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ABSTRACT
Global warming is a function of two main contributable entities in the atmosphere, carbon dioxide, and atmospheric temper-
ature. The objective of this study is to develop a statistical model using actual fossil fuel carbon dioxide emissions data from
the United States to predict relative probability of rate of change in fossil fuels carbon dioxide emissions from nine US climate
regions using transitionmodeling. The sensitivity of these transition probabilities to five sectors, that are the commercial, indus-
trial, residential, transportation, and electric power sector, is also investigated for all nine US climate regions. The present study
also suggests that the US government should be developing regional policies to control fossil fuel carbon dioxide emissions that
will be more effective in addressing the subject problem.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

One of themain issues in our planet is the climate change problem; rising atmospheric temperature, the shifted patterns of snow and rainfall,
and muchmore extreme climate changes are daily features in our media. Scientists speak with confidence that all these problems are related
to climbing levels of the atmospheric carbon dioxide (CO2) emission along with other growing greenhouse gases such as methane (CH4),
nitrous oxide (N2O), and fluorinated gases in the atmosphere. These greenhouse gases absorb the thermal radiation from the surface of the
earth and radiate again to the surface, and this repeating process elevates the atmospheric temperature [1,2].

The CO2 in our atmosphere has increased dramatically after the industrial revolution (1760). The risk of increasing CO2 emission is not
only on the amount of the CO2 in the atmosphere but also on the survival time of the CO2 in the atmosphere; it remains in our atmosphere
for thousands of years. Before the industrial revolution, the CO2 level never increased more than 30 ppm in any period; however, it has
increased more than 30 ppm within the past two decades alone. Also the proportion of the CO2 among all greenhouse gases emission in
the United States reached 82% in 2012, and this speaks of the importance of controlling the CO2 emission and, in fact, we are able to reduce
the level of the CO2 emission by controlling related human activities [3].

The world’s top polluter of CO2, China, pledged to peak the CO2 emissions around 2030 after a remarkably rapid increase of the CO2
emission in the 21st century, whereas theworld’s secondCO2 polluter, theUnited States, already reached the peak prior to 2010 and promised
to try to cut the CO2 emission by at least 26% from 2005 levels by 2025 [4]. In order for the United States to carry out this promise, more
efficient regulationsmust be established. The present study provides a rough sketch of theCO2 problem in theUnited States and recommends
that regional policies based on our findings will be more effective. Also, additional interesting research on the subject area can be found in
the references [5–16].

2. STATISTICAL MODELING

2.1. The Data

The original data used in the present study is obtained from the US Environmental Protection Agency (EPA) and contains state
CO2 emission inventories from fossil fuel combustion by end-use sectors; the commercial, electric power, industrial, residential, and
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transportation sector, in million metric tons of CO2 from 1992 through 2012 for all 50 states in the United States. The structure of the data
with sample size in each level is displayed in Figure 1.

Figure 2 shows the data structure based on nine US climate regions with five end-use sectors, and the following data modification enables
us to perform a transitional modeling of the data.

Iij = {0, if r
y
ij ≤ r y

j

1, otherwise
and Skij = {

0, if r x
kij ≤ r x

kj

1, otherwise
,

where i(= 1, 2, ..., 51) is a state index, j(= 1993, 1994, ..., 2012) is a year index, k(= 1, 2, ..., 5) is a sector index (1: commercial sector, 2:
electric power sector, 3: industrial sector, 4: residential sector, 5: transportation sector), yij is the CO2 emission for the state i in year j,

r y
ij =

yij − yi,j−1

yi,j−1
for all i and j, xkij is the CO2 emission due to the sector k for the state i in year j, and r x

kij =
xkij − xki,j−1

xki,j−1
for all j in each k.

2.2. Transitional Modeling

The key idea of the present study is predicting the probability that the changing rate of the CO2 emission in a specific region is higher than
the average changing rate based on values of attributable variables in the past over all climate regions. While we use the past response values

Figure 1 Structure of data with sample size in each level.

Figure 2 Illustration of US climate regions with CO₂ emission sectors.
Pdf_Folio:11
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as independent variables in direct transitions for the ordinary transitional modeling [17,18], the indirect transitionmethod has been applied
in the present study. In other words, our interest in this modeling procedure is on the statistical modeling of

Pr(Iij = 1 | Sk i j−1 , where k = 1, 2, ..., 5.).

The Equation (1) below represents the theoretical indirect transitionmodel of the regional data, and Equation (2) shows the fitted probability
models for all nine US climate regions along with the table of the estimated coefficients.

logit
(
E [Iij]

)
= 𝛽0 +

9

∑
r=1

[𝛽r(tij ⋅ gir) +
5

∑
k=1

𝛽9k+r(Sk i j−1 ⋅ gir)] , (1)

where r is a categorical variable indicating below regions:

r 1 2 3 4 5 6 7 8 9

Region C ENC NE NW S SE SW W WNC

and where tij = j − 1990 for all 50 states, and gir = 1, if state i belongs to region r, gir = 0, otherwise.

𝜋̂r =
exp

(
̂𝛽0 + ̂𝛽1tij +∑5

k=1
̂𝛽k+1Sk i j−1

)
1 + exp

(
̂𝛽0 + ̂𝛽1tij +∑5

k=1
̂𝛽k+1Sk i j−1

) (2)

Estimated coefficients in the Equations (2).

Region ̂𝛽0 ̂𝛽1 ̂𝛽2 ̂𝛽3 ̂𝛽4 ̂𝛽5 ̂𝛽6

C −0.3848 0.0317 0.1005 −0.9000 0.6631 −0.2748 0.5202
ENC −0.3848 0.0774 −0.5266 −1.8590 0.3162 1.6961 −0.5375
NE −0.3848 0.0593 0.1332 −1.2377 0.4604 1.0280 0.0271
NW −0.3848 0.0092 −0.3751 −0.3450 0.6133 0.4202 −0.4589
S −0.3848 0.0199 −0.2813 −0.4035 0.9975 −0.4903 −0.5316
SE −0.3848 0.0421 −0.5519 −0.9326 0.2614 0.2175 0.2121
SW −0.3848 −0.0296 −0.3225 −0.6208 0.3235 1.0365 −0.3863
W −0.3848 0.0361 −0.5263 −0.5422 −0.4334 0.5534 0.5709
WNC −0.3848 −0.0326 0.2560 1.3760 −0.2732 −0.4342 −0.0973

Probabilities that the CO2 emission in each region is more than the average US CO2 emission at tij based on all possible combinations of
Sk i j−1, k = 1, 2, 3, 4, 5, are displayed in Table 1. For example,

① Pr
(
Iij = 1 | S1 i j−1 = S3 i j−1 = S5 i j−1 = 1

)
= 0.8359

and
② Pr

(
Iij = 1 | S3 i j−1 = S5 i j−1 = 1

)
= 0.8217

in the central region, and this implies that the contributions of the sector 3 and the sector 5 to the regional CO2 emissions are statistically
significant in the central region. Accordingly, the main key factors causing CO2 emission in the central region are the industrial sector and
the transportation sector. Although the sector 1, the commercial sector, also contributes to the highest probability, themarginal contribution
to the highest probability is only 0.0142 (0.8359− 0.8217) and it is not as significant as two other sectors; the industrial and transportation
sector. When we look into the east north central region, the contribution of the sector 4, the residential sector, to the atmospheric CO2
emission in this region is remarkably obvious while the sector 3, the industrial sector, has merely small effects on the CO2 emission compare
to the residential sector, because

Pr
(
Iij = 1 | S3 i j−1 = S4 i j−1 = 1

)
= 0.9679

and

Pr
(
Iij = 1 | S4 i j−1 = 1

)
= 0.9565

with 0.0114 (0.9679 − 0.9565) as a marginal contribution of the industrial sector.Pdf_Folio:12
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Table 1 Probabilities for all possible cases.

S1 S2 S3 S4 S5 C ENC NE NW S SE SW W WNC

0 0 0 0 0 0.5852 0.8015 0.7269 0.4568 0.5182 0.6419 0.2562 0.6096 0.2433
1 0 0 0 0 0.6094 0.7045 0.7526 0.3663 0.4481 0.5079 0.1997 0.4798 0.2935
0 1 0 0 0 0.3645 0.3861 0.4357 0.3733 0.4181 0.4136 0.1562 0.4758 0.5601
0 0 1 0 0 0.7325 0.8470 0.8084 0.6083 0.7447 0.6995 0.3225 0.5030 0.1966
0 0 0 1 0 0.5174 0.9565 0.8815 0.5614 0.3971 0.6902 0.4927 0.7308 0.1724
0 0 0 0 1 0.7036 0.7022 0.7323 0.3470 0.3873 0.6890 0.1897 0.7343 0.2258
1 1 0 0 0 0.3881 0.2709 0.4687 0.2904 0.3516 0.2888 0.1183 0.3491 0.6218
1 0 1 0 0 0.7517 0.7658 0.8282 0.5162 0.6876 0.5727 0.2564 0.3742 0.2402
1 0 0 1 0 0.5424 0.9286 0.8948 0.4680 0.3321 0.5620 0.4130 0.6160 0.2120
1 0 0 0 1 0.7241 0.5821 0.7576 0.2675 0.3230 0.5606 0.1450 0.6201 0.2737
0 1 1 0 0 0.5268 0.4632 0.5503 0.5238 0.6608 0.4781 0.2038 0.3705 0.4921
0 1 0 1 0 0.3035 0.7743 0.6834 0.4755 0.3056 0.4671 0.3430 0.6122 0.4519
0 1 0 0 1 0.4911 0.2687 0.4424 0.2735 0.2969 0.4658 0.1118 0.6164 0.5360
0 0 1 1 0 0.6754 0.9679 0.9218 0.7027 0.6411 0.7431 0.5731 0.6377 0.1368
0 0 1 0 1 0.8217 0.7639 0.8125 0.4953 0.6315 0.7421 0.2445 0.6418 0.1817
0 0 0 1 1 0.6433 0.9278 0.8843 0.4472 0.2791 0.7336 0.3976 0.8278 0.1589
1 1 1 0 0 0.5518 0.3376 0.5830 0.4305 0.5952 0.3453 0.1564 0.2580 0.5558
1 1 0 1 0 0.3252 0.6695 0.7115 0.3839 0.2493 0.3355 0.2744 0.4826 0.5158
1 1 0 0 1 0.5162 0.1783 0.4754 0.2055 0.2417 0.3343 0.0835 0.4870 0.5987
1 0 1 1 0 0.6970 0.9469 0.9309 0.6190 0.5741 0.6249 0.4930 0.5098 0.1699
1 0 1 0 1 0.8359 0.6564 0.8320 0.4028 0.5640 0.6237 0.1899 0.5142 0.2229
1 0 0 1 1 0.6660 0.8836 0.8973 0.3573 0.2261 0.6133 0.3235 0.7395 0.1962
0 1 1 1 0 0.4582 0.8247 0.7738 0.6260 0.5440 0.5324 0.4191 0.5058 0.3856
0 1 1 0 1 0.6519 0.3352 0.5570 0.4100 0.5338 0.5311 0.1481 0.5102 0.4678
0 1 0 1 1 0.4230 0.6671 0.6892 0.3643 0.2055 0.5201 0.2619 0.7365 0.4280
0 0 1 1 1 0.7778 0.9464 0.9238 0.5990 0.5121 0.7815 0.4770 0.7570 0.1257
1 1 1 1 0 0.4833 0.7354 0.7962 0.5350 0.4738 0.3960 0.3432 0.3768 0.4477
1 1 1 0 1 0.6744 0.2294 0.5895 0.3232 0.4636 0.3947 0.1119 0.3810 0.5317
1 1 0 1 1 0.4477 0.5420 0.7170 0.2825 0.1633 0.3843 0.2045 0.6228 0.4915
1 0 1 1 1 0.7947 0.9124 0.9326 0.5066 0.4421 0.6732 0.3979 0.6480 0.1567
0 1 1 1 1 0.5873 0.7333 0.7785 0.5141 0.4122 0.5847 0.3290 0.6443 0.3628
1 1 1 1 1 0.6114 0.6188 0.8006 0.4210 0.3461 0.4477 0.2621 0.5170 0.4238

3. CLUSTER ANALYSIS

We develop six cluster maps showing the atmospheric CO2 emission regions in the United States based on effects of the total CO2 emission
and all five end-use sectors; the commercial, electric power, industrial, residential, and transportation sector. After normalizing the proba-
bility data in Table 1 using Johnson’s transformation [19] and [20], the hierarchical clustering procedure has been performed using Ward’s
method, in which we consider a clustering problem as a problem of minimizing within-cluster sum of squares in each cluster rather than a
distance problem [21–23]. InWard’s method, we begin with nine clusters of size 1 and combine two clusters that render the minimum error
sum of squares in Equation (3), or yield maximum R2 in Equation (4) equivalently, repeating this procedure until we reach the optimal R2

value with the number of clusters we desired.

① SSE = ∑
l
∑
r
∑
m

(
Plrm − Pl⋅m

)2
, (3)

②R2 = SST − SSE
SST , (4)

and
③ SST = ∑

l
∑
r
∑
m

(
Plrm − P⋅⋅m

)2
, (5)

where Plrm denotes the probability after Johnson’s transformation for themth combination of Sk i j−1 (k = 1, 2, 3, 4, 5) in region r belonging
to the cluster l.

Table 2 illustrates the results of the hierarchical clustering using Ward’s method based on effects of total CO2 emission, the commercial,
electric power, industrial, residential, and transportation sector denoted by Total, S1, S2, S3, S4, S5, respectively along with R2 values for all
clustering criteria.
Pdf_Folio:13
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3.1. Clustering Based on the Effect of the Total CO2 Emissions

In Figure 3, we see that nine US climate regions are combined into three CO2 emission clusters based on the effect of the total CO2 emission.

Table 2 Clustering based on different factors.

Region Clustering Based on

Total S1 S2 S3 S4 S5

C C 1 C 1 C 2 C 2 C 2 C 2
ENC C 2 C 2 C 2 C 1 C 3 C 3
NE C 2 C 1 C 2 C 1 C 1 C 1
NW C 1 C 2 C 1 C 2 C 1 C 3
S C 1 C 2 C 1 C 2 C 2 C 3
SE C 1 C 3 C 2 C 1 C 1 C 1
SW C 3 C 2 C 1 C 1 C 3 C 3
W C 1 C 3 C 1 C 3 C 1 C 2
WNC C 3 C 1 C 3 C 3 C 2 C 1
R2 0.566 0.869 0.838 0.898 0.853 0.822

Figure 3 Dendrogram and cluster map based on the effect of the total CO₂
emission.

Pdf_Folio:14
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The cluster 1 consists of five US climate regions; the central, northwest, south, southeast, and west regions, and the cluster 2 is composed
of the east north central and northeast regions. Finally the remaining two regions; the west north central and southwest regions, build the
cluster 3. Regions in the same cluster share common characteristics with respect to the clustering criterion, and the total CO2 emission
criterion yields geographical clustering results and this tells that the total CO2 emission is highly related to the geographic climate condition.

3.2. Clustering Based on the Effect of the Commercial Sector

The commercial sector includes all businesses except manufacturing and transportation, and any CO2 emissions from related fossil fuels
combustion such as heating, driving, and other activities within business purposes are counted to the commercial CO2 emissions.

Figure 4 displays three-cluster solution by the commercial sector criterion. The west region and the southeast region have similar char-
acteristics with respect to the commercial aspect and this seems to be proved by The Walt Disney Company because two Disney resorts,
Disney World and Disney Land, are located in these two regions. The other two clusters are also comprised of regions with similarity upon
the commercial sector criterion.

3.3. Clustering Based on the Effect of the Electric Power Sector

The electric power sector not only involves the generation of the electricity but also includes transmission and distribution of the electricity.
The CO2 emission from the electric power sector makes up about 32% of the total amount of CO2 emission in the United States and this is
the top contributing sector among all five sectors to the CO2 emission in the United States.

Figure 4 Dendrogram and cluster map based on the effect of the commercial
sector.

Pdf_Folio:15
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The electric power sector criterion also highlights three-cluster solution with reasonably well combined cluster map in Figure 5. The rela-
tionship between the electric power sector and the CO2 emission can be found in the source of the electric power and the amount of the
electric usage. The geographical distribution of the type of the major power plants in Figure 6 proves such a relationship. Most of the steam
and nuclear power plants are located in the cluster with the southeast, central, east north central, and northeast regions, whereas we find
major hydroelectric power plants in the cluster with the northwest, west, southwest, and south regions.

Figure 5 Dendrogram and cluster map based on the effect of
the electric power sector.

Figure 6 A breakdown of the major power plants in the United
States, by type.

Pdf_Folio:16
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3.4. Clustering Based on the Effect of the Industrial Sector

The industrial sector emits the CO2 directly and indirectly to our atmosphere. The direct way of emissions involves burning fossil fuels to
produce commercial goods, and the CO2 emission at a power plant to generate electricity to use in industrial facilities is categorized to the
indirect way of emissions. The industrial sector occupies around 20% of total CO2 emissions in the United States.

Figure 7 shows similarities between the west andwest north central regions, among the northwest, south, and central regions, and among the
other four regions. In order to control the CO2 emission from the industrial aspect in each cluster, we need further scientific research, which
may suggest re-location of chemical plants that may have significant interaction effects, as a solution of reducing CO2 emission nationwide.

3.5. Clustering Based on the Effect of the Residential Sector

The residential sector increases the atmospheric CO2 concentration through heating, cooking, and other home maintaining activities.
Although the contribution of the residential sector to the total CO2 emission is less than 10% in the United States, it is very important to
control the emission due to the residential sector because every individual is a member of this residential sector and the effect of a campaign
against the CO2 emission may reach all other sectors.

Clustering based on the residential sector criterion also provides three-cluster solution in Figure 8. One remarkable feature of this clustering
is that the cluster, comprised of the northwest, west, northeast, and southeast regions, includes all the Pacific and Atlantic seaside regions,
while other inland regions form the other two clusters. It is very interesting that the effect of the residential aspect to the CO2 emission is
related to the human lifestyle founded on the geographic characteristics.

Figure 7 Dendrogram and cluster map based on the effect of the industrial sector.
Pdf_Folio:17
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Figure 8 Dendrogram and cluster map based on the effect of the residential sector.

3.6. Clustering Based on the Effect of the Transportation Sector

The transportation sector produces the atmospheric CO2 through the movement of merchandise and people by the combustion of
petroleum-based products such as gasoline, diesel, and bunker fuels. This sector has the second greatest contribution to the total CO2 emis-
sions, about 28%, in the United States.

Figure 9 shows similarities between the west and central regions, among the southeast, northeast, and west north central regions, and all
remaining regions. This three-cluster solution provides reasonable evidence to share regulations to reduce the CO2 emission in a trans-
portation aspect for regions within the same cluster.

4. CONCLUSION

The present study provides several guidelines, for policy makers, to effectively control the level of the carbon dioxide emissions in each
US climate region. Firstly, fitted regional probability models driven by Equation (2), derived from transitional models in Equation (1),
that allow us to calculate the probabilities of the CO2 emission at risk in each region based on all possible combinations of by-sector CO2
emission behaviors in the previous year. Ranks of the effect of by-sector behaviors to the level of the CO2 emissions in each climate region
are displayed in Table 3, below.

We can conclude that the number one risk sector in the central region is S3, the industrial sector, the number two risk sector is S5, the
transportation sector, and the rank three sector is S1, the commercial sector. Accordingly, the industrial sector CO2 emission has a role of
a preceding index when we predict how the CO2 emission changes in the following year for the central region. Similarly, we consider the
residential sector CO2 emission as a preceding index for the east north central region, the transportation sector CO2 emission as a leading
index for the west region, and so on. Moreover, ranks in Table 3 are assigned under consideration of interaction effects among all possible
combinations of five sectors. Secondly, we can effectively control the total CO2 emission using CO2 clusters by the effect of each sectorPdf_Folio:18
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Figure 9 Dendrogram and Cluster Map based on the Effect of the Transportation
Sector.

Table 3 Ranks of sectors with maximum probabilities in each region.

Region Ranks with Maximum Probability

Rank 1 Rank 2 Rank 3 Max. Prob.

C S3 S5 S1 0.8359
ENC S4 S3 S1 0.9679
NE S4 S3 S1 0.9326
NW S3 S4 S2 0.7027
S S3 S1 S2 0.7447
SE S3 S4 S5 0.7815
SW S4 S3 S1 0.5731
W S5 S4 S3 0.8278
WNC S2 S1 S5 0.6218

shown in Table 2. For instance, we may apply the same policy regarding the residential sector to all west and east coastal regions because
they share similar properties within residential related problems as shown in Figure 8.

Providing a solution to an environmental problem is not so simple becausemost environmental problems are due to human activities that are
not predictable. However, these statistical models would be a strong background for our government to legislate more effective regulations
to control the optimal level of the CO2 emission in the United States on regional basis.Pdf_Folio:19
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