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ABSTRACT
This paper deals with analyzing dynamic engineering systems consisting of independent components. The failure of a compo-
nents causes more load on the surviving components. This property is modeled by a power trend conditionally proportional
hazard rates. For modeling system lifetimes, the theory of sequential order statistics can be used. Sequential order statistics
coming from heterogeneous exponential distributions are considered. The maximum likelihood and Bayesian estimates of the
parameters are obtained in different cases. The generalized likelihood ratio and the Bayesian tests are also derived for testing
homogeneity of the baseline exponential component lifetimes arising from s independent engineering systems.
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1. INTRODUCTION

Let X1,⋯ ,Xn be independent and identically distributed (i.i.d.) random variables with a common distribution function (DF), say F, and
abbreviated by X1,⋯ ,Xn

i.i.d.∼ F. Denote in magnitude order of X1,⋯ ,Xn by X1∶n ≤ ⋯ ≤ Xn∶n, called order statistics (OSs). The theory
of OSs has been widely assumption in literature. For example, in system reliability analyses, lifetimes of r-out-of- n systems coincide to
Xr∶n where X1,⋯ ,Xn stand for component lifetimes; For more information, see Barlow and Proschan [1] and David and Nagaraja [2] and
references therein.

In this setting, failure of a component does not effect the surviving components. There are various practical situations in which this investi-
gated and applied does not hold. For illustration, suppose that there exist n power generators with nominal capacity G1,⋯ ,Gn. The system
perform satisfactory if the total generated power is at least a given threshold, say A. If a generator fails, then the remaining generators have
to generate much powers to fulfill the nominal level A and hence more loads cause more pressure on the working generators. Therefore,
the generator lifetimes are decreased. For statistical modeling these kinds of systems, some generalizations of OSs such as fractional OSs
and generalized OSs have been introduced in literature. They are useful for providing more flexible tools and also a setting to unify simi-
lar results (David and Nagaraja [2], p. 21). In this paper, we deal with another unified concept, called the sequential order statistics (SOS),
which has also a motivation in reliability analyses as discussed above. Specifically, when the component lifetimes are i.i.d., the OSs are suit-
able for describing the r-out-of- n system lifetime. Here failing a component does not effect the DFs of lifetimes of surviving components.
Motivated by Cramer and Kamps [3], the failure of a component may result in a higher load on the surviving components and hence causes
the lifetime distributions change. More precisely, suppose that Fj, for j = 1,⋯ n, denotes the common DF of the component lifetimes when
n − j + 1 components are jointly working. Then, the components begin to work independently at time t = 0 with the common DF F1. If at
time x1, the first component failure occurs, then the remaining n − 1 components are working with the (left truncated) common DF F2 at
x1. This process continues up to n − r + 1 (r = 1,⋯ , n) components with the common DF Fr work until the r-th failure occurs at time xr
and hence the whole system fails. The mentioned system is called sequential r-out-of- n system or dynamic system and the system lifetime
is then r-th observed component failure time, denoted by X⋆(r). In the literature, (X⋆(1),⋯ ,X⋆(n)) is called SOSs. Statistical properties of SOSs
have been studied by Kamps [4,5], Cramer and Kamps [3,6], Balakrishnan et al. [7], Beutner and Kamps [8], Hashempour [9], Bedbur
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[10], Hashempour and Doostparast [11], and references therein. We considered the problem of estimating the parameters on the basis of
s (≥ 2) independent SOSs samples under a new proposed power trend conditional proportional hazard rates (PTCPHR) model, defined by
Fj(t) = 1 − (1 − F0(t))a

j
for j = 1,⋯ , r and a > 0, where the underlying CDF F0(t) is assumed to be the exponential distribution, i.e.,

F0(x; 𝜎) = 1 − exp {−
( x
𝜎
)
} , x > 0, 𝜎 > 0. (1)

In this case, the hazard rate function of the CDF Fj, defined by hj(t) = fj(t)/Fj(t) for t > 0 and j = 1,⋯ , n, is proportional to the hazard rate
function of the baseline DF F0, i.e., hj(t) = ajh0(t) for t > 0.

In this paper, we consider the problem of comparing non-homogeneous exponential populations on the basis of independent multiply SOS
samples coming fromnon-homogeneous exponential populations under the abovementionedPTCPHRmodel. Thus, this paper is organized
as follows: In Section 2, via the likelihood approach, statistical procedures including estimation, either point or interval, of the parameters
as well as the problem of testing homogeneity of baseline exponential populations are considered. In Section 3, Bayesian approach is used
for estimating parameters of interest. Finally, concluding remarks are given in Section 4.

2. LIKELIHOOD ANALYSIS

In the sequel, suppose that we have observed s (≥ 2) independent heterogeneous SOS samples. The available data may be represented as

x = [[xij]]i=1,⋯,s,j=1,⋯,r, (2)

where the i-th row of the matrix x in (2) denotes the SOS sample coming from the i-th population. The likelihood function (LF) for a single
SOS sample is

L(F1,⋯ , Fr; x) =
Γ(n + 1)

Γ(n − r + 1) {
r−1

∏
j=1

fj(xj)

(
Fj(xj)

Fj+1(xj)

)n−j

} fr(xr)Fr(xr)n−r. (3)

Therefore, the LF of the available data given by (2) is then obtained from (3) as

L( ; x) =
(

n!
(n − r)!

)s s

∏
i=1

⎛⎜⎜⎜⎝
r−1

∏
j=1

⎡⎢⎢
⎣
f [i]j (xij)

⎛⎜⎜⎝
F
[i]
j (xij)

F
[i]
j+1(xij)

⎞⎟⎟⎠
n−j
⎤⎥⎥
⎦
f [i]r (xir)F

[i]
r (xir)n−r

⎞⎟⎟⎟⎠ , (4)

where  = {F [i]j , i = 1,⋯ , s, j = 1,⋯ , r} and for i = 1,⋯ , s, j = 1,⋯ , r, F [i]j (x) = 1 − F [i]j (x), and F [i]j calls for the common DF of
component lifetimes of the i−th dynamic system. For more details, see Cramer and Kamps [6,12] and Hashempour and Doostparast [11].
Suppose that, the baseline DF of the i-th population (i = 1,⋯ , s) follows the one-parameter exponential distribution with the mean 𝜎i.
Substituting Equation (1) into Equation (4) and under the earlier mentioned PTCPHRmodel in Section 1, the LF of the available data reads

L(𝜎1,⋯ , 𝜎s, a; x) = Bs

(
r

∏
j=1

a j

)s s

∏
i=1

(
1
𝜎i

)r s

∏
i=1

r

∏
j=1

exp {−
xijmj

𝜎i
}

= Bs

(
a
sr(r+1)

2

)(
s

∏
i=1

𝜎i

)−r

exp {−
s

∑
i=1

r

∑
j=1

(xijmj

𝜎i

)
} , (5)

where B = (n! /(n − r)! ) and mj = (n − j + 1)a j − (n − j)a j+1 with convention (n − r)ar+1 ≡ 0. For sake of brevity, we assumed that the
proportional parameter a are the same among the s sequential r-out-of- n systems. In this section, we consider the problem of homogeneity
testing on the basis of independent SOS samples from different exponential populations, i.e.,

⎧
⎨
⎩

H0 ∶ 𝜎1 = ⋯ = 𝜎s

H1 ∶ 𝜎i ≠ 𝜎j ∃i ≠ j.
(6)

In sequel, two cases are considered: (i) a known, and (ii) a unknown.

If a is known, the results of Cramer and Kamps ([6], Chapters 4 and 5) can be used. Also, see Schenk [13]. A summarize for this case is
given in the appendix A.Pdf_Folio:2
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Suppose that the parameter a in Equation (5) is unknown. In this case, calculations are complicated. Here, the Hessian matrix (H) is
defined by

H = [[(𝜕2 log(L)/𝜕𝜃i𝜕𝜃j)1≤i,j≤s+1]],

where 𝜃i = 𝜎i(1 ≤ i ≤ s) and 𝜃s+1 = a. After some algebraic calculations, the Hessian matrix simplifies to

H =
(
B11 B12
B21 B22

)
, (7)

where

B11 = diag { r
𝜎2
i
−

2∑r
k=1 a

k(n − k + 1)Dij

𝜎3
i

}
i=1,⋯,s

,

B22 = diag {−sr
a2j

}
j=1,⋯,r

,

B12 = BT
21 = [[

(n − j + 1)Dij

𝜎2
i

]]
i=1,⋯,s,j=1,⋯,r

,

where diag {ci}i=1,⋯,m stands for a diagonal matrix with elements c1,⋯ , cm on its main diagonal.

The Hessian matrix (7) is not necessary negative definite on the parameter space. Therefore, one needs to use numerically methods for
maximizing the LF (5) with respect to a and 𝜎1,⋯ , 𝜎s. Note that the ML estimates of the parameters (if exist) are obtained numerically by
solving the following likelihood equations:

⎧⎪
⎨
⎪
⎩

̂̂𝜎i =
1
r ∑

r
j=1 xijm̂j =

â
r ∑

r
j=1(n − j + 1) jDij, i = 1,⋯ , s,

â = rs
(
∑s

i=1∑
r
j=1(n − j + 1) jDij/ ̂̂𝜎i

)−1
.

Here another approach for deriving the ML estimates of the parameters is suggested which is numerically simple. Recall that the profile LF
for the parameter a is derived by substituting ̂𝜎i given by (29), for i = 1,⋯ , s, into the LF (5) instead of 𝜎i, i.e., Lp(a; x) = L( ̂𝜎1,⋯ , ̂𝜎s, a; x).
The logarithm of the profile LF is

lp(a; x) = log Lp(a; x)

= sr(r + 1)
2 log(a) − r

s

∑
i=1

log

(∑r
j=1(n − j + 1)a jDij

r

)
− rs. (8)

One may maximize the function (8) with respect to the parameter a numerically to derive the ML estimate of the parameter a. Then
substituting this estimate into (29) (the appendix), the ML estimate of ̂𝜎j, for i = 1,⋯ , s, is derived.
Consider again the hypotheses testing problem (6). It is easy to verify that the unique ML estimates of the parameters under the null
hypothesis H0 are given by

̂̂𝜎0 =
1
rs

s

∑
i=1

r

∑
j=1

xijm̂0,j =
â0
rs

s

∑
i=1

r

∑
j=1

(n − j + 1) jDij, (9)

and

â0 =
rs

∑s
i=1∑

r
j=1(n − j + 1) jDij

̂̂𝜎0, (10)

where m̂0,j = (n − j + 1) jâ0 − (n − j)( j + 1) â0, with convention â0(r + 1) ≡ 0. Therefore, the generalized likelihood ratio test (GLRT)
statistic for the hypotheses testing problem (6) is

Λ2 =
r

∏
j=1

(
â0
â

)rs s

∏
i=1

( ̂̂𝜎i
̂̂𝜎0

)r

exp {
s

∑
i=1

r

∑
j=1

( m̂j

̂̂𝜎i
−

m̂0,j
̂̂𝜎0

)
xij} , (11)

where m̂j = (n − j + 1) 𝛼̂j − (n − j) 𝛼̂j+1. The logarithm of the GLRT statistic Λ2 in Equation (11) reads

logΛ2 = rs log
(
â0
â

)
+ r

s

∑
i=1

log
( ̂̂𝜎i

̂̂𝜎0

)
+

s

∑
i=1

r

∑
j=1

( m̂j

̂̂𝜎i
−

m̂0,j
̂̂𝜎0

)
xij. (12)
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The null hypothesis H0 rejects if

−2 logΛ2 > c, (13)

where c is a positive constant and determined on the basis of the test level (Lehmann and Romano [14]).

Exact distribution of the statistic −2 logΛ2 in Equation (13) under the null hypothesis H0 is complicated and we could not obtained an
explicit expression. This remains as an open problem. In practice, one may use numerical methods such as Monte Carlo simulation study
to derive the threshold c in the rejection region (13).

3. SOS-BASED BAYES ANALYSIS

Bayesian statistical inference on the basis of homogeneous multiply SOS samples have been considered in literature. For example, Mohie
El-Din et al. [15] considered the problem of SOS-based Bayesian estimation and one-sample prediction under the CPHRmodel forWeibull
and Pareto distributions. Schenk et al. [16] derived Bayes estimates of the parameters under the CPHRmodel when the baseline population
follows the one- and two-parameter exponential distributions. Also, the Bayesian estimation and the two-sample Bayesian prediction based
on homogeneous multiply SOS samples was studied with more details by Shafay et al. [17]. See also Hashempour and Doostparast [11].
In this section, we consider the problems of estimation, either point or interval, of parameters and hypotheses testing (6) on the basis of
s independent heterogeneous SOS samples arising from the exponential populations under the PTCPHR model with known a. When the
parameter a is unknown, thementioned problems are complicated andworks in this direction are under investigation andwe hope to report
findings in future.

3.1. Bayesian Point Estimates

We here consider the problem of estimating unknown parameters via a strict Bayesian approach. To do this, we assume that a is known and
suggest the conjugate prior distributions for the scale parameters 𝜎i, i = 1,⋯ , s, i.e.,

𝜎i ∼ IG(di, ci), i = 1,⋯ , s, (14)

be independent random variables where IG(d, c) calls for the inverse gamma distribution with parameters d and c and density function

𝜋(𝜎) = cd
Γ(d)𝜎

−(d+1) exp {−
( c
𝜎
)
} , 𝜎 > 0, d > 0, c > 0. (15)

From Equation (14) and the LF (5), the joint posterior density function of 𝜎1, … , 𝜎s is readily obtained as

𝜋(𝜎1, … , 𝜎s ∣ x) ≡
s
∏
i=1

(
Bsa

r(r+1)
2

cdii
Γ(di)

𝜎−(di+r)−1
i

)
×

s
∏
i=1

(
exp {−

(∑r
j=1(n − j + 1)ajDij + ci

𝜎i

)
}
)
, (16)

which implies

𝜎i ∣ x ∼ IG

(
di + r,

r

∑
j=1

(n − j + 1)ajDij + ci

)
, i = 1,⋯ , s. (17)

As we expected given x, the parameter 𝜎i are independent. Under the squared error loss function, the Bayes estimate of the parameter is the
mean of the associate posterior distribution. Here, the Bayes estimate of 𝜎i is

̂𝜎i,B =
∑r

j=1(n − j + 1)ajDij + ci
di + r − 1

= r ̂𝜎i + ci
di + r − 1

, i = 1,⋯ , s, (18)

where ̂𝜎i is the ML estimate of 𝜎i given by Equation (29). Since the SOS samples are independent, the Bayes estimates in Equation (18)
depend only on the respective samples.Pdf_Folio:4



M. Hashempour and M. Doostparast / Journal of Statistical Theory and Applications 19(1) 1–9 5

Remark 3.1. For i = 1,⋯ , s:

• The mode of the posterior distribution (17) is

̂̂𝜎i,B =
∑r

j=1(n − j + 1)ajDij + ci
di + r + 1

= r ̂𝜎i + ci
di + r + 1

. (19)

• The Bayes estimates (18) is a weighted mean of the mean of the prior (14) and the ML estimate (29); i.e., ̂𝜎i,B = E (𝜎i)wi + (1 − wi) ̂𝜎i,
where wi = (di − 1) / (di + r − 1);

• The Bayes estimate (18) is biased, i.e., Bias( ̂𝜎i,B) = (𝜎i(di − 1) − ci) / (di + r − 1);

• The risk function of the Bayes estimates (18) is

R( ̂𝜎i,B, 𝜎i) =
𝜎2
i
(
r + (1 − di)2

)
+ 2ci(1 − di)𝜎i + c2i

(di + r − 1)2
; (20)

• The minimum of R( ̂𝜎i,B, 𝜎i), as a function of 𝜎i, occurs at point bi(di − 1)/[(1 − di)2 + r];

• For r = n and a = 1, ̂𝜎i,n = ∑n
j=1 xij/n and ̂𝜎i,B =

(
∑n

j=1 xij + ci
)
/(di + n − 1), which are, respectively, the well-known ML and the

Bayes estimates of the exponential parameters on the basis of a random sample of size n.

3.2. Bayesian Test

Under the null hypothesisH0 ∶ 𝜎1 = ⋯ = 𝜎s, we assume that the common value of 𝜎i (i = 1,⋯ , s), say 𝜎, follows the IG(d0, c0)-distribution
where d0 and c0 are known positive hyper parameters. Therefore, the Bayes factor (BF) is derived as (Berger [18])

BF =
ca00 Γ(sr + d0)

Γ(d0)

(
s

∏
i=1

(Ti + ci)di+1

dic
di
i

)(
s

∑
i=1

Ti + c0

)−(sr+d0)

. (21)

Proof. Under the null hypothesis H0 in (6), the LF (5) reduces to

L(𝜍; x) =
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s

𝜍−sr exp {− 1
𝜍

s

∑
i=1

r

∑
j=1

xijmj} ,

and

𝜋(x ∣ H0) =
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s

∫
∞

0
𝜍−sr exp {−

(
E+ c0
𝜍

)
}

cd00
Γ(d0)

𝜍−(d0+1)d𝜍

=
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s

cd00
Γ(d0) ∫

∞

0
exp {−

(
E+ c0
𝜍

)
} 𝜍−(sr+d0+1)d𝜍

where E = ∑s
i=1∑

r
j=1 xijmj. If we use change of variable x = 1/𝜍, then

𝜋(x ∣ H0) =
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s

cd00
Γ(d0) ∫

∞

0
xsr+d0−1 exp {−(E+ c0)x} dx

=
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s

cd00
Γ(d0)

Γ(sr+ d0)
(E+ c0)sr+d0

. (22)

Under the alternative hypothesis H1 in (6), we have

L(𝜍1, ..., 𝜍s; x) =
(

n!
(n− r)!

)s ( r

∏
j=1

𝛼j

)s s

∏
i=1

{ 1
𝜍i

exp {−
r

∑
j=1

xijmj

𝜍i
}}

=
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s s

∏
i=1

{ 1𝜍i
exp {−Ti

𝜍i
}} ,

Pdf_Folio:5



6 M. Hashempour and M. Doostparast / Journal of Statistical Theory and Applications 19(1) 1–9

where Ti = ∑r
j=1 xijmj, and

𝜋(x ∣ H1) =
(

n!
(n− r)!

)s
(

r
∏
j=1

aj
)s

s
∏
i=1

∞

∫
0

⋯
∞

∫
0

1
𝜍i

exp {−
(
Ti
𝜍i

)
} .

cdii
Γ(di)

.𝜍−(di+1)
i

× exp {− ci
𝜍i
} d𝜍1⋯ d𝜍s

=
(

n!
(n− r)!

)s
(

r
∏
j=1

aj
)s ⎛⎜⎜⎝

s
∏
i=1

cdii
Γ(di)

⎞⎟⎟⎠
s
∏
i=1

∞

∫
0

⋯
∞

∫
0

𝜍−(di+2)
i

× exp {−
(
Ti + ci
𝜍i

)
} d𝜍1⋯ d𝜍s.

Let ui = 1/𝜍i, then

𝜋(x ∣ H1) =
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s ⎛⎜⎜⎝

s

∏
i=1

cdii
Γ(di)

⎞⎟⎟⎠
s

∏
i=1

× ∫
∞

0
⋯ ∫

∞

0
udi+1−1i exp {−(Ti + ci)} du1⋯ dus

=
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s ⎛⎜⎜⎝

s

∏
i=1

cdii
Γ(di)

⎞⎟⎟⎠
s

∏
i=1

( Γ(di + 1)
(Ti + ci)di+1

)

=
(

n!
(n− r)!

)s
(

r

∏
j=1

aj
)s s

∏
i=1

(
dic

ai
i

(Ti + ci)adi+1

)
. (23)

From Equations (22) and (23), the Bayes factor is derived as

BF =
ca00 Γ(sr+ d0)

Γ(d0)

⎛⎜⎜⎝
s

∏
i=1

(Ti + ci)di+1

dic
di
i

⎞⎟⎟⎠
(

s

∑
i=1

Ti + c0

)−(sr+d0)

.

□

Under the “0 − Ki” loss function (Berger [18]), the Bayes test rejects the null hypothesis H0 in (6) if

BF <
(
K0

k1

)(
𝜋1
𝜋0

)
,

where𝜋i andKi, for i = 1, 2, are prior probability for the hypothesisHi and the loss of the acceptingHi whenHj(j ≠ i) is correct, respectively.

3.3. HPD Credible Sets

In this section, the problem of finding highest posterior density (HPD) credible set is considered. To do this, from Equation (16), we see that

Ri = 2

(∑r
j=1(n − j + 1)ajDij + ci

𝜎i

)
||x ∼ 𝜒2

2(di+r) . (24)

Therefore, an equi-tailed credible set at level 𝛾 for 𝜎i (i = 1,⋯ , s) is obtained as

Ci(𝛾) =
(∑r

j=1(n − j + 1)ajDij + ci
𝜒2
2(di+r),(1+𝛾)/2

,
∑r

j=1(n − j + 1)ajDij + ci
𝜒2
2(di+r),(1−𝛾)/2

)
. (25)

The HPD credible set for 𝜎i (i = 1,⋯ , s) is

{𝜎i ∶ 𝜎
−(di+r)−1
i exp {−

∑r
j=1(n − j + 1)ajDij + ci

𝜎i
} > k} , (26)

Pdf_Folio:6
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where k is a constant determined by the condition on the level of the credible set, i.e.,

P

(
𝜎−(di+r)−1
i exp {−

(∑r
j=1(n − j + 1)ajDij + ci

𝜎i

)
} > k ∣ x

)
= 𝛾. (27)

Hence, the HPD credible set for 𝜎i (i = 1,⋯ , s) in Equation (26) is an interval, say (Li,Ui), where Li and Ui are derived from the following
non-linear equations:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(
Ui
Li

)di+r+1

= exp {
(
Ui − Li
UiLi

)
Ψi(x, a)}

F𝜒2
2(di+r)

(
2Ψi(x, a)

Ui

)
− F𝜒2

2(di+r)

(
2Ψi(x, a)

Li

)
= 𝛾i

(
Γ(di)

Γ(di + r)
c−di
i a

r(r+1)
2 (4Ψi(x, a))di+r

)
whereΨi(x, a) = ∑r

j=1(n− j+ 1)ajDij + ci, and F𝜒𝜈 (t) stands for the CDF of the 𝜒𝜈-distribution. For the proof see Appendix B. In practice,
one may use numerical methods for solving the above equations.

4. CONCLUSIONS

In this paper, based on independent SOSs coming from non-homogeneous exponential populations, the ML and the Bayes estimates of
parameters were obtained on the basis of multiple SOS samples. The GLRT and Bayesian test were also derived for testing homogeneity of
the exponential baseline populations. In Bayesian inference, when the parameter a is unknown, the mentioned problems are complicated
and works in this direction are under investigation and we hope to report findings in future. The results of this paper may be extended in
some directions. For example, the Bayes estimates may by obtained under some asymmetric loss functions such as linear-exponential loss
function.
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APPENDIX A.

Suppose that the parameter a in Equation (5) is known. Under the null hypothesis H0 in (6) (Cramer and Kamps [12]), the unique ML
estimate of the common mean of the s exponential populations, say 𝜎0, is

̂𝜎0 =
1
rs

s

∑
i=1

r

∑
j=1

(n − j + 1)ajDij =
1
rs

s

∑
i=1

r

∑
j=1

xijmj, (28)

where Dij = xij − xi,j−1, for j = 1,⋯ , r. Here xi0 ∶= 0 for i = 1,⋯ , s. When the baseline exponential populations are heterogeneous, from
Equation (28), the unique ML estimate of 𝜎i (i = 1,⋯ , s) is derived as

̂𝜎i =
1
r

r

∑
j=1

(n − j + 1)ajDij =
1
r

r

∑
j=1

xijmj. (29)

Corollary 1. Under the PTCPHR with the one-parameter exponential baseline CDF,

Ti =
r

∑
j=1

(n − j + 1)ajDij ∼ Γ(r, 𝜎i), i = 1,⋯ , s, (30)

where Γ(a, b) calls for the gamma distribution with shape and scale parameters a and b, respectively. Notice that∑r
j=1 xijmj = ∑r

j=1(n− j+ 1)
ajDij, for i = 1,⋯ , s.

Now consider the problem of hypotheses testing (6). The generalized likelihood ratio test (GLRT) statistic for testing the problem (6) is

Λ1 =
s

∏
i=1

( ̂𝜎i
̂𝜎0

)r

exp {
s

∑
i=1

r

∑
j=1

(
1
̂𝜎i
− 1

̂𝜎0

)
mjxij} , (31)

where Ω = {(𝜎1,⋯ , 𝜎s) ∶ 𝜎i > 0, i = 1,⋯ , s} =∶ ℝ+s is the whole parameter space and Ω0 = {(𝜎1, … , 𝜎s) ∶ 𝜎1 = ⋯ = 𝜎s} denotes
the parameter space under the null hypothesis H0. After some algebraic manipulations, the logarithm of the GLRT statistic Λ1 given by
Equation (31) reduces to

logΛ1 = r
s

∑
i=1

log

(
sTi

∑s
j=1 Tj

)
, (32)

where Ti is defined by Equation (30) and ”log” stands for the natural logarithm. Under the null hypothesisH0 in (6) and the usual regularity
conditions (see Lehmann and Cassella [19]), −2 logΛ1 has asymptotically the chi-square distribution with 1 degree of freedom. Thus, for
large n, the rejection region of the GLR test of size 𝛾 is

−2 logΛ1 > 𝜒2
1,1−𝛾 , (33)

where𝜒2
𝜐,𝛾 is the 𝛾-th percentile of the chi-square distribution with 𝜐 degrees of freedom. Also, the actual level of the GLRTmay be obtained

by conducting a Monte Carlo simulation study for given a and 𝜎.
The observed Fisher Information, denoted by i( ̂𝜎1,⋯ , ̂𝜎s), on the basis of available SOSs data is equal to minus of the Hessian matrix
evaluated at the MLEs of the parameters, i.e.,

i( ̂𝜎1,⋯ , ̂𝜎s) = [[(−𝜕2 log(L)/𝜕𝜎i𝜕𝜎j)1≤i,j≤s]]|𝜍1=𝜍̂1,⋯ ,𝜍s=𝜍̂s
.

It is well known that the unique MLEs have asymptotically the multivariate normal distribution with mean vector (𝜎1,⋯ , 𝜎s) and the
variance–covariance matrix [i( ̂𝜎1,⋯ , ̂𝜎s)]−1. Here, the observed Fisher Information for 𝜎i is derived as

i( ̂𝜎1,⋯ , ̂𝜎s) = diag [[ r
𝜎ij
]] .

Notice that, by Equation (30), one can see that 2r ( ̂𝜎i/𝜎i) ∼ 𝜒2
2r. Hence, an approximate equi-tailed confidence interval for 𝜎i is(

̂𝜎i − z𝛾/2√
̂𝜎2
i
r , ̂𝜎i + z𝛾/2√

̂𝜎2
i
r

)
, (34)
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where z𝛾 stands for the 𝛾-percentile of the standard normal distribution. Therefore, an equal-tail exact confidence interval at level 100𝛾%
for 𝜎i (i = 1,⋯ , s) is (

2r ̂𝜎i
𝜒2
2r,(1+𝛾)/2

, 2r ̂𝜎i
𝜒2
2r,(1−𝛾)/2

)
, (35)

where 𝜒2
𝜈,p calls for the p-th percentile of the 𝜒2

𝜈-distribution.

APPENDIX B.

By definition, we have

∫
Ui

Li

r

∏
j=1

aj
cdii
Γ(di)

𝜎−(di+r)−1
i exp {−

(∑r
j=1 xijmj + ci

𝜎i

)
} d𝜎i = 𝛾i.

Let ti = 2Ψ(x, a)/𝜎i, then

𝛾i = ∫
2Ψ(x,a)

Li
2Ψ(x,a)

Ui

r

∏
j=1

aj
cdii
Γ(di)

(
2Ψ(x, a)

ti

)−(di+r)−1

exp {− ti
2 }

(
−2Ψ(x, a)

t2i

)
dti

=
r
∏
j=1

aj
cdii
Γ(di) ∫

2Ψ(x,a)
Li

2Ψ(x,a)
Ui

(2Ψ(x, a))−(di+r)−1 (ti)di+r+1 exp {− ti
2 }

(
−2Ψ(x, a)

t2i

)
dti

= −a
r(r+1)

2
cdii
Γ(di)

(2Ψ(x, a))−(di+r) ∫
2Ψ(x,a)

Li
2Ψ(x,a)

Ui

t(di+r)−1
i exp {− ti

2 } dti

= −a
r(r+1)

2
Γ(di + r)
Γ(di)

dcii

(
2

Ψ(x, a)

)(di+r)

∫
2
Ψ(x,a)
Li

2
Ψ(x,a)
Ui

t(di+r)−1
i

Γ(di + r)2di+r
exp {− ti

2 } dti

= −Γ(di + r)
Γ(di)

cdii

(
2

Ψ(x, a)

)(di+r)

a
r(r+1)

2

(
F𝜒2(r+di)

(
2Ψ(x, a)

Li

)
− F𝜒2(r+di)

(
2Ψ(x, a)

Ui

))
.

After some algebraic calculations, 𝛾i is simplified to

a
r(r+1)

2

(Γ(di + r)
Γ(di)

cdii (4Ψi(x, a))di+r
)(

F𝜒2
2(di+r)

(
2Ψ(x, a)

Ui

)
− F𝜒2

2(di+r)

(
2Ψ(x, a)

Li

))
= 𝛾i,

and then

F𝜒2
2(di+r)

(
2Ψi(x, a)

Ui

)
− F𝜒2

2(di+r)

(
2Ψi(x, a)

Li

)
= 𝛾i

(
Γ(di)

Γ(di + r)
c−di
i a

r(r+1)
2 (4Ψi(x, a))di+r

)
.

Since 𝜋(Li ∣ x) = 𝜋(Ui ∣ x), then

L−(di+r)−1
i exp {−

(Ψi(x, a)
Li

)
} = U−(di+r)−1

i

exp {−
(Ψi(x, a)

Ui

)
} and

(
Ui
Li

)di+r+1

= exp {Ψi(x, a)
Li

− Ψi(x, a)
Ui

}

= exp {Ui − Li
UiLi

(Ψi(x, a)) .} .

Finally,

⎧⎪
⎨
⎪
⎩

(
Ui
Li

)di+r+1

= exp {
(
Ui − Li
UiLi

)
Ψi(x, a)}

F𝜒2
2(di+r)

(
2Ψi(x, a)

Ui

)
− F𝜒2

2(di+r)

(
2Ψi(x, a)

Li

)
= 𝛾i

(
Γ(di)

Γ(di + r)
c−di
i a

r(r+1)
2 (4Ψi(x, a))di+r

)
.
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