆1𝜆2 − 2𝜆1 + 4𝜆2

1 − 4𝜆2
1𝜆2

) , provided the denominator does not vanish.

2.2. A Special Case of Class of Almost Unbiased Ratio-Type Estimators

Consider a special case considered by Swain [13] of ts when 𝛼 = 1/2 of the form

tsqr = y

(
X
x

)1/2

(27)

This estimator is termed as square root transformation estimator by Swain [13].

Substituting 𝜆1 =
1
2 , 𝜆2 =

3
8 , 𝜆3 =

5
16 , and 𝜆4 =

35
128 in the expressions in (15)

Beale’s almost unbiased ratio estimator is given by

tsqrB = y

(
X
x

)1/2

[
1 + 1

2
𝜃 sxy

xy

1 + 3
8
𝜃 s 2

x

x 2

] (28)

and Tin’s almost unbiased ratio estimator is written as

tsqrT = y

(
X
x

)1/2 (
1 + 1

2𝜃
sxy
xy

− 3
8𝜃

s 2
x

x 2

)
(29)

Substituting 𝜆1 =
1
2 , 𝜆2 =

3
8 , 𝜆3 =

5
16 , and 𝜆4 =

35
128 in the expressions in (11), (16), (21), (12), (17), and (22) respectively,

we have

E
(
tsqr

)
= Y + Y [𝜃

(3
8C20 −

1
2C11

)
+ 𝜃2

(
− 5

16C30 +
105
128C

2
20 +

3
8C21 −

15
16C20C11

)
] (30)

E
(
tsqrB

)
= Y + Y𝜃2 [

(1
8C30 −

3
8C21

)
+
(57

64C
2
20 +

15
16C20C11

)
] (31)
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E
(
tsqrT

)
= Y + Y𝜃2 [

(5
8C30 −

3
4C21

)
+
(
−135

128C
2
20 +

9
8C20C11

)
] (32)

V
(
tsqr

)
= Y

2𝜃
(1

4C20 − C11 + C02

)
+ Y

2𝜃2
(39

32C
2
20 +

7
4C

2
11 + C20C02 −

3
8C30 −

15
4 C20C11 +

5
4C21 − C12

)
(33)

V
(
tsqrB

)
= Y

2𝜃
(1

4C20 − C11 + C02

)
+ Y

2𝜃2
(
−183

64 C2
20 +

1
4C

2
11 +

1
4C20C02 −

5
2C20C11

)
(34)

V
(
tsqrT

)
= Y

2𝜃
(1

4C20 − C11 + C02

)
+ Y

2𝜃2
(3

4C
2
20 +

1
4C

2
11 +

1
4C20C02 −

9
8C20C11

)
(35)

Comparison of biases and variances of almost unbiased tsqr = y

(
X
x

)1/2

tsqrB will be less biased than tsqrT to O
(

1/n2) if

|||
57
64 +

(15
16

) 𝛽
R
||| <

|||−
135
128 +

(9
8

) 𝛽
R
||| (36)

tsqrB will be more efficient than tsqrT to O
(

1/n2) if

231
64 + 11

8

(𝛽
R

)
> 0, (37)

which is always true since both 𝛽 and R are positive.

3. NUMERICAL ILLUSTRATION

To compare Beale type and Tin type square root transformation estimators, we have considered four natural populations-1, 2, 3, and 5,
having size N = 3164, whose parameters in terms of product moments are mentioned in De-Graft Johnson [6]. The biases and variances,
ignoring finite population correction factor, to O

(
1/n2) for different sample sizes are given in Table 1.

Table 1 Comparison biases and variances of Beale type and Tin type estimators for the square root transformation
estimator, omitting constant multipliers.

POP-1 B(tsqr) B(tsqrB) B(tsqrT) V(tsqr) V(tsqrB) V(tsqrT)

𝜃 = 1/10 −0.02490112 0.00045152 −0.00179427 0.15693527 0.14491935 0.14988051
𝜃 = 1/20 −0.01255322 0.00011288 −0.00044857 0.07643719 0.07343321 0.07467350
𝜃 = 1/50 −0.00504592 0.00001806 −0.00007177 0.03008757 0.02960693 0.02980538
𝜃 = 1/100 −0.00252707 0.00000452 −0.00001794 0.01496257 0.01484241 0.01489202
POP-2
𝜃 = 1/10 −0.01953039 0.00154964 −0.00048017 0.16621535 0.15482812 0.16030793
𝜃 = 1/20 −0.00972207 0.00038741 −0.00012004 0.08135202 0.07850522 0.07987517
𝜃 = 1/50 −0.00387848 0.00006199 −0.00001921 0.03211945 0.03166396 0.03188316
𝜃 = 1/100 −0.00193751 0.00001550 −0.00000480 0.01598950 0.01587563 0.01593043
POP-3
𝜃 = 1/10 −0.03381434 0.01896277 −0.00493000 0.10236741 0.01425384 0.08892160
𝜃 = 1/20 −0.01682702 0.00474069 −0.00123250 0.04729623 0.02526784 0.04393478
𝜃 = 1/50 −0.00671157 0.00075851 −0.00019720 0.01798550 0.01446095 0.01744766
𝜃 = 1/100 −0.00335258 0.00018963 −0.00004930 0.00883725 0.00795611 0.00870279
POP-5
𝜃 = 1/10 −0.01751400 0.00049767 −0.00041688 0.17321951 0.16626384 0.16834761
𝜃 = 1/20 −0.00874797 0.00012442 −0.00010422 0.08530856 0.08356965 0.08401559
𝜃 = 1/50 −0.00349702 0.00001991 −0.00001668 0.03381114 0.03353291 0.03360626
𝜃 = 1/100 −0.00174815 0.00000498 −0.00000417 0.01685352 0.01678397 0.01680480
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Comments:

For all populations, Beale’s estimator is more efficient than Tin’s estimator for all sample sizes under consideration. For population 1 Beale’s
estimator is less biased than Tin’s estimator, but for populations 2, 3, and 5 Tin’s estimator is marginally less biased than Beale’s estimator.

Thus, Beale’s estimator appears to be a preferred estimator over Tin’s estimator for the square root transformation estimator with regard to
bias and efficiency.

4. CONCLUSIONS

Almost unbiased Tin type and Beale type estimators for Srivastava’s [11] class of estimators (ts) are derived and compared with regard to
bias and efficiency. As a special case Beale’s and Tin’s almost unbiased estimators for Swain’s [13] square root transformation estimator
are formulated and compared. It is seen that Beale’s estimator is conditionally less biased than Tin’s estimator, but interestingly is more
efficient than Tin’s estimator to O

(
1/n2). Numerical illustrations show that Beale’s estimator have better performances with regard to bias

and efficiency.
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