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ABSTRACT. In this paper, we consider a trading algorithm for the investor with some prediction 

of the stock price in the market in order to gain excess returns, achieved by controlling the position 

of the stock held according to the prediction. We aim to find an optimal feedback control which 

maximizes the recursive mean-variance of the excess return. In this paper, we define the excess 

return to be the summation of every individual mean-variance for every operation. By mathematical 

induction, we generate an explicit expression of the different position lines, in terms of straight 

lines, corresponding to different signals in 𝑇 + 0 market. Also, we prove that time-weighted 

average price (TWAP) strategy is the optimal strategy in 𝑇 + 1 market when no information is 

available and present the numerical simulation for the kinked position lines in 𝑇 + 1 market when 

prediction is possible. Particularly, we discover that the optimal feedback control, regardless of the 

type of market, is determined by all the straight or kinked position lines corresponding to all the 

different signals. 

1. INTRODUCTION 

With the arrival of Digital age, the landscape of finance has been shaped greatly by the extensive 

use of computer programming. Traders have been gradually freed from checking the stocks 

constantly and repeatedly in order to carry out operations with the emergence of trading algorithms. 

Trading algorithms are ways to execute orders from automatic instructions determined by pre-set 

variables like time, volume, price and so on. Popular trading algorithms include Volume Weighted 

Average Price (VWAP), Time Weighted Average Price (TWAP), Implementation Shortfall (IS). 

VWAP trading strategy refers to the trading of stocks with the benchmark of the volume-weighted 

average price over a certain period of time; similarly, TWAP refers to the stock trading with the 

time-weighted average price over a certain time period as the benchmark. On the other hand, IS 

trading strategy focuses on minimizing the difference between the decision price, including both the 

close price and the arrival price, and the final execution price which includes terms of taxes, 

commission fees, and etc. Usually, when an investor employs TWAP as his or her trading 

algorithm, the position will be opened or closed uniformly over time; however, in our research 

paper, we investigate the trading strategies that could be employed for an investor with some ability 

to predict the market price for excess returns as an improvement on the basis of TWAP. 

To determine an optimal position-opening strategy, from the mathematical view, we consider it 

as an optimization problem in order to maximize the utility of the stocks. Traditionally, the 

mean-variance analysis proposed by Markowitz (1952) is widely employed due to its prominent 

simplicity and intuitive appeal.[5] This analysis is typically useful under a single-period framework 

or for a myopic investor who aims to maximize the next period objective under a multi-period 

framework (e.g. Jagannathan and Ma, 2003; Bansal, Dahlquist and Harvey, 2004); however, the 

results generated by traditional mean-variance analysis may not provide the investor with the optimal 

dynamic strategy; that is to say, the optimal strategy over the period of total trading time may not be 

compatible with the optimal strategy over the one specific time segment of the total time[1] [4]. Therefore, 

to eliminate this time-inconsistency, we consider the dynamically optimal mean-variance policy brought 

up by Basak and Chabakauri (2009) where dynamic programming could be applied for the convenience 

of numerical simulation and the dynamic time-consistency is preserved. [2] In our paper, we first build 
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the discrete-time model for the change of the stock price. Because we only consider the change of the 

price within one day, we could ignore the compound interest associated and use the simple drifted 

random walk model as a description of the stock price. Furthermore, we set the signal for prediction 

to conform to the Bernoulli distribution, and with the minimal time interval for operation 𝛿𝑡 being 

small enough, the Bernoulli distribution will approach to the Poisson distribution. The size of the 

signal could also be described by the Bernoulli distribution, with the probability of a price rise to be 

𝑝 and the probability of a price drop to be 1 − 𝑝. With this model, we aim to find a feedback control 

that maximizes the utility of the excess return, which is the difference between the realized average 

price of the investor and the time-weighted average price. 

In a 𝑇 + 0 market, where stocks could be traded freely regardless of how long the investor has 

hold the stocks, the optimization problem is relatively easy. Because there are no restrictions on the 

feedback control, we generate the explicit expression of the value function for each operation optimal 

feedback control. Moreover, we represent the optimal feedback control as different position lines on 

the graph and associate every signal to a different position line. In particular, when we have only 

three types of signals, three different positions line is drawn on the graph respectively. Even though 

the mathematical expression of the optimal feedback control is complicated, the philosophy is simple: 

every time a signal is observed by the investor, the next position should be adjusted to the line 

corresponding to the signal. However, in a 𝑇 + 1 market, such as Chinese market, where investors 

are forced to hold the stocks for at least one day before any trading, there are many restrictions in the 

admissible feedback control. In fact, these restrictions make it challenging for us to obtain an explicit 

expression in 𝑇 + 1 market. Still, we prove that the optimal feedback control is TWAP when no 

information is available and no prediction could be made in 𝑇 + 1 market and have worked out the 

numerical solutions to the optimal feedback control through computer simulation. Particularly, we 

discover that the optimal feedback control also takes the form of different position lines. On the 

contrary to the 𝑇 + 0 market, the position line of no signal coincides with the line of preferred signal, 

depending on whether the investor aims to open or close the position. Only the undesired signal would 

result in the change of the position. 

As a remainder for the readers, this paper is organized as the following. In Section 2, we build the 

model of the stock price, strategy employed, and the prediction ability of the investor. In Section 3, 

we represent the return and risk of the excess return in terms of mean and variance and set up the 

recursive mean-variance strategy, to which dynamic programming could be applied. Furthermore, in 

section 4, we formulate the explicit expression for 𝑇 + 1 market with no prediction and the one for 

𝑇 + 0  market by mathematical induction, while in sections 5, the graphs from our computer 

simulation are presented visually and explained to a detailed extent to illustrate the optimal feedback 

control in the 𝑇 + 1 market. Finally, we conclude our paper in Section 6. 

2. Model Setting
2.1.Stock price 

In this paper, we first define the following variables in order to build a mathematical model to describe 

the stock price in the 𝑇 + 1 stock market: 

1. Total time of the trading hours in the stock market : �̅�;

2. the daily volatility of the stock : �̅�;

3. the minimal time interval required between operations: Δ𝑡;
4. the elapsed trading time: 𝑡̅.
Hence, with the �̅� given, the total number of operations that could be taken within one day can 

be calculated as following: 𝑇 ≜ �̅�/Δ𝑡. In this case, we could simply suppose the 𝑇 to be an integer 

because the number of operations could only be a natural number. 

Consequently, we could define the number of operations that could be taken for the elapsed trading 

time as 𝑡 = 𝑡̅/Δ𝑡, and 𝑡 takes value of any integers between 0 and 𝑇 including 0 and 𝑇 with 

the same reason explained above. 
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In addition, because the volatility of the stock is a statistical measure of the dispersion of returns 

during a certain period of time for stocks, security or market index, often measured by the standard 

deviation, with the given daily volatility, the volatility of one operation can is 𝜎 ≜ �̅�/√𝑇 = �̅�√Δ𝑡/�̅�. 

Only with this 𝜎 above can the sum of the volatility of all operations in one day generate the 

mathematically correct daily volatility of the day. 

Finally, we could now denote 𝑃𝑡 as the stock price at time 𝑡̅. Usually, in a time-continuous model

of the stock price, the stock price is consist of three elements: the smooth time-varying volatility of 

the stock, which is also called as the drift of the stock, the micro-structure noise, and jump. However, 

we consider the case to be under the time-discrete condition because the operation of the stock market 

could not happen instantaneously. Rather, it takes time for the operations to be carried out. In this 

case, with a set Δ𝑡, there will be no difference between the drift and the jump. Hence, we would 

combine them in the following recurrence formula: 

𝑃𝑡 = 𝑃𝑡−1 + 𝜇𝑡−1Δ𝑡 + 𝜎𝑍𝑡, 
(1) 

where, 𝜇𝑡−1  is the drift between 𝑡 − 1 and 𝑡 which is a variable that can be considered to be 

predictable in our model, and 𝑍𝑡  is the noise between 𝑡 − 1 and 𝑡 which takes the form of a 

standard normal distribution. Usually, we consider the noise at different time to be random points on 

the standard normal distribution and therefore, the terms of {𝑍𝑡}𝑡=0
𝑇−1 to be independent.

Accordingly, it is easy to give an explicit expression of 𝑃𝑡: 

𝑃𝑡 = 𝑃0 + (∑

𝑡−1

𝑠=1

𝜇𝑠)Δ𝑡 + 𝜎∑

𝑡

𝑠=1

𝑍𝑠, (2) 

which is a summation of all predictions and all noises. 

2.2.Strategy 

In this paper, we consider generating a position with an average price lower than that of the time-

weighted average price (TWAP). Here, we would like to define the purchasing strategy of one stock 

within one day by the following series:  

{𝑉𝑡}𝑡=0
𝑇 .

where 𝑉𝑡  indicates the volume of stocks purchased already at time 𝑡 , and we assume that the 

investor has a specific investment target, that is, a certain volume of stocks to purchase within one 

day. Hence we have our boundary conditions where  

𝑉0 = 0,𝑉𝑇 = 1. 
In a 𝑇 + 0  market, our purchasing strategy is already well defined because 𝑇 + 0  market 

permits free trade of stocks without any restrictions on time. However, in a 𝑇 + 1 market where 

investors are required to hold the stocks for at least one day before trading, our strategy series must 

increase monotonically since we are considering the operations within one day. Therefore, we have  

0 ≤ 𝑉𝑛−1 ≤ 𝑉𝑛 ≤ 1,0 ≤ 𝑛 ≤ 𝑁. 

2.3.Prediction 

Since we have already built the mathematical model of the stock price and the strategy, we now need 

to determine the prediction of the stock price from the view of an investor. We assume the investor 

to be able to predict the drift of the stock price, 𝜇𝑡, one step ahead based on some indications; for 

example, at 𝑡 − 1, the investor knows the drift between 𝑡 − 1 and 𝑡, including the one at 𝑡. Also, 

the plus-minus sign of 𝜇𝑡 indicates the increasing or decreasing tendency of the stock price and the 

size of the 𝜇𝑡 reveals the magnitude of the price change predicted. 

Now, we define the 𝜆 to be the probability of a non-trivial indication within time Δ𝑡, that is, 

𝑃(𝜇𝑛 ≠ 0) = 𝜆 . Consequently, we can deduce 𝑃(𝜇𝑛 = 0) = 1 − 𝜆 . When 𝜇  is not zero, we 

suppose it is a binary distribution:  

𝑃(𝜇𝑛 = 휀|𝜇𝑛 ≠ 0) = 𝑝, 𝑃(𝜇𝑛 = −휀|𝜇𝑛 ≠ 0) = (1 − 𝑝), 
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where 𝑝 is the probability of a positive prediction, and 휀 is the size of a prediction. Therefore, the 

marginal distribution 𝜇𝑡+1 is a trinomial distribution:  

𝑃(𝜇𝑛 = 휀) = 𝑝𝜆, 𝑃(𝜇𝑛 = −휀) = (1 − 𝑝)𝜆, 𝑃(𝜇𝑛 = 0) = 1 − 𝜆. 

3.Return and Risk

3.1.Excesses return 

We want to attain a position with lower average price than Time Weighted Average Price (TWAP) 

and determine a strategy to realize this position. 

By definition, due to our definition of the strategy, the Weighted Realized Price at time 𝑡 is 

𝑊𝑅𝑃𝑡 = 𝑃𝑡(𝑉𝑡+1 − 𝑉𝑡). 
Summing up, we get the Total Weighted Realized Price:  

𝑇𝑊𝑅𝑃 =∑

𝑇−1

𝑘=0

𝑃𝑘(𝑉𝑘+1 − 𝑉𝑘). 

In particular, when 𝑉𝑡 =
𝑡

𝑇
, the Total Weighted Realized Price represents the TWAP: 

𝑇𝑊𝐴𝑃 =∑

𝑇−1

𝑘=0

𝑃𝑘
𝑇
. 

Hence, the Excess Return can be calculated as following: 

𝐸𝑅 ≜ ∑𝑇−1𝑘=0 𝑃𝑘(𝑉𝑘+1 − 𝑉𝑘 −
1

𝑇
). (3)

By Abel transformation, summing it by parts, we can rewrite the Excess Return as the following: 

𝐸𝑅 = ∑𝑇−1𝑘=1 (
𝑘

𝑇
− 𝑉𝑘)(𝑃𝑘 − 𝑃𝑘−1). (4)

Noticing 𝑉0 = 0 and 𝑉𝑇 = 1, we have the calculation as following: 

𝐸𝑅 = 𝑃𝑇−1 [∑

𝑇−1

𝑛=0

(𝑉𝑛+1 − 𝑉𝑛 −
1

𝑇
)]

+∑

𝑇−2

𝑘=0

(𝑃𝑘 − 𝑃𝑘+1) [∑

𝑘

𝑛=0

(𝑉𝑛+1 − 𝑉𝑛 −
1

𝑇
)]

= 𝑃𝑇−1(𝑉𝑇 − 𝑉0 −
𝑇

𝑇
)

+∑

𝑇−2

𝑘=0

(𝑃𝑘 − 𝑃𝑘+1)(𝑉𝑘+1 − 𝑉0 −
𝑘 + 1

𝑇
)

= ∑

𝑇−2

𝑘=0

(𝑃𝑘 − 𝑃𝑘+1)(𝑉𝑘+1 −
𝑘 + 1

𝑇
)

= ∑

𝑇−1

𝑘=1

(
𝑘

𝑇
− 𝑉𝑘)(𝑃𝑘 − 𝑃𝑘−1)

= ∑

𝑇−1

𝑘=1

(
𝑘

𝑇
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡 + 𝜎𝑍𝑘)⏟              

𝐸𝑅𝑘

,

where we denote the (
𝑘

𝑇
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡 + 𝜎𝑍𝑘)  as 𝐸𝑅𝑘 , the 𝑘 th term of the summation,

representing the excess return gained on the 𝑘th operation. 

By Abel transformation, we have successfully changed not only the format of the Excess Return, 

but more importantly, our understanding to the Excess Return as well. Before, it could only be viewed 
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as a whole on the time scale; now, it could be understood as the summation of excess return gained 

from different operations at separate time intervals. This is crucial to the later employment of dynamic 

programming, where we only concern the mean and variance of the excess return for one operation. 

3.2.Mean 

Now we could calculate the expectation of the Excess Return separately in terms of one operation. 

The Excess Return gained on the 𝑘th operation is  

𝔼[𝐸𝑅𝑘] = 𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝑃𝑘 − 𝑃𝑘−1)]

= 𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡 + 𝜎𝑍𝑘)]

= 𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡)] + 𝔼 [𝜎𝑍𝑘(

𝑘

𝑁
− 𝑉𝑘)] .

Since the investor could only predict the drift in this case, the strategy of the investor must be 

completely independent from the noise. Accordingly, we obtain 

𝔼[𝐸𝑅𝑘] = 𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡)] + 𝔼(

𝑘

𝑁
− 𝑉𝑘)𝔼[𝜎𝑍𝑘].

Because 𝑍𝑘 takes the form of a standard normal distribution, the expectation of it equals to zero. 

Hence,  

𝔼[𝐸𝑅𝑘] = 𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡)] .

Due to the additivity of the expectation, the expectation of the Excess Return as a whole can simply 

be expressed as the summation of all the expectation of the single operation, that is  

𝔼[𝐸𝑅] = ∑

𝑇−1

𝑘=1

𝔼 [(
𝑘

𝑁
− 𝑉𝑘)(𝜇𝑘−1Δ𝑡)] .

3.3.Variance 

Besides the expectation of the Excess Return, we also want to determine the variance of the Excess 

Return because it measures the significance of the risk associated with one specific strategy.  

Var[𝐸𝑅𝑘] = Var [(
𝑘

𝑇
− 𝑉𝑘)(𝜇𝑘Δ𝑘 + 𝜎𝑍𝑘+1)|𝑉𝑘, 𝜇𝑘]

= Var [(
𝑘

𝑇
− 𝑉𝑘)(𝜇𝑘Δ𝑘) + 𝜎𝑍𝑘+1(

𝑘

𝑇
− 𝑉𝑘)] .

Since all the variables in (
𝑘

𝑇
− 𝑉𝑘)(𝜇𝑘Δ𝑘) are well known at 𝑘, this term could be seen as a

constant when calculating the variance. Thus, 

Var[𝐸𝑅𝑘] = Var [𝜎𝑍𝑘+1(
𝑘

𝑇
− 𝑉𝑡)] = 𝜎2(

𝑘

𝑇
− 𝑉𝑡)

2.

3.4.Recursive Mean-Variance 

In this paper, the optimal strategy and the optimal result regarding both mean and variance would be 

determined by dynamic programming. Consequently, we first define the utility function 

𝑈(𝑉𝑡+1; 𝑉𝑡 , 𝜇𝑡) and the value function 𝑢(𝑡, 𝑉𝑡 , 𝜇𝑡) as follows:  

𝑈(𝑉𝑡+1; 𝑉𝑡 , 𝜇𝑡)

≜ 𝔼 [(
𝑡 + 1

𝑇
− 𝑉𝑡+1)(𝑃𝑡+1 − 𝑃𝑡)|𝑉𝑡 , 𝜇𝑡]

−𝛾Var [(
𝑡

𝑇
− 𝑉𝑡)(𝑃𝑡+1 − 𝑃𝑡)|𝑉𝑡 , 𝜇𝑡] ,
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𝑢(𝑡, 𝑉𝑡 , 𝜇𝑡) ≜ 𝑈(𝑉𝑡+1; 𝑉𝑡 , 𝜇𝑡) + 𝔼𝜇𝑡+1[𝑢(𝑡 + 1, 𝑉𝑡+1, 𝜇𝑡+1)],

for any 𝑡 and a given 𝛾 as a positive constant that measures the degree of risk aversion. 

If we consider 𝜇𝑡+1 to be a discrete distribution, namely, a trinomial distribution (−휀, 0,+휀)
with 𝑃(𝜇𝑡+1 = +휀) = 𝑝𝜆 and 𝑃(𝜇𝑡+1 = −휀) = (1 − 𝑝)𝜆, then under this circumstance, we can 

write our value function as 𝑢(𝑡, 𝑉𝑡 , 𝜇𝑡; 𝑣) where 𝑣 is a function of the strategy employed at 𝑡 + 1. 

Hence, for the signal with binary distribution,  

𝑢(𝑡, 𝑉𝑡 , 𝜇𝑡; 𝑣)

= { (
𝑡 + 1

𝑇
− 𝑣)(𝜇𝑡Δ𝑡) − 𝛾(

𝑡

𝑇
− 𝑉𝑡)

2𝜎2 + (1 − 𝜆Δ𝑡)𝑢(𝑡 + 1, 𝑣, 0)

+𝜆Δ𝑡𝑝𝑢(𝑡 + 1, 𝑣, +휀) + (𝜆Δ𝑡(1 − 𝑝))𝑢(𝑡 + 1, 𝑣, −휀)}.

Furthermore, we could define the optimal value function as 𝑢∗(𝑡, 𝑉𝑡 , 𝜇𝑡) in the following way:
𝑢∗(𝑡, 𝑉𝑡 , 𝜇𝑡)

= max
𝑉𝑡+1≥𝑉𝑡

{ (
𝑡 + 1

𝑇
− 𝑉𝑡+1)(𝜇𝑡Δ𝑡) − 𝛾(

𝑡

𝑇
− 𝑉𝑡)

2𝜎2

+(1 − 𝜆Δ𝑡)𝑢(𝑡 + 1, 𝑉𝑡+1, 0)

+𝜆Δ𝑡𝑝𝑢(𝑡 + 1, 𝑉𝑡+1, +휀) + (𝜆Δ𝑡(1 − 𝑝))𝑢(𝑡 + 1, 𝑉𝑡+1, −휀)}.
Consequently, this optimal value function offers a solution that is a function of the strategy at 𝑡 +

1, where we denote it as 𝑣∗(𝑡, 𝑉𝑡 , 𝜇𝑡), that maximizes the value function:

𝑣∗(𝑡, 𝑉𝑡 , 𝜇𝑡)

= arg max
𝑉𝑡+1≥𝑉𝑡

{ 𝔼 [(
𝑡 + 1

𝑇
− 𝑉𝑡+1)(𝑃𝑡+1 − 𝑃𝑡)|𝑉𝑡, 𝜇𝑡]

−𝛾Var [(
𝑡

𝑇
− 𝑉𝑡)(𝑃𝑡+1 − 𝑃𝑡)|𝑉𝑡 , 𝜇𝑡]

+𝔼𝜇𝑡+1[𝑢(𝑡 + 1, 𝑉𝑡+1, 𝜇𝑡+1)]. }

Therefore, we have 

𝑢∗(𝑡, 𝑉𝑡 , 𝜇𝑡) = max
𝑣∈𝒱1

𝑢(𝑡, 𝑉, 𝜇; 𝑣) = 𝑢(𝑡, 𝑉, 𝜇; 𝑣∗). 

where 𝒱1 is the admissible set of all the strategy in 𝑇 + 1 market, which satisfies 

𝑣(𝑡, 𝑉, 𝜇) ≥ 𝑉,∀𝑣 ∈ 𝒱1. 
In addition, because the stock market closes at the last operation 𝑇, no more value could be added 

at 𝑇, the value function at 𝑇 does not have an input strategy function. We have our boundary 

conditions defined :  

𝑢(𝑇, 𝑉𝑇 , 𝜇𝑇) = {
0, 𝑉𝑇 = 1,

−∞, 𝑉𝑇 < 1.
 (5)

Notice, for the boundary conditions, we have a punishment term of negative infinity when 𝑉𝑇 <
1 in order to stress the significance of achieving a specific target of the day. 

By the definition above, because 𝑉𝑇 can only be 1, we can easily calculate the value function and 

the optimal strategy at time 𝑇 − 1 as follows. 

𝑣∗(𝑇 − 1, 𝑉𝑇−1, 𝜇𝑇−1) = 1,
and 

𝑢∗(𝑇 − 1, 𝑉𝑇−1, 𝜇𝑇−1) = −𝛾(
𝑇 − 1

𝑇
− 𝑉𝑇−1)

2𝜎2.

They are both independent of the signal at 𝑇 − 1, that is the 𝜇𝑇−1. 

4. Theoritical Analysis

4.1.No predication in T+1 market 
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In this case, we consider 𝜇𝑡 = 0 for every positive integer 𝑡. In other words, the investor makes 

completely no prediction about the drift part of the stock price. By mathematical induction, we could 

conclude that the optimal strategy for the investor is TWAP, where 𝑉𝑡 =
𝑡

𝑇
. 

Lemma 4.1 In the case of no predication, i.e., 𝜆 = 0, the value function is always 

𝑢(𝑡, 𝑉𝑡 , 0; 𝑣) ≤ −𝛾(
𝑡

𝑇
− 𝑉𝑡)

2𝜎2, ∀0 ≤ 𝑡 ≤ 𝑇, 𝑡 ∈ 𝑍, 0 ≤ 𝑉𝑡 ≤
𝑡 + 1

𝑇
. 

Proof. We can tell easily that our Lemma 4.1. is equivalent as 

𝑢(𝑇 − 𝑛, 𝑉𝑇−𝑛 , 0; 𝑣) ≤ −𝛾 (
𝑇 − 𝑛

𝑇
− 𝑉𝑇−𝑛)

2

𝜎2,

∀0 ≤ 𝑛 ≤ 𝑇, 𝑛 ∈ 𝑍, 0 ≤ 𝑉𝑇−𝑛 ≤ 1.

 

By the boundary condition Eq. (3.5), for 𝑛 = 0, we have 

𝑢(𝑇, 𝑉𝑇 , 0) ≤ 0, ∀0 ≤ 𝑉𝑇 ≤ 1. 
Next, we assume our lemma hold for all values of 𝑛 up to some natural number 𝑘. Therefore, we 

have  

𝑢(𝑇 − 𝑛, 𝑉𝑇−𝑛 , 0; 𝑣) ≤ −𝛾(
𝑇 − 𝑛

𝑇
− 𝑉𝑇−𝑛)

2𝜎2,

∀𝑛 ≤ 𝑘 < 𝑇, 𝑛 ∈ 𝑍, 0 ≤ 𝑉𝑇−𝑛 ≤ 1.
Hence for 𝑛 = 𝑘 + 1, we have  

𝑢(𝑇 − 𝑘 − 1,𝑉𝑇−𝑘−1, 0; 𝑣)

= {(
𝑇 − 𝑘

𝑇
− 𝑉𝑇−𝑘)(𝜇𝑇−𝑘−1Δ𝑡)

−𝛾(
𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2 + 𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘 , 0; 𝑣)}

= 𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘 , 0; 𝑣) − 𝛾(
𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2.

Since 𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘 , 0; 𝑣) ≤ −𝛾(
𝑇−𝑛

𝑇
− 𝑉𝑇−𝑛)

2𝜎2, we get

𝑢(𝑇 − 𝑘 − 1,𝑉𝑇−𝑘−1, 0) ≤ −𝛾(
𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2.

Thus, when our lemma is true for 𝑛 = 𝑘, then it is true for 𝑛 = 𝑘 + 1. As it is true for 𝑛 = 0, 

then it must be true for 𝑛 = 0 + 1(𝑛 = 1). As it is true for 𝑛 = 1 then it must hold true for 𝑛 = 2 

and so on for all positive integers 𝑛 where 0 ≤ 𝑛 ≤ 𝑇.  

From Lemma 4.1, we know that with no prediction, the value function could only generate a 

negative result or zero. In other words, investors should not expect positive results on the investment 

when no information could be known beforehand for any prediction to be made. 

Lemma 4.2 In the case of no predication, i.e., 𝜆 = 0, the optimal strategy is 

𝑣∗(𝑡,𝑉,0)=𝑡+1𝑇,∀0≤𝑡<𝑇,𝑡∈𝑍,0≤𝑉≤𝑡𝑇. 

Proof. Because of Lemma 4.1., we only need to verify that  

𝑢(𝑡, 𝑉𝑡 , 0;
𝑡 + 1

𝑇
) = −𝛾(

𝑡

𝑇
− 𝑉𝑡)

2𝜎2.

First, we can rewrite our lemma as 

𝑣∗(𝑇 − 𝑚, 𝑉𝑇−𝑚 , 0) =
𝑇 −𝑚 + 1

𝑇
,

∀1 ≤ 𝑚 ≤ 𝑇,𝑚 ∈ 𝑍, 0 ≤ 𝑉𝑇−𝑚 ≤ 1.
Note in this case, 𝑉𝑇 = 1. Hence, our boundary condition would be 

𝑢(𝑇, 𝑉𝑇 , 0) = 0. 
Therefore, for 𝑚 = 1, 𝑣∗(𝑇, 𝑉𝑇 , 0) = 1, we have

Advances in Economics, Business and Management Research, volume 126

398



𝑢(𝑇 − 1,
𝑇 − 1

𝑇
, 0; 1)

= (
𝑇

𝑇
− 1)(𝜇𝑇−1Δ𝑡) − 𝛾(

𝑇 − 1

𝑇
− 𝑉𝑇−1)

2𝜎2 + 𝑢(𝑇, 𝑉𝑇 , 0)

= −𝛾(
𝑇 − 1

𝑇
− 𝑉𝑇−1)

2𝜎2.

Next, we assume our lemma holds for all values of 𝑚 up to some natural number 𝑘. Therefore, 

we have  

𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘 , 0;
𝑇 − 𝑘 + 1

𝑇
) = −𝛾(

𝑇 − 𝑘

𝑇
− 𝑉𝑇−𝑘)

2𝜎2,

∀𝑚 ≤ 𝑘 ≤ 𝑇,𝑚 ∈ 𝑍, 0 ≤ 𝑉𝑇−𝑚 ≤ 1
Hence for 𝑚 = 𝑘 + 1, we get  

𝑢(𝑇 − 𝑘 − 1,
𝑇 − 𝑘 − 1

𝑇
, 0;
𝑇 − 𝑘

𝑇
)

= (
𝑇 − 𝑘

𝑇
−
𝑇 − 𝑘

𝑇
)(𝜇𝑇−𝑘−1Δ𝑡) − 𝛾(

𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2

+𝑢(𝑇 − 𝑘 − 1,
𝑇 − 𝑘

𝑇
, 0)

= −𝛾(
𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2 − 𝛾(
𝑇 − 𝑘

𝑇
−
𝑇 − 𝑘

𝑇
)2

= −𝛾(
𝑇 − 𝑘 − 1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2.

As a result, if this lemma is true for 𝑚 = 𝑘, then it is true for 𝑚 = 𝑘 + 1. As it is true for 𝑚 = 1, 

then it must be true for 𝑚 = 2. As it is true for 𝑚 = 2 then it must hold true for 𝑚 = 3 and so on 

for all positive integers 𝑚 where 1 ≤ 𝑚 ≤ 𝑇. 

To conclude, TWAP is the optimal strategy at any time regardless of the previous position for the 

investor if no information could be gained from the stock market and no prediction could be made. 

In such situation, the best or highest return that could be generated by every value function will be 

the outcome value when TWAP is employed. If the current position is lower or equal to the next 

position offered by TWAP, then follow TWAP. On the other hand, if the current position is higher, 

then no action is the best action as the next move. 

4.2.𝐓 + 𝟎 market 

In a 𝑇 + 0 market, we do not have the restrictions on our strategy besides the boundary conditions. 

Therefore, we have  

𝑢∗(𝑡, 𝑉𝑡 , 𝜇𝑡)

= max
𝑉𝑡+1

{ (
𝑡 + 1

𝑇
− 𝑉𝑡+1)(𝜇𝑡Δ𝑡) − 𝛾(

𝑡

𝑇
− 𝑉𝑡)

2𝜎2

+(1 − 𝜆)𝑢(𝑡 + 1, 𝑉𝑡+1, 0)

+𝜆𝑝𝑢(𝑡 + 1, 𝑉𝑡+1, +휀) + 𝜆(1 − 𝑝)𝑢(𝑡 + 1, 𝑉𝑡+1, −휀)}.
Now we could calculate some results from specific value functions: 
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𝑢∗(𝑇 − 2, 𝑉𝑇−2, 𝜇𝑇−2)

= argmax
𝑉𝑇−1

{𝔼 [(
𝑇 − 1

𝑇
− 𝑉𝑇−1)(𝑃𝑇−1 − 𝑃𝑇−2)|𝑉𝑇−2, 𝜇𝑇−2]

−𝛾Var [(
𝑇 − 2

𝑇
− 𝑉𝑇−2)(𝑃𝑇−1 − 𝑃𝑇−2)|𝑉𝑇−2, 𝜇𝑇−2]

+𝔼𝜇𝑇−1[𝑢(𝑇 − 1, 𝑉𝑇−1, 𝜇𝑇−1)]}

= argmax
𝑉𝑇−1

{(
𝑇 − 1

𝑇
− 𝑉𝑇−1)(𝜇𝑇−2Δ𝑡) − 𝛾(

𝑇 − 2

𝑇
− 𝑉𝑇−2)

2𝜎2

−𝛾(
𝑇 − 1

𝑇
− 𝑉𝑇−1)

2𝜎2}.

Solving this quadratic function, we get 

𝑣∗(𝑇 − 2, 𝑉𝑇−2, 𝜇𝑇−2) =
𝑇 − 1

𝑇
−
𝜇𝑇−2Δ𝑡

2𝛾𝜎2
. 

After substitution, we get 

𝑢∗(𝑇 − 2, 𝑉𝑇−2, 𝜇𝑇−2) =
𝜇𝑇−2

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇 − 2

𝑇
− 𝑉𝑇−2)

2𝜎2.

Furthermore, we have 

𝑣∗(𝑇 − 3, 𝑉𝑇−3, 𝜇𝑇−3) =
𝑇 − 2

𝑇
−
𝜇𝑇−3Δ𝑡

2𝛾𝜎2
, 

and 

𝑢∗(𝑇 − 3, 𝑉𝑇−3, 𝜇𝑇−3) =
𝜇𝑇−3

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇 − 3

𝑇
− 𝑉𝑇−3)

2𝜎2 +
𝜆Δ𝑡휀2Δ𝑡2

4𝛾𝜎2
. 

From careful observation of the numerical results, we found the pattern and proved it 

mathematically as following: 

Lemma 4.3  The optimal value function in 𝑇 + 0 market takes the form of 

𝑢∗(𝑇 − 𝑡, 𝑉𝑇−𝑡 , 𝜇𝑇−𝑡) =
𝜇𝑇−𝑡

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇 − 𝑡

𝑇
− 𝑉𝑇−𝑡)

2𝜎2 + 𝐶𝑡 ,

where {𝐶𝑡}{0≤𝑡≤𝑇} satisfies: 

{
𝐶𝑘+1 = 𝐶𝑘 + 𝜆(

휀2Δ𝑡2

4𝛾𝜎2
),

𝐶1 = 0
and is free from the influence of 𝑉𝑇−𝜂 and 𝜇𝑇−𝜂 and 2 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑉𝑇−𝜂 ≤ 1. For 𝑡 = 1, 

𝑢∗(𝑇 − 1, 𝑉𝑇−1, 𝜇𝑇−1) = −𝛾(
𝑇 − 1

𝑇
− 𝑉𝑇−1)

2𝜎2.

Proof. Base case is already presented in the numerical examples above. We could assume this 

lemma holds true for all values of 𝑡 up to some natural number 𝑘, 

𝑢∗(𝑇 − 𝑡, 𝑉𝑇−𝑡 , 𝜇𝑇−𝑡) =
𝜇𝑇−𝑡

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇 − 𝑡

𝑇
− 𝑉𝑇−𝑡)

2𝜎2 + 𝐶𝑡 ,

∀𝑡 ≤ 𝑘 ≤ 𝑇, 0 ≤ 𝑉𝑇−𝑡 ≤ 1. 
Hence, for 𝑡 = 𝑘 + 1, 
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𝑢∗(𝑇 − 𝑘 − 1, 𝑉𝑇−𝑘−1, 𝜇𝑇−𝑘−1)

= max
𝑉𝑇−𝑘

{ (
𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)(𝜇𝑇−𝑘−1Δ𝑡) − 𝛾(

𝑇−𝑘−1

𝑇
− 𝑉𝑇−𝑘−1)𝜎

2

+(1 − 𝜆)𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘, 0)

+𝜆𝑝𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘, +휀) + 𝜆(1 − 𝑝)𝑢(𝑇 − 𝑘, 𝑉𝑇−𝑘, −휀)}

= max
𝑉𝑇−𝑘

{ (
𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)(𝜇𝑇−𝑘−1Δ𝑡) − 𝛾(

𝑇−𝑘−1

𝑇
− 𝑉𝑇−𝑘−1)𝜎

2

+(1 − 𝜆)(−𝛾(
𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)

2𝜎2 + 𝐶𝑘)

+𝜆𝑝(
𝜀2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)

2𝜎2 + 𝐶𝑘)

+𝜆(1 − 𝑝)(
𝜀2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)

2𝜎2 + 𝐶𝑘)}

= max
𝑉𝑇−𝑘

{ (
𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)(𝜇𝑇−𝑘−1Δ𝑡) − 𝛾(

𝑇−𝑘−1

𝑇
− 𝑉𝑇−𝑘−1)𝜎

2

−𝛾(
𝑇−𝑘

𝑇
− 𝑉𝑇−𝑘)

2𝜎2 + 𝐶𝑘 + 𝜆(
𝜀2Δ𝑡2

4𝛾𝜎2
). }

Still, this is a quadratic function with solution 

𝑣∗(𝑇 − 𝑘 − 1, 𝑉𝑇−𝑘−1, 𝜇𝑇−𝑘−1) =
𝑇 − 𝑘

𝑇
−
𝜇𝑇−𝑘−1Δ𝑡

2𝛾𝜎2
. 

Substituting, we get 

𝑢∗(𝑇 − 𝑘 − 1, 𝑉𝑇−𝑘−1, 𝜇𝑇−𝑘−1)

=
𝜇𝑇−𝑘−1

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇−𝑘−1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2 + 𝐶𝑘 + 𝜆Δ𝑡(
𝜀2Δ𝑡2

4𝛾𝜎2
)

=
𝜇𝑇−𝑘−1

2Δ𝑡2

4𝛾𝜎2
− 𝛾(

𝑇−𝑘−1

𝑇
− 𝑉𝑇−𝑘−1)

2𝜎2 + 𝐶𝑘+1,

 

where 

𝐶𝑘+1 = 𝐶𝑘 + 𝜆Δ𝑡(
휀2Δ𝑡2

4𝛾𝜎2
). 

By mathematical induction, we know that this proposition holds true for every positive integer 𝑡 
where 2 ≤ 𝑡 ≤ 𝑇. 

Based on this conclusion, we could simply deduce the general expression of the optimal strategy 

from the optimal value function followed by the investor throughout the day. 

Theorem 4.4  In the 𝑇 + 0 market, the optimal strategy is 

𝑣∗(𝑡, 𝑉, 𝜇) =
𝑡 + 1

𝑇
−
𝜇Δ𝑡

2𝛾𝜎2
, ∀0 ≤ 𝑡 < 𝑇, 𝑡 ∈ 𝑍, 0 ≤ 𝑉 ≤

𝑡

𝑇
, 

which is independent of the position 𝑉. 

Proof. For any 𝑡, 
𝑢∗(𝑇 − 𝑡, 𝑉𝑇−𝑡, 𝜇𝑇−𝑡)

= max
𝑉𝑇−𝑡+1

{ (
𝑇−𝑡+1

𝑇
− 𝑉𝑇−𝑡+1)(𝜇𝑇−𝑡Δ𝑡) − 𝛾(

𝑇−𝑡

𝑇
− 𝑉𝑇−𝑡)𝜎

2

+(1 − 𝜆)𝑢∗(𝑇 − 𝑡 + 1, 𝑉𝑇−𝑡+1, 0)

+𝜆𝑝𝑢∗(𝑇 − 𝑡 + 1, 𝑉𝑇−𝑡+1, +휀)

+𝜆(1 − 𝑝)𝑢∗(𝑇 − 𝑡 + 1, 𝑉𝑇−𝑡+1, −휀)}

= max
𝑉𝑇−𝑡+1

{ (
𝑇−𝑡+1

𝑇
− 𝑉𝑇−𝑡+1)(𝜇𝑇−𝑡−1Δ𝑡) − 𝛾(

𝑇−𝑡

𝑇
− 𝑉𝑇−𝑡)𝜎

2

−𝛾(
𝑇−𝑡+1

𝑇
− 𝑉𝑇−𝑡+1)

2𝜎2 + 𝐶𝑡−1 + 𝜆(
𝜀2Δ𝑡2

4𝛾𝜎2
)},

where the last equality is guaranteed by Lemma 4.3. 

Hence, the optimal strategy at time 𝑇 − 𝑡 is 
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𝑣∗(𝑇 − 𝑡, 𝑉𝑇−𝑡, 𝜇𝑇−𝑡) =
𝑇 − 𝑡 + 1

𝑇
−
𝜇𝑇−𝑡+1Δ𝑡

2𝛾𝜎2
, 

which is a maximizer of 

(
𝑇 − 𝑡 + 1

𝑇
− 𝑉𝑇−𝑡+1)(𝜇𝑇−𝑡−1Δ𝑡) − 𝛾(

𝑇 − 𝑡

𝑇
− 𝑉𝑇−𝑡)𝜎

2

−𝛾(
𝑇 − 𝑡 + 1

𝑇
− 𝑉𝑇−𝑡+1)

2𝜎2 + 𝐶𝑡−1 + 𝜆(
휀2Δ𝑡2

4𝛾𝜎2
).

5. Numerical Simulation
In this section, we set up our model for the stock price and implement the optimization through the 

maximization of the value function in Python in order to determine the position line of the optimal 

strategy employed. 

In this simulation, we set up our parameters in the following way: �̅� = 4,Δ𝑡 =
1

60
, �̅� = 0.01, 𝜆 =

1

60
, 휀 = 0.002, 𝑝 = 0.5. �̅� represents the total four trading hours of the stock market per day, and 

the value of Δ𝑡 shows that the minimal time interval required between operations we consider in this 

case is one second. The daily volatility �̅� is set to be 0.01, a realistic measure associated with 

relatively low risk, considering the median of the Standard & Poors 500 daily volatility index from 

1962 to 2018 as 0.014  (Easterling, 2019) [3]. The value of 𝜆  results in 𝑃(𝜇𝑛 ≠ 0) =
1

60
and 

𝑃(𝜇𝑛 = 0) =
59

60
, meaning that the signals appear in a relatively rare manner. Moreover, the values of 

휀  and 𝑝  represent the fact that 𝑃(𝜇𝑛 = 0.002|𝜇𝑛 ≠ 0) =
1

2
, 𝑃(𝜇𝑛 = −0.002|𝜇𝑛 ≠ 0) =

1

2
,

showing the fact that the drop and rise of the price are not only equally likely to happen, but also 

occur with the same magnitude. 

All of the parameters mentioned above are independent of each other, and the values of 𝑇 and 𝜎 

could be calculated from them by the formulas above: 𝑇 = 240 , 𝜎 ≈ 6.5 × 10−5 . For the 

convenience of the readers, all the parameters are shown in Table 1 

Table 1 Default values of parameters 

�̅� 4 Δ𝑡 1

60

�̅� 0.01 λ 1

60

𝜖 0.002 𝑝 0.5 

𝑇 240 𝜎 6.5 × 10−5 

With all the parameters set, we run the simulation and generate the following three graphs. Notice 

that every coloured position line in the first and the last graph indicates the situation that the investor 

receives its corresponding signals consistently over the total trading time. 

In the first graph of Figure 1, the position lines in the 𝑇 + 0 market are straight line parallel to 

the TWAP line, which corresponds to Theorem 4.4. The position lines in the 𝑇 + 1 market are 

shown in the third graph of Figure 1, which  
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Figure 1 The signal lines and simulated optimal position lines in T+0 and T+1 markets 

are kinked straight lines parallel to the TWAP line. Same as the position lines in the 𝑇 + 0 market, 

the undesired signal line (green) above the no signal line (yellow) and the no signal line above the 

preferred signal line (red). 

Additionally, with the same signals appeared over time indicated by the second graph of Figure 1, 

the optimal position line generated in 𝑇 + 0 market and 𝑇 + 1 market has shown great difference. 

For 𝑇 + 0 market, with no restrictions, the next position could shift freely among the three lines 

depending on the next signal; while for 𝑇 + 1 market, due to the restrictions, the next position could 

only go up or stay the same as the current position. In this case, the optimal position line will be 

mainly between the undesired signal line and the no signal line. Because it is rather impossible for all 

the signals to be preferred signals, when the optimal position react to an undesired signal or no signal, 

it could not go down to the preferred signal line in the future. 

6. Conclusion
In this paper, we solve the optimal strategy through the recursive mean-variance analysis, when the 

investor is able to make prediction about the market price . 

In 𝑇 + 0  market, we obtain the explicit expression of the value function for each optimal 

feedback control. In our example, given three different signals, three position lines corresponding to 

different signals are parallel to each other and the optimal position is determined by the three position 

lines. The next optimal position lands on the position line corresponding to the signal seen by the 

investor at this moment. 

In 𝑇 + 1 market, we prove that the TWAP is the optimal strategy when the investor is unable to 

formulate any prediction. For the general case, the optimal strategy is given by the numerical 

simulation in Section 5, and we discover that the optimal feedback control is determined by the three 

lines. Further analyses about the explicit expression of the value function still remain an open question 

due to the constraints of the 𝑇 + 1 market. 
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