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ABSTRACT
The ranked-set sampling technique has been generalized so that a more efficient estimator may be obtained. This technique
allows more than one unit from each set to be quantified. Consequently, the number of units to be sampled may be reduced
significantly and as a result, the corresponding cost would also be reduced. The generalized ranked-set sampling technique
is applied in the estimation of parameters of the half logistic distribution. New estimators are proposed which include linear
minimum variance unbiased estimators and ranked-set sample estimators. The coefficients, variances and relative efficiencies
are tabulated. The estimators are compared to the best linear unbiased estimator of the parameters. Sample design strategy is
also considered.
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1. INTRODUCTION

McIntyre [1] advocated the use of ranked-set sampling when experimenters encountered situations where the actual measurements of the
sample observations were difficult to make due to constraints like cost, time and other factors. However, ranking of the potential sample
data is relatively easy. Since then, this technique has been studied and applied to several areas of applied research. Some of the applications
are in forestry [2], medicine [3], environmental monitoring [4,5], population genetics [6], clinical trials [6], agriculture and entomology [7].
A comprehensive review of the subject has been provided by Wolfe [8].

In this paper, the generalized ranked-set sampling (RSS) procedure proposed inAdatia [9] is extended to allowmore than one unit from each
set to be quantified. Unbiased estimators of the (location, scale) parameters of any location-scale family of distributions can be obtained. The
performance of these estimators can be investigated by comparing their efficiency against that of best linear unbiased estimators (BLUEs).
Also, the number of units to be sampled is less than that required for balanced RSS.

The generalized ranked-set sampling procedure proposed in this paper also enables us to provide a sampling design strategy to explore the
relationship between the efficiency of the estimators and the number of units sampled. Suppose we can afford to take up to N = 15 ranked-
set observations. We can select one ranked-set sample of size N = 15, sample design 15 × 1 (with 225 units selected) or in replicated smaller
samples (e.g. five ranked-set samples of size N = 3, sample design 3 × 5 (with 45 units selected) or three ranked-set samples of size N = 5,
sample design 5 × 3 (with 75 units selected)). For each sample design and number of sampling units selected, the efficiency is computed
and can be compared. This is relevant in applications where RSS might be beneficial, but the cost involved in sampling and ranking cannot
be completely ignored. Several authors have addressed this concern by introducing cost models [10–12]. Also, since ranking large sets is
difficult and introduces room for error, an appropriate sample design can be selected with the advantage of known efficiency.

2. APPLICATION

The generalized ranked-set sampling technique is applied in the estimation of parameters of the half logistic distribution. The development
of the generalized minimum variance estimator with 2 or 3 observations kept in each set to be quantified, is a continuation of the method
presented by Adatia [9]. This paper provides sufficient details for practitioners to construct this type of estimators for their applications.
New estimators proposed are generalized ranked-set minimum variance unbiased estimators (GR-MVUEs) and generalized ranked-set
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sample estimators (GR-RSSs). Coefficients, variances and relative efficiencies are derived. The estimators are compared to the BLUEs of
the parameters. In the case of half logistic distribution, GR-MVUE have advantage compared to maximum likelihood estimators (MLEs)
as it can be directly calculated from a sample even if both (location, scale) parameters are unknown. Giles [13] gives a good account on the
complexity of MLE’s for the half logistic distribution.

In generalized ranked-set sampling, first a set of N elements is randomly selected from a given population. The sample is ordered without
making actual measurements. The unit identified with the N (1)

1 rank is accurately measured. Next, a second set of N elements is randomly
selected from the population. Again the units are ordered and the unit with the N (2)

1 rank is accurately measured. The process is continued
until N set of N elements is selected. The units are again ordered and the unit with N (N)

1 rank is accurately measured. The ordered sample
of the N sets can be represented as follows:

Set 1 X (11) X (12) ⋯ X (1N)

Set 2 X (21) X (22) ⋯ X (2N)

⋅ ⋅ ⋅ ⋯ ⋅
⋅ ⋅ ⋅ ⋯ ⋅

Set N X (N1) X (N2) ⋯ X (NN)

In generalized ranked-set sampling where two units are selected from each set, first a set of N elements is randomly selected from a given
population. The sample is ordered without making actual measurements. The units identified with the N (1)

1 and N (1)
2 ranks are accurately

measured. Next, a second set of N elements is randomly selected from the population. Again the units are ordered and the units with the
N (2)

1 and N (2)
2 ranks are accurately measured. The process is continued until M = N/2 set of N elements is selected. The units are again

ordered and the units with N (M)
1 and N (M)

2 ranks are accurately measured. The ordered sample of the M = N/2 sets can be represented as

follows:
(
X(

N (1)
1

),X(
N (1)

2

), ...,X(
N (M)

1

),X(
N (M)

2

)) where 1 ≤ N (i)
1 < N (i)

2 ≤ N and 1 ≤ i ≤ M.

Similarly, the generalized ranked-set sample of size N where three units are selected from each set consists of units which are accurately

measured, i.e.
(
X(

N (1)
1

),X(
N (1)

2

),X(
N (1)

3

), ...,X(
N (M)

1

),X(
N (M)

2

),X(
N (M)

3

)) where 1 ≤ N (i)
1 < N (i)

2 < N (i)
3 ≤ N, 1 ≤ i ≤ M and M = N/3.

We note that from the generalized ranked-set sampling procedure, the balanced ranked-set sample is obtained by selecting the ordered unit
N(i)

1 = i(i) from set i (1 ≤ i ≤ N).

2.1. Estimators Based on Generalized Ranked-Set Sampling

Let the random variable X have a half logistic distribution with probability density function ( f (x))

f (x) = 2 exp[−(x − 𝜇)/𝜎]
𝜎[1 + exp[−(x − 𝜇)/𝜎]]2 , x ≥ 𝜇, 𝜎 > 0

where µ and 𝜎 are the location and the scale parameters respectively.

Let

Z(
N (i)
j

) =
(
X(

N (i)
j

) − 𝜇
)
/𝜎

𝛼
N (i)
j
= E

(
Z(

N (i)
j

))
𝜔
N(i)j N(i)

k

= Cov
(
Z(

N(i)j

),Z(
N(i)
k

))
X(i) =

(
X(

N(i)1
),X(

N(i)2
))T

be the two order statistics of ranks N(i)
1 and N(i)

2 in the ith set.

Then the generalized ranked-set sample is given by X
S2
=

(
X (1),X (2),⋯ ,X (M)), the expected value of the standardized X

S2
is given by

𝛼T
S2
=
(
𝛼T
1
,⋯ , 𝛼T

M

)
and the variance and covariance matrix is given byΩS2 = Diagonal

(
Ω

1
,⋯ ,Ω

M

)
Pdf_Folio:110



A. Adatia and A.K.MD. Ehsanes Saleh / Journal of Statistical Theory and Applications 19(1) 109–117 111

where

S2 =
(
N(1)

1 ,N(1)
2 ,⋯ ,N(M)

1 ,N(M)
2

)

Ω
i
=
⎛⎜⎜⎜⎝
𝜔N(i)

1 N(i)
1

𝜔N(i)
1 N(i)

2

𝜔N(i)
1 N(i)

2
𝜔N(i)

1 N(i)
1

⎞⎟⎟⎟⎠ ,N
(i)
1 < N(i)

2 and i = 1, … ,M

𝛼T
i
=
(
𝛼N(i)

1
, 𝛼N(i)

2

)T

Least squares estimator of the parameter based on generalized ranked-set sample when two order statistics are selected from each sample:

S2 =
(
N (1)

1 ,N (1)
2 , … ,N (M)

1 ,N (M)
2

)

𝜇̂S2 =
M

∑
i=1

a (i)
N (i)
1

XN (i)
1
+ a (i)

N (i)
2

XN (i)
2

̂𝜎S2 =
M

∑
i=1

b (i)
N (i)
1

XN (i)
1
+ b (i)

N (i)
2

XN (i)
2

where

a(i)
N(i)
1

= T1(
T1T2 − T2

3
)

(
𝜔N(i)

2 N(i)
2
− 𝜔N(i)

1 N(i)
2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

) − T3(
T1T2 − T2

3
)
(
𝜔N(i)

2 N(i)
2
𝛼N(i)

1
− 𝜔N(i)

1 N(i)
2
𝛼N(i)

2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)

a(i)
N(i)
2

= T1(
T1T2 − T2

3
)

(
𝜔N(i)

1 N(i)
1
− 𝜔N(i)

1 N(i)
2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

) − T3(
T1T2 − T2

3
)
(
𝜔N(i)

1 N(i)
1
𝛼N(i)

2
− 𝜔N(i)

1 N(i)
2
𝛼N(i)

1

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)

b(i)
N(i)
1

= T2(
T1T2 − T2

3
)
⎛⎜⎜⎜⎜⎝
(
𝜔N(i)

2 N(i)
2
𝛼N(i)

1
− 𝜔N(i)

1 N(i)
2
𝛼N(i)

2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)
⎞⎟⎟⎟⎟⎠
− T3(

T1T2 − T2
3
)
⎛⎜⎜⎜⎜⎝

(
𝜔N(i)

2 N(i)
2
− 𝜔N(i)

1 N(i)
2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)
⎞⎟⎟⎟⎟⎠

b(i)
N(i)
2

= T2(
T1T2 − T2

3
)
⎛⎜⎜⎜⎜⎝
(
𝜔N(i)

1 N(i)
1
𝛼N(i)

2
− 𝜔N(i)

1 N(i)
2
𝛼N(i)

1

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)
⎞⎟⎟⎟⎟⎠
− T3(

T1T2 − T2
3
)
⎛⎜⎜⎜⎜⎝

(
𝜔N(i)

1 N(i)
1
− 𝜔N(i)

1 N(i)
2

)
(
𝜔N(i)

1 N(i)
1
𝜔N(i)

2 N(i)
2
− 𝜔 2

N(i)
1 N(i)

2

)
⎞⎟⎟⎟⎟⎠

T1S2 = 𝛼T
S2Ω

−1
S2 𝛼S2

T2S2 = 1TΩ−1
S2 1

T3S2 = 1TΩ−1
S2 𝛼S2

The variances and covariances of these estimators are given by

Var
(
𝜇̂S2

)
= T1S2𝜎

2/
(
T1S2T2S2 − T2

3S2

)
Var

(
̂𝜎S2
)
= T2S2𝜎

2/
(
T1S2T2S2 − T2

3S2

)
Cov

(
𝜇̂S2 , ̂𝜎S2

)
= −T3S2𝜎

2/
(
T1S2T2S2 − T2

3S2

)
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The generalized variance is

Gvar
(
𝜇̂S2 , ̂𝜎S2

)
= V

(
𝜇̂S2

)
V
(
̂𝜎S2
)
− Cov

(
𝜇̂S2 , ̂𝜎S2

)2
and when three order statistics are selected from each set, the generalized ranked-set sample is S3 =

(
N(1)

1 ,N(1)
2 ,N(1)

3 , … ,N(M)
1 ,N(M)

2 ,N(M)
3

)
.

The variance and covariance matrix is given by

ΩS3 = Diagonal
(
Ω

1
,⋯ ,Ω

M

)
where

Ω
i
=

⎛⎜⎜⎜⎜⎜⎝

𝜔N (i)
1 N (i)

1
𝜔N (i)

1 N (i)
2

𝜔N (i)
1 N (i)

3

𝜔N (i)
2 N (i)

1
𝜔N (i)

2 N (i)
2

𝜔N (i)
2 N (i)

3

𝜔N (i)
3 N (i)

1
𝜔N (i)

3 N (i)
2

𝜔N (i)
3 N (i)

3

⎞⎟⎟⎟⎟⎟⎠
,N (i)

1 < N (i)
2 < N (i)

3 and i = 1, … ,M

𝜇̂S3 =
M

∑
i=1

a (i)
N (i)
1

XN (i)
1
+ a (i)

N (i)
2

XN (i)
2
+ a (i)

N (i)
3

XN (i)
3

̂𝜎S3 =
M

∑
i=1

b (i)
N (i)
1

XN (i)
1
+ b (i)

N (i)
2

XN (i)
2
+ b (i)

N (i)
3

XN (i)
3

a (i)
N (i)
1

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

2 N (i)
3

)
+ 𝜔N (i)

1 N (i)
3

(
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

2 N (i)
2

)
+ 𝜔N (i)

3 N (i)
3

(
𝜔N (i)

2 N (i)
2
− 𝜔N (i)

1 N (i)
2

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

2 N (i)
2
𝜔N (i)

3 N (i)
3
− 𝜔 2

N (i)
2 N (i)

3

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
2
𝜔N (i)

3 N (i)
3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
2

))

a (i)
N (i)
2

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝜔N (i)

1 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

1 N (i)
3

)
+ 𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

2 N (i)
3

)
+ 𝜔N (i)

3 N (i)
3

(
𝜔N (i)

1 N (i)
1
− 𝜔N (i)

1 N (i)
2

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
2
𝜔N (i)

3 N (i)
3

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
1
𝜔N (i)

3 N (i)
3
− 𝜔 2

N (i)
1 N (i)

3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
3

))

a (i)
N (i)
3

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝜔N (i)

2 N (i)
2

(
𝜔N (i)

1 N (i)
1
− 𝜔N (i)

1 N (i)
3

)
+ 𝜔N (i)

2 N (i)
2

(
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
2

)
+ 𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

1 N (i)
1

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
2

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
2
− 𝜔2

N (i)
1 N (i)

2

))

b (i)
N (i)
1

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

2 N (i)
2
𝜔N (i)

3 N (i)
3
− 𝜔 2

N (i)
2 N (i)

3

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
2
𝜔N (i)

3 N (i)
3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
2

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

2 N (i)
3

)
+ 𝜔N (i)

1 N (i)
3

(
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

2 N (i)
2

)
+ 𝜔N (i)

3 N (i)
3

(
𝜔N (i)

2 N (i)
2
− 𝜔N (i)

1 N (i)
2

))
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b (i)
N (i)
2

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
2
𝜔N (i)

3 N (i)
3

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
1
𝜔N (i)

3 N (i)
3
− 𝜔 2

N (i)
1 N (i)

3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
3

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝜔N (i)

1 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

1 N (i)
3

)
+ 𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

2 N (i)
3

)
+ 𝜔N (i)

3 N (i)
3

(
𝜔N (i)

1 N (i)
1
− 𝜔N (i)

1 N (i)
2

))

b (i)
N (i)
3

= T2(
T1T2 − T 2

3
)
|ΩS3 |

(
𝛼N (i)

1

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

2 N (i)
3
− 𝜔N (i)

1 N (i)
3
𝜔N (i)

2 N (i)
2

)
+ 𝛼N (i)

2

(
𝜔N (i)

1 N (i)
2
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
3

)
+ 𝛼N (i)

3

(
𝜔N (i)

1 N (i)
1
𝜔N (i)

2 N (i)
2
− 𝜔 2

N (i)
1 N (i)

2

))
− T3(

T1T2 − T 2
3
)
|ΩS3 |

(
𝜔N (i)

2 N (i)
2

(
𝜔N (i)

1 N (i)
1
− 𝜔N (i)

1 N (i)
3

)
+ 𝜔N (i)

2 N (i)
2

(
𝜔N (i)

1 N (i)
3
− 𝜔N (i)

1 N (i)
2

)
+ 𝜔N (i)

2 N (i)
3

(
𝜔N (i)

1 N (i)
2
− 𝜔N (i)

1 N (i)
1

))
where

T1S3 = 𝛼T
S3Ω

−1
S3 𝛼S3

T2S3 = 1TΩ−1
S3 1

T3S3 = 1TΩ−1
S3 𝛼S3

The variances and covariance of these estimators are given by

Var
(
𝜇̂S3

)
= T1S3𝜎

2/
(
T1S3T2S3 − T 2

3S3

)

Var
(
̂𝜎S3
)
= T2S3𝜎

2/
(
T1S3T2S3 − T 2

3S3

)

Cov
(
𝜇̂S3 , ̂𝜎S3

)
= −T3S3𝜎

2/
(
T1S3T2S3 − T 2

3S3

)
The generalized variance is

Gvar
(
𝜇̂S3 , ̂𝜎S3

)
= V

(
𝜇̂S3

)
V
(
̂𝜎S3
)
− Cov

(
𝜇̂S3 , ̂𝜎S3

)2

2.2. Generalized Ranked-Set Minimum Variance Unbiased Estimator

GR-MVUEs are obtained from the generalized ranked-set estimators (RSSs) when all possible choices of S are considered. The best choice
of S is the one which gives the minimum generalized variance of the estimators. This S is denoted by SGR-MVUE,The estimators are denoted
by 𝜇̂GR−MVUE and ̂𝜎GR−MVUE. Table 1 provides ranks SGR-MVUE, variances, covariances and generalized variances of the estimators for N =
2(2)10 when two order statistics are selected from each sample. Table 2 provides ranks SGR-MVUE, variances, covariances and generalized
variances of the estimators for N = 3(3)15 when three order statistics are selected from each sample.

2.3. Generalized Ranked-Set Sample Estimator

The RSSs for μ and 𝜎 are obtained from the generalized RSSs when S = {1, 2,.., N}. These estimators are denoted by 𝜇̂GR−RSS and ̂𝜎GR−RSS
respectively. Table 3 provides coefficients for estimating the parameters and Table 4 provides variances, covariances and generalized vari-
ances of the estimators for N = 2(2)10 when two order statistics are selected from each sample. Table 5 provides coefficients for estimating
the parameters and Table 6 provides variances, covariances and generalized variances of the estimators for N = 3(3)15 when three order
statistics are selected from each sample.

As the estimates of 𝜎 can be negative a nonnegative unbiased estimator ̂𝜎GR−RSS,NN is obtained by taking the absolute value of ̂𝜎GR−RSS
multiplied by an unbiasing constant, i.e.Pdf_Folio:113
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let ̂𝜎GR−RSS,NN = K| ̂𝜎GR−RSS| where K is chosen such that E ( ̂𝜎GR−RSS,NN ) = 𝜎.
Then Var ( ̂𝜎GR−RSS,NN ) =

(
K2Var ( ̂𝜎GR−RSS) + K2 − 1

)
𝜎2

Tables 4 and 6 also includes the values of K and Var ( ̂𝜎GR−RSS,NN ). The values of K were obtained by simulation. In each case 10⁴ generalized
ranked-set samples were generated.

Table 1 Variances, covariances, generalized variances and coefficients for 𝜇̂GR−MVUE and 𝜍̂GR−MVUE when two order statistics are selected from each set.

N SGR-MVUE
Var(𝜇̂GR−MVUE)

𝜎2
Var(𝜎̂GR−MVUE)

𝜎2

Cov
⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
𝜎2

GVar
⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
𝜎4 a (i)

N (i)
1

a (i)
N (i)
2

b (i)
N (i)
1

b (i)
N (i)
2

2 {1,2} 1.00166 0.81616 −0.68028 0.35473 1.62945 −0.62945 −0.81472 0.81472
4 {1,4} 0.10577 0.15425 −0.07402 0.01084 0.59445 −0.09445 −0.22292 −0.22292
6 {1,5} 0.03231 0.06900 −0.02440 0.00163 0.39148 −0.05815 −0.19728 0.19728
8 {1,7} 0.01361 0.03625 −0.00999 0.00040 0.27745 −0.02745 −0.12114 0.12114
10 {1,9} 0.00704 0.02296 −0.00516 0.00014 0.21575 −0.01575 −0.08545 0.08545

Table 2 Variances, covariances, generalized variances and coefficients for 𝜇̂GR−MVUE and 𝜍̂GR−MVUE when three order statistics are selected from each set.

N SGR-MVUE
Var(𝜇̂GR−MVUE)

𝜎2
Var(𝜎̂GR−MVUE)

𝜎2

Cov
⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
𝜎2

GVar
⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
𝜎4 a (i)

N (i)
1

a (i)
N (i)
2

a (i)
N (i)
3

b (i)
N (i)
1

b (i)
N (i)
2

b (i)
N (i)
3

3 {1,2,3} 0.37765 0.39677 −0.24682 0.08892 1.39350 −0.15472 −0.23878 −0.75455 0.33586 0.41869
6 {1,4,6} 0.04616 0.08090 −0.02948 0.00287 0.57992 0.04437 0.03555 −0.29143 0.18421 0.10722
9 {1,7,9} 0.01404 0.03410 −0.00882 0.00040 0.36374 −0.01957 −0.01084 −0.15754 0.11233 0.04521
12 {1,9,12} 0.00608 0.01881 −0.00382 0.00010 0.26736 0.01206 0.00530 −0.11888 0.09072 0.02817
15 {1,10,14} 0.00318 0.01198 −0.00204 0.00003 0.21227 −0.00661 −0.00566 −0.10531 0.06791 0.03740

Table 3 Coefficients a (i)
N (i)
j

and b (i)
N (i)
j

for computing 𝜇̂GR−RSS and 𝜍̂GR−RSS when two order statistics are selected from each set.

N = 2 N = 4 N = 6 N = 8 N = 10

i j N (i)
j a (i)

N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

1 1 1 1.62945 −0.81472 1.39598 −0.95936 1.18171 −0.87926 1.04868 −0.81221 0.95884 −0.76147
2 2 −0.62945 0.81472 −0.33002 0.57960 −0.19158 0.40237 −0.12737 0.30237 −0.09238 0.24027

2 1 3 0.10286 0.11900 0.27059 −0.12321 0.29356 −0.18825 0.28928 −0.20735
2 4 −0.16883 0.26076 −0.17828 0.33185 −0.13637 0.28852 −0.10409 0.24253

3 1 5 −0.00826 0.14160 0.09360 0.00737 0.12928 −0.05456
2 6 −0.07418 0.12665 −0.10732 0.20950 −0.09736 0.20999

4 1 7 −0.02403 0.11826 0.03642 0.04345
2 8 −0.04073 0.07444 −0.07029 0.14261

5 1 9 −0.02430 0.09570
2 10 −0.02540 0.04884

Table 4 Variances, covariances and generalized variances for ranked-set sampling estimators when two order statistics are selected from each set.

N Var(𝜇̂GR−RSS)
𝜎2

Var(𝜎̂GR−RSS)
𝜎2

Cov
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
𝜎2

GVar
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
𝜎4 K Var(𝜎̂GR−RSS,NN)

𝜎2

2 1.00166 0.81616 −0.68028 0.35473 1.00000 0.81616
4 0.22636 0.24452 −0.16630 0.02770 0.99312 0.22745
6 0.09334 0.11768 −0.07148 0.00588 0.99979 0.11721
8 0.04959 0.06927 −0.03901 0.00191 0.99988 0.06902
10 0.03031 0.04562 −0.02430 0.00079 1.00015 0.04593
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2.4. Best Linear Unbiased Estimators

BLUEs of location and scale parameters of the half logistic distribution have been obtained by Balakrishnan and Puthenpura [14]. Table 7
provides variances, covariances and generalized variances of the estimators for N = 2(2)12 and 3(3)15.

3. SAMPLE DESIGN

Table 8 tabulates for each N (N = 3(3)15 and N = 4(2)12), the number of units selected and the relative efficiency of the generalized ranked-
set sampling for each sample design. This will enable researchers to explore the relationship between efficiency of the estimators and the
number of units sampled and thus the corresponding cost. It would also enable researchers to decide which sample design to select at
what cost.

Table 5 Coefficients a (i)
N (i)
j

and b (i)
N (i)
j

for computing 𝜇̂GR−RSS and 𝜍̂GR−RSS when three order statistics are selected from each set.

N = 3 N = 6 N = 9 N = 12 N = 15

i j N (i)
j a (i)

N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

a (i)
N (i)
j

b (i)
N (i)
j

1 1 1 1.39350 −0.15472 1.20517 −0.83158 1.07394 −0.79372 0.98981 −0.75881 0.93084 −0.73083
2 2 −0.75455 0.33586 −0.00961 0.05816 0.00164 0.01809 0.00274 0.00730 0.00248 0.00336
3 3 1.39350 −0.15472 −0.18179 0.43148 −0.11408 0.32205 −0.07893 0.25062 −0.05879 0.20359

2 1 4 0.11952 0.06356 0.20536 −0.09207 0.21827 −0.13768 0.21668 −0.15328
2 5 −0.06299 0.13816 −0.01614 0.05087 −0.00487 0.02294 −0.00142 0.01197
3 6 −0.07030 0.14022 −0.10386 0.25106 −0.08502 0.23365 −0.06712 0.20289

3 1 7 0.01639 0.10237 0.07606 0.00826 0.09758 −0.03684
2 8 −0.03113 0.07180 −0.01265 0.03685 −0.00555 0.02024
3 9 −0.03212 0.06953 −0.06420 0.15982 −0.06212 0.17108

4 1 10 −0.00505 0.09211 0.03286 0.03744
2 11 −0.01806 0.04347 −0.00934 0.02677
3 12 −0.01808 0.04147 −0.04280 0.10953

5 1 13 −0.01018 0.07756
2 14 −0.01164 0.02900
3 15 −0.01148 0.02753

Table 6 Variances, covariances and generalized variances for ranked-set sampling estimators when three order statistics are selected from each set.

N Var(𝜇̂GR−RSS)
𝜎2

Var(𝜎̂GR−RSS)
𝜎2

Cov
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
𝜎2

GVar
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
𝜎4 K Var(𝜎̂GR−RSS,NN)

𝜎2

3 0.37765 0.39677 −0.24682 0.08892 1.00000 0.39677
6 0.09507 0.12966 −0.06823 0.00767 0.99999 0.12963
9 0.04107 0.06454 −0.03083 0.00170 0.99996 0.06444
12 0.02243 0.03875 −0.01734 0.00057 0.99998 0.03870
15 0.01397 0.02587 −0.01102 0.00024 1.00011 0.02610
Note: 1 ≤ i ≤ N/3.

Table 7 Variances, covariances, generalized variances for 𝜇̂BLUE and 𝜍̂BLUE.

N
Var

(
𝜇̂

BLUE

)
𝜎2

Var
(
𝜎̂
BLUE

)
𝜎2

Cov
(
𝜇̂

BLUE
, 𝜎̂

BLUE

)
𝜎2

GVar
(
𝜇̂

BLUE
, 𝜎̂

BLUE

)
𝜎4

2 1.00170 0.81616 −0.68028 0.35473
3 0.37765 0.39677 −0.24682 0.08892
4 0.20545 0.25962 −0.13084 0.03622
6 0.09163 0.15210 −0.05648 0.01075
8 0.05253 0.10704 −0.03175 0.00461
9 0.04190 0.09314 −0.02514 0.00327
10 0.03424 0.08240 −0.02042 0.00240
12 0.02416 0.06691 −0.01427 0.00141
15 0.01576 0.05214 −0.00921 0.00074
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4. COMPARISONS

In this section comparison has been made between GR-MVUEs, GR-RSSs and BLUEs. Tables 9 and 10 provide the relative efficiencies of
the estimators and show that GR-MVUEs are more efficient than ranked-set samples and BLUEs, when two or three order statistics are
selected from each sample. Tables 9 and 10 also show that the ranked-set sample estimators are more efficient than the BLUEs.

5. CONCLUSION

The GR-MVUEs and GR-RSSs are both more efficient than the BLUEs. The GR-MVUE are the most efficient estimators. In applications
where ranked-set sampling is useful, the cost involved in sampling and ranking cannot be completely ignored. Therefore, the choice of the
estimators based on two or three units selected from each set would provide a reasonable alternative to the balanced ranked-set sample.

Table 8 Sample design, variances and relative efficiencies for generalized ranked-set sampling.

N Design Number of Order
Statistics Selected

Number of
Units Selected

Var(𝜇̂GR−RSS)
𝜎2

Var(𝜎̂GR−RSS)
𝜎2

Var(𝜇̂BLUE)
Var(𝜇̂GR−RSS)

Var(𝜎̂BLUE)
Var(𝜎̂GR−RSS)

4 4 × 1 2 8 0.22636 0.24452 0.90763 1.06175
2 × 2 1 8 0.88712 0.65808 0.23159 0.39451

6 6 × 1 3 12 0.09507 0.12966 0.96384 1.17307
3 × 2 1 18 0.26033 0.23421 0.35199 0.64943
6 × 1 2 18 0.09334 0.11768 0.98170 1.29249
2 × 3 1 12 0.59141 0.43872 0.15494 0.34669

8 8 × 1 2 32 0.04959 0.06927 1.05933 1.54526
4 × 2 1 32 0.11867 0.12092 0.44269 0.88525
2 × 4 1 16 0.44356 0.32904 0.11843 0.32531
4 × 2 2 16 0.11318 0.12226 0.46415 0.87551

9 9 × 1 3 27 0.04107 0.06454 1.02026 1.44314
3 × 3 1 27 0.17355 0.15614 0.24144 0.59653

10 10 × 1 2 50 0.03031 0.04562 1.12979 2.12650
5 × 2 1 50 0.06623 0.07375 0.79318 1.66217
2 × 5 1 20 0.35485 0.26323 0.14804 1.40044

12 12 × 1 3 48 0.02243 0.03875 1.07704 1.72679
12 × 1 2 72 0.020254 0.032299 1.19275 2.07167
6 × 2 1 72 0.04162 0.04958 0.58051 1.34973
6 × 2 2 36 0.04667 0.05884 0.51763 1.13720
6 × 2 3 24 0.04754 0.06483 0.50821 1.03213
4 × 3 1 48 0.07911 0.08061 0.30537 0.83008
3 × 4 1 36 0.13016 0.11710 0.18560 0.57141

15 15 × 1 3 75 0.01397 0.02587 1.12785 2.01562
5 × 3 1 75 0.04415 0.04917 0.35685 1.06055
3 × 5 1 45 0.10413 0.02950 0.15131 1.76759

Table 9 Relative efficiencies for the estimators when two order statistics are selected from each set.

N Var(𝜇̂BLUE)
Var(𝜇̂GR−MVUE)

Var(𝜎̂BLUE)
Var(𝜎̂GR−MVUE)

GVar
⎛⎜⎜⎝
𝜇̂BLUE,
𝜎̂BLUE

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜎̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
Var(𝜇̂GR−RSS)
Var(𝜇̂GR−MVUE)

Var(𝜎̂GR−RSS)
Var(𝜎̂GR−MVUE)

GVar
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
Var(𝜇̂BLUE)
Var(𝜇̂GR−RSS)

Var(𝜎̂BLUE)
Var(𝜎̂GR−RSS)

GVar
⎛⎜⎜⎝
𝜇̂BLUE,
𝜎̂BLUE

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
2 1.00004 1.00000 1.00000 1.00000 1.00000 1.00000 1.00004 1.00000 1.00000
4 1.94242 1.68311 3.34256 2.14012 1.58522 2.55629 0.90763 1.06175 1.30758
6 2.83638 2.20444 6.57832 2.88925 1.70558 3.59919 0.98170 1.29249 1.82772
8 3.85981 2.95275 11.72574 3.64364 1.91084 4.85301 1.05933 1.54526 2.41618
10 4.86296 3.58941 17.80073 4.30430 1.98719 5.84795 1.12979 1.80627 3.04392
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Table 10 Relative efficiencies for the estimators when three order statistics are selected from each set.

N Var(𝜇̂BLUE)
Var(𝜇̂GR−MVUE)

Var(𝜎̂BLUE)
Var(𝜎̂GR−MVUE)

GVar
⎛⎜⎜⎝
𝜇̂BLUE,
𝜎̂BLUE

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜎̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
Var(𝜇̂GR−RSS)
Var(𝜇̂GR−MVUE)

Var(𝜎̂GR−RSS)
Var(𝜎̂GR−MVUE)

GVar
⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜇̂GR−MVUE,
𝜎̂GR−MVUE

⎞⎟⎟⎠
Var(𝜇̂BLUE)
Var(𝜇̂GR−RSS)

Var(𝜎̂BLUE)
Var(𝜎̂GR−RSS)

GVar
⎛⎜⎜⎝
𝜇̂BLUE,
𝜎̂BLUE

⎞⎟⎟⎠
GVar

⎛⎜⎜⎝
𝜇̂GR−RSS,
𝜎̂GR−RSS

⎞⎟⎟⎠
3 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
6 1.98531 1.88017 3.75113 2.05980 1.60278 2.67714 0.96384 1.17307 1.40117
9 2.98426 2.73130 8.15433 2.92501 1.89261 4.23834 1.02026 1.44314 1.92394
12 3.97551 3.55655 14.16312 3.69115 2.05964 5.71417 1.07704 1.72679 2.47860
15 4.95378 4.35259 21.69725 4.39225 2.15943 7.06818 1.12785 2.01562 3.06971
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