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A B S T R AC T
Thoracic aortic aneurysm is a common cardiovascular disease consisting of marked dilation of the aorta. Aortic aneurysms carry 
a high risk of life-threatening complications such as aortic dissection or rupture. Classically, maximum aortic diameter has been 
used as the sole descriptor of aneurysm severity and is considered the main predictor of complications. However, maximum 
aortic diameter measurement is often poorly reproducible and about 60% of type A and 80% of type B aortic dissections occurred 
in patients with an aortic diameter inferior to that recommended for the indication of elective surgical treatment. Therefore, new 
biomarkers for risk stratification in thoracic aortic aneurysm are needed. Cardiovascular magnetic resonance (CMR) imaging 
is a non-invasive imaging technique widely used for diagnosis, clinical follow-up and research in thoracic aortic aneurysms. 
CMR applications to thoracic aortic aneurysms are generally based on either cine CMR images, which are time-resolved images 
providing dynamic structural visualization, or phase-contrast images, which utilise a flow-encoding gradient to assess time-
resolved velocity data. Particularly with 3D velocity encoding (4D flow MRI), phase-contrast imaging permits detailed study of 
haemodynamic in thoracic aortic aneurysms while cine CMR is often used to assess aortic geometry and its changes through the 
cardiac cycle or during follow-up. The possibilities offered by CMR for studying thoracic aortic aneurysms and a description of 
their applications in  Bicuspid Aortic Valve (BAV) and Marfan patients are here reviewed.
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1. THORACIC AORTIC ANEURYSMS

Thoracic aortic aneurysm is a common cardiovascular disease  
consisting of marked dilation of the aorta. Aortic aneurysms carry 
a high risk of life-threatening complications such as aortic dissec-
tion or rupture, and constitute the 15th cause of death in developed 
countries and a common cause of premature death [1].

Classically, maximum aortic diameter has been used as the sole 
descriptor of aneurysm severity and is considered the main predictor 
of complications. Therefore, the Clinical Practice Guidelines recom-
mend maximum aortic diameter for clinical management guidance 
[2]. In particular, the clinical management of aortic aneurysm with 
maximum diameter <50 mm consists of (i) reducing modifiable 
risk factors, such as through the administration of antihyperten-
sive drugs, (ii) watchful follow-up of aortic diameter evolution with 
echocardiography, Cardiovascular Magnetic Resonance imaging 
(CMR) or Computed Tomography (CT), and (iii) lifestyle changes, 
e.g. moderate physical activity and smoking cessation. When aneu-
rysm diameter is above 55 mm, preventive surgical or endovascular 
treatment is suggested. This threshold is lower (50 mm) in patients 
with Marfan Syndrome (MFS) or Bicuspid Aortic Valve (BAV) with 
other risk factors, such as family history of aortic dissection, coarcta-
tion of the aorta, or a rapid increase in aortic diameter [2].

However, accurate maximum aortic diameter measurement has 
several limitations, is often poorly reproducible, at least in certain 
aortic regions [3] and imaging modalities [4], and various experts 
question its usefulness as a predictor of acute aortic events. Indeed, 
results from the International Registry of Aortic Dissection showed 
that about 60% of type A [5] and 80% of type B [6] aortic dissec-
tions (i.e. those involving the ascending and descending aorta, 
respectively) occurred in patients with an aortic diameter inferior 
to that recommended for the indication of elective surgical treat-
ment. Therefore, new biomarkers for risk stratification in thoracic 
aortic aneurysm are needed.

Several risk factors have been related to thoracic aortic aneurysm, 
with the most common being systemic hypertension, male sex, 
smoking and a family history of aortic aneurysm [2]. Apart in cases 
of family history, aneurysms ensuing from these established risk 
factors are often referred to as degenerative or arteriosclerotic, 
with the accumulation of damage in the aortic wall in a process of 
progressive fatigue being the most commonly accepted aetiology 
[7]. Other widely established risk factors for thoracic aorta aneu-
rysm are aortic valve diseases, namely stenosis and regurgitation. 
Furthermore, two congenital conditions have been linked to an 
increased prevalence of thoracic aorta aneurysms: BAV and con-
nective tissue disorder, the most common of which is MFS.

The possibilities offered by CMR for studying thoracic aortic 
 aneurysms and a description of their applications in BAV and  
MFS patients are reviewed below.
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2.  CARDIOVASCULAR MAGNETIC  
RESONANCE IMAGING

Cardiovascular magnetic resonance imaging is a non-invasive  
imaging technique exploiting tissue-specific response to a  magnetic 
field to provide detailed imaging of cardiovascular structures. 
Owing to its ability to differentiate between blood flow and vessel 
wall, CMR is widely used for aortic aneurysm diagnosis and evalu-
ation [2] and thus plays a fundamental role in the clinical follow-up 
of this condition, especially when the cumulative exposure to 
radiation and ionised contrast medium are of concern, as in con-
genital patients. CMR scientific applications to thoracic aortic aneu-
rysms are generally based on either cine CMR images, which are  
two-dimensional time-resolved images providing dynamic struc-
tural visualization, or phase-contrast images, which utilise a 
flow-encoding gradient to provide time-resolved velocity data in 1, 2  
or 3 directions.

3.  CINE CMR IN THORACIC  
AORTIC ANEURYSM

Cine CMR is the widely used for the evaluation of aortic structure. 
Based on breath-holding, ECG-gated cine CMR acquisition do not 
need the administration of an external contrast agent and provides 
slice images with a spatial resolution of ≈ a millimetre and temporal 
resolution of 15–35 ms. In the clinical management of aortic disease, 
double-oblique cine CMR is most often used to quantify thoracic 
aneurysm diameter and characterise the aortic valve. Regarding 
research on aortic aneurysm, cine CMR images are widely used 
for feature-tracking, most often to quantify distensibility and cir-
cumferential strain, with good reproducibility [8]. Furthermore, a 
technique utilising cine CMR images for the evaluation of proximal 
aorta longitudinal strain was recently  presented [9].

4.  THREE-DIMENSIONAL PHASE- 
CONTRAST CMR IN THORACIC  
AORTIC ANEURYSM

Three-dimensional, time-resolved Phase-Contrast (PC) Magnetic 
Resonance Imaging (MRI), also referred to as 4D flow MRI, is a 
magnetic resonance sequence able to provide a full velocity field 
in a large volume of interest and a 3D phase-contrast enhanced 
angiogram. The velocity field is “full” because every possible 
velocity can be described by three orthonormal components, 
thus removing potential errors arising from the choice of a spe-
cific velocity encoding direction, often occurring in Doppler 
echocardiography and PC-MRI with one velocity encoding. A 3D 
angiogram, which is needed for off-line identification of vessels 
or volumes of interest, is most often obtained by enhancing the 
3D magnitude angiogram by phase contrast data, which allows for 
increased brightness of regions where blood flows. This sequence 
is applied during free-breathing, with or without respiratory gating 
and without the need for the administration of an external contrast 
agent. The interested reader is referred to a recent consensus doc-
ument for aspects related to the choice of acquisition parameters, 
data pre-processing and possible applications not related to aortic 
haemodynamic [10].

4.1. Haemodynamic

Owing to its full coverage of the velocity field, 4D flow MRI  permits 
the quantification of a wide range of simple and complex flow 
descriptors. Regarding relatively simple measures, 4D flow MRI  
has been shown to provide accurate quantification of blood  velocity 
and flow [11]. Moreover, quantification of blood flow asymmetry 
can be obtained by computing jet angle, the angle between flow 
direction and local centreline, and normalised displacement, the 
radial displacement of the centre of velocity with respect to the cen-
treline divided by the local vessel radius [12–15]. Normalised flow 
displacement may be more reproducible and clinically useful than 
jet angle for measuring aortic flow eccentricity [12,15].

Descriptors of complex flow patterns can also be obtained by 
4D flow MRI. This is the case of parameters describing vortical, 
helical and rotational flow which may be useful for discriminat-
ing between physiological and pathological flow patterns. Several 
parameters have been proposed. Using the centreline as a reference 
system, any 3D flow rotation can be divided into in-plane (quanti-
fying the rotational component of helical flow) and through-plane 
(retrograde to anterograde vortices) rotational components. The 
in-plane rotational component is most often quantified by com-
puting the circulation, which is the integral of vorticity over the 
cross-sectional area [12,13,16], or by simply isolating the velocity 
component tangential to the wall [17]. Through-plane vortical 
structures have been quantified by computation of rotational flow 
along the centreline [18] or by quantifying the relative amount of 
backward flow during systole [12,19]. Researchers should be aware 
of the implications of analysing vortices with these projections and 
that 3D rotational flow descriptors with no prior choice of the rota-
tion axis may convey more detailed information [20].

The haemodynamic parameter that has received the most attention 
to date is Wall Shear Stress (WSS). WSS is a vector describing the 
force per unit of area acting tangentially to the aortic wall [10]; it 
arises any time a viscous flow has a relative movement with respect 
to a surface. WSS has been related to extracellular matrix dysreg-
ulation and elastic fibre thinning in the aortic wall [21,22] and to 
angiogenesis and endothelial cell-mediated remodelling [23]. The 
computation of WSS in most of the previous works was based on 
the technique proposed by Stalder et al. [24]; however, intense 
research is underway to improve WSS quantification [25]. WSS is 
mainly visualised and studied by mapping it over the surface of the 
aorta, thereby providing specific location information, and is often 
divided into axial and circumferential components.

4.2. Aortic Stiffness

Pulse Wave Velocity (PWV), a physical quantity related to aortic 
stiffness, may play a role in aneurysm formation and rupture. 
PWV is the velocity of propagation of any information (here flow 
velocity) in a hollow structure, and is most often evaluated as the 
ratio of the distance between two measurement sites to the time 
needed for information displacement (transit time). PWV can 
be measured by 2D PC MRI [26] or by 4D flow MRI, with the 
latter allowing for the off-line choice of measurement locations 
[26,27]. Transit time quantification is the most delicate aspect in 
the evaluation of PWV by PC MRI owing to the relatively limited 
temporal resolution of these images. In CMR applications, transit 
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time is commonly measured in the frequency domain, pairing two 
velocity waveforms via Fourier analysis or their systolic upslope 
via wavelet analysis [26,28].

5.  MAGNETIC RESONANCE IMAGING FOR 
BICUSPID AORTOPATHY EVALUATION

Bicuspid aortic valve is a congenital defect consisting of the ana-
tomical fusion of two aortic valve leaflets. It is the most common  
congenital heart defect in adults, with a prevalence of around 1–2% in 
the general population and is responsible for more deaths and com-
plications than all other congenital heart defects combined [29,30]. 
The most common morphology (80% of cases) consists of the fusion 
of right and left coronary cusps (RL-BAV) followed by the fusion of 
right and non-coronary cusps (RN-BAV, 20% of cases [31]), while the 
fusion of left and non-coronary cusps is rare [31]. The prevalence of 
proximal aorta dilation in patients with normally-functioning BAV 
has been estimated at between 33% and 80% [29,32,33] depending 
on dilation definition and specific aortic region. Two main theories 
have been proposed to explain this high prevalence: one argues that 
dilation arises from abnormal blood flow impinging on the aortic 
wall (haemodynamic theory) while the other advocates the presence 
of intrinsic (congenital) aortic wall defects.

The haemodynamic theory is sustained by a number of 4D flow 
MRI studies showing that the presence of BAV entails abnormal 
flow patterns consisting of marked flow asymmetry, which leads 
to uneven WSS distribution at the aortic wall, even in the absence 
of aortic valve disease or dilation [12,13,16,34]. Elevated WSS has 
been related to extracellular matrix dysregulation and elastic fibre 
thinning in the ascending aorta of BAV patients [21,22], possibly 
providing a mechanism through which these abnormal stresses are 
translated into dilation. Furthermore, flow conditions associated 
with different fusion patterns matched regions of higher dilation 
prevalence, i.e. proximal/mid ascending aorta in RL-BAV and distal 
ascending aorta and aortic arch in RN-BAV [12,13,29]. However, the 
clinical significance of these results should be confirmed by 4D flow 
MRI-based, prospective longitudinal studies, which remain lacking.

The second theory, i.e. the one favouring the existence of intrinsic 
abnormalities in the aortic wall, is sustained by histological findings  
of vascular smooth muscle cell apoptosis [35] and  fibrillin-1 deficiency 
[36] in the aortic wall (as in Marfan patients),  higher-than-normal 
prevalence of dilation in BAV first-degree relatives [37,38] and an 
increased dilation rate following aortic valve replacement in BAV 
compared to tricuspid aortic valve patients [39]. These early find-
ings led to extensive research into possible intrinsic alterations in 
the aortic wall of BAV patients. That research was based on aortic 
stiffness. However, aortic distensibility, a proxy of aortic stiffness, 
was found reduced in BAV only when aortic diameter was larger 
compared to the control population [40–42], while being similar in 
diameter-matched comparisons [16,26,43]. Similarly, PWV, the lead-
ing marker of aortic stiffness, was found altered in dilated [44–46] 
but not in non-dilated [26,45,47] BAV patients compared to healthy 
controls. Although this picture has been clouded by the confound-
ing factor of dilation, recent larger datasets increasingly support the 
absence of intrinsic differences in aortic stiffness in BAV patients.

The balance between these two theories has significant clinical 
implications and has indeed been mirrored by clinical guidelines.  

In particular, the early suggestion of a smaller diameter for 
 preventive aortic surgery in BAV (50 vs. 55 mm in the general 
 population) reflected the predominant belief in the theory of intrin-
sic wall abnormalities [48]. Thus, BAV patients were considered at 
increased risk of adverse events and should have been treated more 
aggressively. Considering the last studies supporting haemody-
namic as the main trigger of dilation in BAV, clinical guidelines are 
increasingly suggesting a similar threshold in BAV and TAV [49].

Apart from the need for the stratification of BAV patients regard-
ing the risk of life-threatening aortic events, another major clinical 
aspect is related to BAV heritability, the understanding of which is 
fundamental for the widely-discussed need to screen First-Degree 
Relatives (FDR) of BAV patients [2]. Several studies reported BAV 
inheritance in around 5–10% of cases [37,50–52]; however, whether 
it is an autosomally-dominant inheritance pattern [51,52] or is 
polygenic with incomplete penetrance and variable expression [52] 
remains unclear. Even less known is whether intrinsic alterations 
in the aortic wall of BAV patients could be inherited. This may be 
supported by evidence of the prevalence of dilation in FDR of BAV 
patients with tricuspid aortic valve (identified by echocardiogra-
phy) being around 10–30% in different series [37,38]. However, the 
presence of partial fusion of the aortic valve was recently reported 
in 40% of BAV FDR with aortic valve diagnosed as tricuspid by 
echocardiography [50]. Importantly, even minor fusion of the aortic 
valve has been related to an abnormal flow pattern [53], which was 
already proposed as a potential explanation for the prevalence of 
aortic dilation in BAV FDR with tricuspid aortic valve [54].

6.  MAGNETIC RESONANCE IMAGING IN 
MARFAN SYNDROME PATIENTS

Marfan syndrome is a hereditary connective tissue disorder caused 
by mutations in the FBN1 gene [55]. Unless treated, MFS patients are 
at high risk of acute aortic events, especially involving the aortic root. 
Life expectancy in MFS increased dramatically following advances in 
diagnosis, treatment and elective aortic replacement [56].

Driven by early evidence regarding implication of the FBN1 gene in 
extracellular matrix synthesis, research on aortic stiffness in MFS 
has been extensive. This research was based mainly on CMR since 
this imaging technique is widely used in the clinical management 
of these patients. Most studies reported increased stiffness in MFS 
patients, either as reduced distensibility [26,57–61] or longitudinal 
aortic strain [9], or as an increase in PWV [26,59,60,62]. However, 
despite the relatively large number of cross-sectional studies avail-
able, only two longitudinal CMR studies evaluated the potential 
predictive role of increased aortic stiffness in aortic dilation or 
aortic events in MFS patients. One study related reduced proximal 
aorta longitudinal strain to aortic root dilation and aortic events 
(dissection + need for aortic surgery) [9], while the other related 
descending aorta distensibility to local dilation [63].

Conversely, studies regarding haemodynamic alterations in MFS 
patients are scant, and results more conflicting. Despite reported 
evidence regarding the presence of abnormal vortices in the aortic 
root [64] and in the ascending [65] and descending [62,64,66] 
aorta, leading to altered WSS in the root [67], ascending [65]  
and descending [62,66] aorta, the sole 4D flow MRI-based longitu-
dinal study conducted to date failed to record progressive dilation 
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in a small group of young patients (n = 19; mean age: 12.7 years; 
range: 2–17 years) [66] and consequently its relationship with  
flow pattern or WSS. With very few exceptions, all these haemo-
dynamic studies were conducted in a limited number of MFS 
patients. The main reasons for the lack of large population studies 
are thought to be the relatively short time elapsed since 4D flow 
MRI became available for clinical research, the need to exclude 
patients with previous surgery and severe aortic valve disease so as 
not to confound the analysis and the relative rarity of MFS.

7. CONCLUSION

Cardiac magnetic resonance is a powerful non-invasive imag-
ing technique for the clinical assessment and research of thoracic 
aortic aneurysm. Cine CMR sequences are useful for evaluating 
aortic structures and their deformation, while phase contrast CMR, 
particularly with 3D encoding velocity (4D flow MRI), permits 
detailed study of the potential role of haemodynamic in thoracic 
aortic aneurysm. Despite promising results in both bicuspid aortic 
valve and Marfan patients, large longitudinal studies, and thus pos-
sible causative associations, are lacking and should be pursued.
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