
International Journal of Computational Intelligence Systems
Vol. XX(Z); Month (Year), pp. xx–yy

DOI: 10.1080/XXXXXXXXXXXXXX; ISSN XXXX–XXXX online
https://www.atlantis-press.com/journals/ijndc

International Journal of Networked and Distributed Computing
Vol. 8(2); March (2020), pp. 94–107

DOI: https://doi.org/10.2991/ijndc.k.190918.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

*Corresponding author. Email: yliu@nufe.edu.cn

Research Article

Compositional Stochastic Model Checking Probabilistic
Automata via Assume-guarantee Reasoning

Yang Liu*, Rui Li

School of Information Engineering, Nanjing University of Finance & Economics, Nanjing, Jiangsu 210046, China

1.  INTRODUCTION

Formal verification can reveal the unexposed defects in a safety-
critical system. As a prominent formal verification technique,
model checking is an automatic and complete verification tech-
nique of finite state systems against correctness properties, which
was pioneered respectively by Clarke and Emerson [1] and by
Queille and Sifakis [2] in the early 1980’s. Whereas model checking
techniques focus on the absolute correctness of systems, in practice
such rigid notions are hard, or even impossible, to ensure. Instead,
many systems exhibit stochastic aspects [3] which are essential
for among others: modeling unreliable and unpredictable system
behavior (message garbling or loss), model-based performance
evaluation (i.e., estimating system performance and dependability)
and randomized algorithms (leader election or consensus algo-
rithms). Automatic formal verification of stochastic systems by
model checking is called stochastic model checking or probabilistic
model checking [4].

Stochastic model checking algorithms rely on a combination
of model checking techniques for classical model checking and
numerical methods for calculating probabilities. So, stochastic
model checking faces more severe state explosion problem, com-
pared with classical model checking [5]. There are some works
to deal with this problem through bounded probabilistic model
checking [6], abstraction refinement [7], compositional verifica-
tion [8] and so on. The crucial notion of compositional verification
is “divide and conquer”. It can decompose the whole system into
separate components and conquer each component separately. The

compositional verification techniques include assume-guarantee
reasoning [9], contract-based methods [10] and invariant-based
methods [11]. This paper focuses on assume-guarantee reasoning,
which is an automatic method of compositional verification. To
account for the relationship between the whole system and its dif-
ferent components, assume-guarantee reasoning gives some rules,
which can change the global verification of a system into local
verification of individual components.

Theoretically speaking, applying the assume-guarantee reasoning
into stochastic model checking is a feasible way to solve the state
explosion problem. There is some research work done in this direc-
tion [12–15]. We argue that applying the assume-guarantee reason-
ing into stochastic model checking should solve the following four
issues, which is named as AG-SMC problem: (1) How to generate
appropriate assumptions. (2) How to check the assume-guarantee
triple. (3) How to construct a counterexample. (4) How to verify a
stochastic system composed of n (n ≥ 2) components.

1.1.  Related Work

According to the generation type of assumptions, we divided the
existed work into two categories.

1.1.1. � Manual interactive assumption
generation

On the existing theory of Markov Decision Process (MDP) model
of combinatorial analysis [16], Kwiatkowska et al. [17] first gives

A RT I C L E I N F O
Article History

Received 04 April 2019
Accepted 01 May 2019

Keywords

Stochastic model checking
assume-guarantee reasoning
symmetric assume-guarantee rule
learning algorithm
probabilistic automata

A B S T R AC T
Stochastic model checking is the extension and generalization of the classical model checking. Compared with classical model
checking, stochastic model checking faces more severe state explosion problem, because it combines classical model checking
algorithms and numerical methods for calculating probabilities. For dealing with this, we first apply symmetric assume-
guarantee rule symmetric (SYM) for two-component systems and symmetric assume-guarantee rule for n-component systems
into stochastic model checking in this paper, and propose a compositional stochastic model checking framework of probabilistic
automata based on the NL* algorithm. It optimizes the existed compositional stochastic model checking process to draw a
conclusion quickly, in cases the system model does not satisfy the quantitative properties. We implement the framework based
on the PRISM tool, and several large cases are used to demonstrate the performance of it.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

http://https://www.atlantis-press.com/journals/ijndc
https://doi.org/10.2991/ijndc.k.190918.001
https://www.atlantis-press.com/journals/ijndc
mailto:yliu%40nufe.edu.cn?subject=
http://creativecommons.org/licenses/by-nc/4.0/

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 95

out assume-guarantee reasoning for verifying probabilistic autom-
aton (PA) model, including asymmetric assumption-guarantee
rule (ASYM), circular assumption-guarantee rule (CRIC) and
asynchronous assumption-guarantee rule (ASYNC). It solves the
AG-SMC problem as follows: (1) It generates the assumptions
through the manual interactive method. (2) In the triple of the form
〈A〉≥PAM〈P〉≥PG, system model M is a PA, the assumption 〈A〉≥PA and
guarantee 〈P〉≥PG are probabilistic safety properties, represented by
deterministic finite automaton (DFA). When system component M
satisfies assumptions A with minimum probability PA, it will be
able to satisfy property P with minimum probability PG. Checking
the triple can be reduced to multi-objective model checking
[18], which is equivalent to a linear programming (LP) problem.
(3) It does not involve to construct the counterexamples. (4) It ver-
ifies a stochastic system composed of n ≥ 2 components through
multi-component asymmetric assume-guarantee rule (ASYM-N).
The core idea of ASYM-N rule is similar to CRIC rule, i.e., the
component M1 satisfies the guarantee 〈A1〉≥PAM1

, then the guarantee
〈A1〉≥PAM1

 as the assumption of the component M2, let the component
M2 can satisfy the guarantee 〈A2〉≥PAM2

, …, until the component Mn
that satisfies the assumption 〈An–1〉≥PAMn–1

 can satisfy the guarantee
〈P〉≥PG. If all above-mentioned conditions hold, the entire system
model M1||M2|| ··· ||Mn will satisfy the guarantee 〈P〉≥PG.

1.1.2.  Automated assumption generation

Bouchekir and Boukala [19], He et al. [20], Komuravelli et al. [21],
Feng et al. [22] and [23] are the automated assumption generation
methods for solving the AG-SMC problem. They can be divided
into the following three kinds further.

1.1.2.1.  Learning-based assumption generation

Based on the learning-based assume-guarantee reasoning (LAGR)
technology and the ASYM rule proposed in Segala [16], Feng et al.
[22] proposes L*-based learning framework for PA model, which
can be used to verify whether the given PA model satisfies the prob-
abilistic safety property. Feng et al. [22] uses the cases to demon-
strate the performance of its method, including the client–server,
sensor network and the randomized consensus algorithm. For the
AG-CSMC problem, Segala [16] can be specifically described in
the following four aspects: (1) Through the L* learning algorithm,
the process of generating an appropriate assumption 〈A〉≥PA is fully
automated, i.e., we need to generate a closed and consistent obser-
vation table through membership queries, to generate a conjectured
assumption, and then verify the correctness of the assumption
through equivalence queries. (2) It checks the assume-guarantee
triple through multi-objective model checking [18]. (3) In the
whole learning process, Feng et al. [22] adopts the method pro-
posed in Han et al. [24] to generate probabilistic counterexamples
for refining the current assumption, i.e., the PRISM [25] is used
to obtain the error state nodes in the model, and then the proba-
bilistic counterexamples are constructed by using Eppstein’s [26]
algorithm. (4) The verification problem of a stochastic system com-
posed of n ≥ 2 components is not solved.

Feng et al. [23] makes further research based on Feng et al. [22]
and uses several large cases to demonstrate the performance of it,

including client–server, sensor network, randomized consensus
algorithm and Mars Exploration Rovers (MER). For the AG-CSMC
problem, compared with Feng et al. [23] and Feng et al. [22], the
contribution of Feng et al. [23] is reflected in the better solution of
the first sub-problem and the solution of the fourth sub-problem,
which will be illustrated in the following two aspects: (1) Feng et al.
[23] compares the assumption generation process between the L*
learning algorithm and the NL* learning algorithm, and finds that
NL* often needs fewer membership and equivalence queries than
L* in large cases. (2) Based on Segala [16], Feng et al. [23] uses the
ASYM-N rule to propose a learning framework for compositional
stochastic model checking, and uses it to verify the multi-
component stochastic system. So far, in the learning-based assump-
tion generation method, four sub-problems of AG-CSMC problem
have been solved basically.

1.1.2.2.  Symbolic learning-based assumption generation

One deficiency of learning-based assumption generation method
is that the learning framework is sound but incomplete. Based
on ASYM rule, He et al. [20] proposes an assume-guarantee rule
containing weighted assumption for the first time, and provides a
sound and complete learning framework, which can verify whether
the probabilistic safety properties are satisfied on the MDP model.
Through randomized consensus algorithm, wireless LAN proto-
col, FireWire protocol and randomized dining philosophers, He
et al. [20] demonstrates the performance of its method. For the
AG-CSMC problem, He et al. [20] can be specifically described
in the following four aspects: (1) The weighted assumption can
be represented by Multi-terminal Binary Decision Diagrams
(MTBDD). Based on the L* learning algorithm, He et al. [20] pro-
poses an MTBDD learning algorithm to automatically generate the
weighted assumption, which is represented by a k-Deterministic
Finite Automaton (k-DFA). MTBDD learning algorithm can make
membership queries on binary strings of arbitrary lengths and
answer membership queries on valuations over fixed variables by
the teacher. (2) Through the weighted extension of the classical
simulation relation, He et al. [20] presents a verification method of
the assume-guarantee triple containing the weighted assumption.
(3) Similarly to Feng et al. [22], He et al. [20] also constructs the
necessary probabilistic counterexamples in the learning process
through Han et al. [24]. (4) The verification problem of a stochastic
system composed of n ≥ 2 components is not solved.

In Bouchekir and Boukala [19], the method realizes automatic assum
ption generation through the Symbolic Learning-based Assume-
Guarantee Reasoning technology, also known as the Probabilistic
Symbolic Compositional Verification (PSCV). The PSCV method
provides a sound and complete symbolic assume-guarantee
rule to verify whether the MDP model satisfies the Probabilistic
Computation Tree Logic (PCTL) property. It is a new approach
based on the combination of assume-guarantee reasoning and sym-
bolic model checking techniques. Bouchekir and Boukala [19] uses
randomized mutual exclusion, client–server, randomized dining
philosophers, randomized self-stabilizing algorithm and Dice to
demonstrate the performance of its method. For the AG-CSMC
problem, Bouchekir and Boukala [19] can be specifically described
in the following four aspects: (1) Appropriate assumptions are auto-
matically generated by symbolic MTBDD learning algorithm, and
represented by interval MDP (IMDP), thus ensuring the complete-
ness of symbolic assume-guarantee rule. Moreover, in addition, to

96	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

reduce the size of the state space, the PSCV method encodes both
system components and assumptions implicitly using compact data
structures, such as BDD or MTBDD. (2) Bouchekir and Boukala [19]
uses the method in He et al. [20] to verify assume-guarantee triple.
(3) To refine assumptions, the PSCV method [27] uses the causality
method to construct counterexamples, i.e., it uses K* algorithm [28]
in the DiPro tool to construct counterexamples, and applies the algo-
rithms in Debbi and Bourahla [29] to construct the most indicative
counterexample. (4) Verification of a stochastic system composed of
n ≥ 2 components is not involved.

1.1.2.3. � Assumption generation based on
abstraction-refinement

The method in Komuravelli et al. [21] is similar to Counterexample
Guided Abstraction Refinement (CEGAR) [30]. It uses the Assume-
Guarantee Abstraction Refinement technology to propose an
assume-guarantee compositional verification framework for Labeled
Probabilistic Transition Systems (LPTSes), which can verify whether
the given LPTS model satisfies the safe-PCTL property. Komuravelli
et al. [21] uses the client–server, MER and wireless sensor network
to demonstrate the performance of its method. For the AG-CSMC
problem, Komuravelli et al. [21] can be specifically described in
the following four aspects: (1) The method can use tree counter-
examples from checking one component to refine the abstraction
of another component. Then, it uses the abstraction as the assump-
tions for assume-guarantee reasoning, represented by LPTS. (2) It
uses a strong simulation relationship to check the assume-guarantee
triple. (3) The process of constructing tree counterexample can be
reduced to check the Satisfiability Modulo Theories problem, and
then solve it through Yices [31]. (4) It also verifies an n-component
stochastic system (n ≥ 2) by the ASYM-N rule.

1.2.  Our Contribution

This paper presents some improvements based on the probabi-
listic assume-guarantee framework proposed in Feng et al. [23].
On one hand, our optimization is to verify each membership and
equivalence query, to seek a counterexample, which can prove the
property is not satisfied. If the counterexample is not spurious, the
generation of the assumptions will stop, and the verification pro-
cess will also terminate immediately. On the other hand, a potential
shortage of the ASYM displays that the sole assumption A about M1
is present, but the additional assumption about M2 is nonexistent.
We thus apply the SYM rule to the compositional verification of
PAs and extend the rule to verify an n-component system (n ≥ 2).
Through several large cases, it is shown that our improvements are
feasible and efficient.

1.3.  Paper Structure

The rest of the paper is organized as follows. Section 2 introduces
the preliminaries used in this paper, which include PAs, model
checking and the NL* algorithm. Section 3 presents a composi-
tional stochastic model checking framework based on the SYM
rule and optimizes the learning framework. Then, the framework is
extended to an n-component system (n ≥ 2) in Section 4. Section 5

develops a prototype tool for the framework, and compares it with
Feng et al. [23] by several large cases. Finally, Section 6 concludes
the paper and presents direction for future research.

2.  BACKGROUND

2.1.  Probabilistic Automata

Probabilistic automata [3,17,32,33] can model both probabilistic
and nondeterministic behavior of systems, which is a slight gen-
eralization of MDPs. The verification algorithms for MDPs can be
adapted for PAs.

In the following, Dist(V) is defined as the set of all discrete proba-
bility distributions over a set V. hv is defined as the point distribu-
tion on v ∈ V. m1 × m2 ∈ Dist(V1 × V2) is the product distribution
of m1 ∈ Dist(V1) and m2 ∈ Dist(V2).

Definition 1. (probabilistic automaton) A probabilistic automaton
(PA) is a tuple M V v LM M= (, , , ,)a d where V is a set of states,
v V∈ is an initial state, aM is an alphabet for all the action, dM ⊆ V
× (aM ∪ {τ}) × Dist(V) is a probabilistic transition relation. τ is an
invisible action, and L: V ® 2AP is a labeling function mapping each
state to a set of atomic propositions taken from a set AP.

In any state v of a PA M, we use the transition v→
a
m to denote that

(v, a, m) ∈ dM, where a ∈ aM ∪ {τ} is an action label. m is a proba-
bility distribution over state v. All transitions are nondeterministic,
and it will make a random choice according to the distribution m.

A trace through M is a (finite or infinite) sequence v v0 1

0 0 1 1

→ → ⋅⋅⋅
a m a m, ,

where v v0 = , and for each i ≥ 0, vi i

i

→
a

m is a transition and mi (vi+1)
> 0. The sequence of actions a0, a1, ..., after removal of any t, from
a trace t is also called a path. An adversary s is sometimes referred
to as scheduler, policy, or strategy, which maps any finite path to a
sub-distribution over the available transitions in the last state of the
path. This paper focuses on are finite-memory adversaries, which
store information about the history in a finite-state automaton (see
Baier and Katoen [3] Definition 10.97; pp. 848). We define TraceM

s
as the set of all traces through M under the control of adversary
s, and AdvM as the set of all potential adversaries for M. For an
adversary, we define a probability space PrM

s on TraceM
s , and the

probability space can know the probability of the adversary s.

Definition 2. (Parallel composition of PAs) If M V v LM M1 1 1 11 1
= (, , , ,)a d

M V v LM M1 1 1 11 1
= (, , , ,)a d and M V v LM M2 2 2 22 2

= (, , , ,)a d are PAs, then their
parallel composition is denoted as M1||M2. It is given by the
PA(, (,), , ,)V V v v LM M M M1 2 1 2 1 2 1 2

´ Èa a d || where dM1||M2
 is defined

such that (,)v v1 2 1 2
a m m → × if and only if one of the following

holds:
		 v v M M1 1 2 2 1 2

a am m a a a →  → ∈ ∩, and � (1)

		 v v M M1 1 2 2 1 2

a m m h a a a t → = ∈ ∪, () { }\and � (2)

		 v v M M2 2 1 1 2 1

a m m h a a a t → = ∈ ∪, () { }\and � (3)

and	    L v v L v L v(,) () ()1 2 1 1 2 2= ∪ � (4)

Definition 3. (Alphabet extension of PA) For any PA M V v LM M= (, , , ,)a d
PA M V v LM M= (, , , ,)a d and set of actions y, we extend the alphabet of M to

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 97

y, denoted M[y], as follows: M y V v y LM M y[] (, , , ,)[]= ∪a d where
dM[y] is a probabilistic transition relation on M[y], and dM[y] = dM ∪
{(v, a, hv)|v ∈ V Λ a ∈ y\aM}.

For any state v = (v1, v2) of M1||M2, the projection of v on Mi,
denoted by v ↾Mi

. Then, we extend it to distributions on the state
space V1 × V2 of M1||M2. For each trace t on M1||M2, the projection
of t on Mi, denoted by t ↾Mi

, i.e., the trace can be acquired from Mi
by projecting each state of t onto Mi and removing all the actions
not in the alphabet aMi

.

Definition 4. (Adversary projections) Let us suppose that M1 and
M2 are PAs, s is an adversary of M1 || M2. The projection of s on Mi
is denoted as s ↾Mi

, which is the adversary on Mi, for any finite trace
ti of Mi, s ↾Mi

 (t) (a, mi) equals:

 
{| , | |}() ()() ||Pr Trace

Pr

s s

s

s a m m mt t t t tM M M i M ii i

Mi

⋅ ∈ ∧ = ∧ =∑ 1 2
 

 (()ti

� (5)

2.2. � Model Checking for
Probabilistic Automata

Here, we concentrate on action-based properties over PAs, defined
regarding their traces. In essence, we use regular languages over
actions to describe these properties. A regular safety property P
signifies a set of infinite words w, the usual notation is ℒ(P), that is
represented by a regular language of bad prefixes, because its finite
words any (possibly empty) extension is not in ℒ(P). Formally, we
describe that set for P by a DFA P V v FP P

err = (, , , ,)a d , V is a set
of states, v V∈ is an initial state, aP is an alphabet, transition func-
tion dP: V × aP ® V and a set of accepting states F ⊆ V, which can
store the set of bad prefixes of infinite words w. Formally, a regular
safety language ℒ(P) is defined as:

	   () {) ()}P PP= ∈w a ww(|no prefix of is in err � (6)

Provided a PA M and regular safety property P, alphabet aP ⊆ aM,
an infinite trace t of M satisfies P, denoted t ⊨ P, if and only if t ↾ aP
∈ ℒ(P). For a finite trace t′ of M, if some infinite traces t of which
t′ is a prefix satisfies P, we denote as t′ ⊨ P. For an adversary s ∈
AdvM, we define the probability of M under s satisfying P as:

		    Pr Pr Tracedef
M M MP t t Ps ss() { | }∈  � (7)

That is to say PrM Ps () indicates the probability of a corresponding
trace t (the trace t is included by the component M under adversary
s and satisfies the property P).

Next, we define the minimum probability of satisfying P as:

			  Pr inf Prmin
Adv

def
M MP P

M
() ()s

s
∈ � (8)

inf PrAdvs
s

∈ M M P() denotes that PrM Ps () of infimum is taken over by
all adversaries s for M.

A probabilistic safety property 〈P〉≥PG contains a safety property P
and a sound probability bound PG. For example, the probability of
a success happening is at least 0.98. We have a PA M satisfies this
property, denoted M ⊨ 〈P〉≥PG, if and only if the probability of satis-
fying P is at least PG for any adversary:

  M P P P
PG M M M

≥
⇔ ∀ ∈ ≥ ⇔ ≥⋅s sAdv Pr PG Pr PGmin() () � (9)

According to the above formulae, the verification of a probabilistic
safety property 〈P〉≥PG on a PA M can be transformed into calcula-
tion of the minimum probability Prmin

M P(), i.e., we should calculate
the maximum probability of reaching a set of accepting states in the
product of M ⊗ P err (see Kwiatkowska et al. [33] Definition 6 for
details), where the DFA P err represents the safety property P. In fact,
a finite-memory adversary is necessary, because such an adversary
s always exists, which leads to Pr Prmin

M MP Ps () ()= . Particularly, this
extreme case also holds:

			 M P t PtM 
≥

⇔ ∀ ∈ ⋅
1

Trace � (10)

Definition 5. (Assume-guarantee triple) If 〈A〉≥PA and 〈P〉≥PG are
probabilistic safety properties, M is a PA and alphabet aP ⊆ aA ∪
aM, then:

		   
A

A P
M

M M

A

A A

≥ ≥
⇔ ∀ ∈

≥ ⇒ ≥
PA PG

M P Adv

Pr PA Pr PG

s a

a
s

a
s

[]

[] []

.

()() ()
�

(11)

where 〈A〉≥PA is also called as assumption and M[aA] is, as described
in Section 2.1, M with its alphabet extended to include aA.

Determining whether an assume-guarantee triple holds can reduce
to multi-objective probabilistic model checking [18,33]. In the
absence of an assumption (denoted by 〈true〉), checking the triple
can reduce to normal model checking:

			 true M P M P
PG PG≥ ≥

⇔  � (12)

2.3.  NL* Learning Algorithm

The NL* Learning algorithm [34] is a popular active learning
algorithm (since they can ask queries actively) for Residual Finite-
State Automata (RFSA) [35,36]. It is developed from L* algorithm,
and has some similar features with L* algorithm. It also needs
an automaton to accept each unknown regular language, and a
Minimally Adequate Teacher (MAT) to answer membership and
equivalence queries.

Generally, the RFSA may generate extra nondeterministic choices
in the product PA [37] and it is a subclass of Nondeterministic
Finite-state Automata (NFA). So, we must transform NFA A into
a corresponding DFA A through the standard subset construc-
tion algorithm [38]. Although we cannot acquire more succinct
assumptions because of the transform step, NL* algorithm may
have a faster learning procedure than L* algorithm [23].

3. � ASSUME-GUARANTEE REASONING
WITH SYM RULE

3.1.  Symmetric Rule

At present, compositional stochastic model checking is imple-
mented based on the ASYM [22,23,33,39], which can generate the
corresponding assumption for only one component of the system.
We present the SYM for the compositional stochastic model check-
ing PAs.

98	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

Theorem 1. Let us suppose that M1, M2 are PAs and 〈AM1
〉≥PAM1

,
〈AM2

〉≥PAM2
, 〈P〉≥PG are probabilistic safety properties. Respectively,

their alphabets satisfy aAM1
 ⊆ aM2

, aAM2
 ⊆ aM1

 and aP ⊆ aAM1
 ∪ aAM2

.
co〈AM1

〉≥PAM1
 denote the co-assumption for M1 which is the comple-

ment of 〈AM1
〉≥PAM1

, similarly for co〈AM2
〉≥PAM2

, the following SYM rule
holds:

1

2

3

1
1

2
2

1
1

2
2

1

2

:

:

: ||

A M P

A M P

co A co A

M

M

M M

M

M

M M

≥ ≥

≥ ≥

≥ ≥



PA PG

PA PG

PA PA



 = ∅

≥
true

PG
M M P1 2||

Theorem 1 indicates that, if each assumption about corresponding
component can be acquired, we will be able to decide whether the
property 〈P〉≥PG holds on M1||M2. The particular interpretation of
Theorem 1 is shown below.

The meaning of the premise 1 is “whenever M1 satisfies AM1
 with

probability at least PAM1
, then it will satisfy P with probability at

least PG”, 〈AM1
〉≥PAM1

 also indicates these traces with probability at
least PAM1

 in AM1
. So it can be represented by AM

M
1

1
1

err

PA< −
 (see

Section 2.2, AM1

err is same as P err). The premise 2 is similar to the
premise 1.

In the premise 3, the assumption and its complement have the
same alphabet. There is no common trace in the composition of
the co-assumptions. Note that co〈AM1

〉≥PAM1
 (i.e., 〈AM1

〉<PAM1
) can be

represented by AM
M

1
1

1

err

PA≥ −
.

So an infinite trace can be accepted by ℒ(co〈AM1
〉≥PAM1

||co〈AM2
〉≥PAM2

),
which can convert into a prefix of the infinite trace is not accepted

by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .

Proof of Theorem 1. We provide the proof of Theorem 1 in the
following. This requires Lemma 1, which derives from Kwiatkowska
et al. [33].

Lemma 1. Let us suppose that M1, M2 are PAs, s ∈ AdvM1||M2
, y ⊆

aM1||M2
 and i = 1, 2. If A is regular safety properties such that aA ⊆

aMi[y], then:
			   Pr PrM M M yA A

i

Mi y

1 2|| []() ()[]s s= 
� (13)

Proof (of Theorem 1). The proof is by contradiction. Assume that
the premise 1, 2 and 3 hold, but the conclusion does not. Since
M1||M2 ⊭ 〈P〉≥PG, we will be able to find an adversary s ∈ AdvM1||M2

,
such that Pr PGM M P

1 2|| ()s < . Now, it follows that:

				 Pr PGM M P
1 2||
s () < � (14)

By Lemma 1 since aP ⊆ aAM1
 ∪ aAM2

 ⊆ aM1[aAM1
]

			     ⇒ () <Pr PGM AM

M AM P
1 1

1 1
[]

[]

a

s a

� (15)

by the premise 1 and Definition 5

			 

" Î

³

Þ

s

a

s

s

a

a

Adv

Pr PA

Pr

M M

M M M

M

AM

M AM

AM

M

A
1 2

1 1

1 1

1 1

1
1

||

[]

.

(()
[]

[]




11 1

[]
())

aAM P ³ PG

�

(16)

by modus tollens since (15) and (16)

			  ⇒ <Pr PAM M MAM

M AM A
1 1

1 1

1 1[]

[]
()a

s a

� (17)

Similarly

			  Pr PAM M MAM

M AM A
2 2

2 2

2 2[]

[]
()a

s a
< � (18)

by the premise 3

	 

¬∃ ∈

< ∧

s

a

s

a

sa

Adv

Pr PA Pr

M M

M M M MAM

M AM

AM

M
A

1 2

1 1

1 1

1 1 2 2

||

[] []. ()
[] 

22 2

2 2

[]
()

aAM AM M<



PA � (19)

Our assumption contradicts (19), so this adversary s is nonexis-
tent. Next, we will use a simple example to illustrate the rule (taken
from Kwiatkowska et al. [33]).

Example 1. Figure 1 shows two PAs M1 and M2. The switch of a
device M2 is controlled by a controller M1. Once the emergence of
the detect signal, M1 can send a warn signal before the shutdown
signal, but the attempt may be not successful with probability 0.2.
M1 issues the shutdown signal directly, this will lead to the occur-
rence of a mistake in the device M2 with probability 0.1 (i.e., M2 will
not shut down correctly). The DFA P err indicates that action fail
never occurs. We need to verify whether M1||M2 ⊨ 〈P〉≥0.98 holds.

For checking whether 〈true〉M1||M2 〈P〉≥0.98 holds, we use the rule
(SYM) and two probabilistic safety properties 〈AM1

〉≥0.9 and 〈AM2
〉≥0.8

(see Section 3.2 for details) as the assumptions about M1 and M2.
They are represented by DFA AM1

err and AM2

err in Figure 2 (since
alphabet aAM1

is same as aAM2
, AM1

err is also same as AM2

err). Note that
only state a2 is in the set of accepting states F (see Section 2.2) and
indicates that the safety property P is violated.

Figure 1 | (a) Probabilistic automata M1, (b) probabilistic automata M2
and (c) DFA P err for the safety property P.

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 99

Figure 2 | Assumptions AM1

err, AM2

err for M1, M2.

should be included in the assumption AM1
. If t1 is not in the assump-

tion AM1
, we will try to find corresponding traces in M1 and M2. If

their probability violates the probabilistic safety property 〈P〉≥PG, t1
will be not a spurious counterexample. We can think the model does
not satisfy the property, otherwise continue to answer the next mem-
bership query after checking until the appearance of a conjectured
assumption AM1

. Then, the MAT answers an equivalence query.
Through a multi-objective model checking technique [18,33], we
can calculate the probability of a conjectured assumption, which is
an interval IA1

. If IA1
 is an empty interval, the framework will construct

a probabilistic counterexample cex(s, w, c). s is an adversary for M1
with Pr PGM P

1

s () < . w is a witness for 〈AM1
〉≥PAM1

 (PAM
1
 is a lower bound

of the interval IA1
) in M1[aAM1

], i.e., a set w of infinite traces in M1
s is

defined as Pr(w) ≥ PAM1
 and t1↾M1

 ⊨ AM1
 for all t1 ∈ w. A set c of finite

traces in M1
s (i.e., M c

1
s ,) such that Pr(c) >1 – PG and t1↾M1

⊭ P for
all t1 ∈ c. In short, probabilistic counterexamples are more complex
than nonprobabilistic counterexamples. More details are provided in
Feng et al. [22] and Ma et al. [40]. Next, we must check whether
the appearance of a trace t1 in the probabilistic counterexample
cex(s, w, c) causes the violation of 〈P〉≥PG on M1||M2. If the trace
exists, the execution of the learning algorithm will be terminated.
Otherwise, the learning algorithm will refine the original conjecture
and generate a new assumption. When all the conjectured assump-
tions are successful to be generated, we judge whether there exists
any common trace that can be accepted by ℒ(co〈AM1

〉IA1
||co〈AM2

〉IA2
). It

requires us to do Counterexample Analysis. If counterexample does
not exist, we can conclude that M1||M2 ⊨ 〈P〉≥PG.

On the contrary, we need to check whether it is a spurious coun-
terexample, let the conjectured assumption becomes stronger than
necessary. If the spurious counterexample exists, the conjectured
assumption must be refined once again. When the conjectured
assumption is updated, the framework will return a lower and an
upper bound on the minimum probability of safety property P hold-
ing. This measure means that it can provide some valuable informa-
tion to the user, even if the framework could not produce an accurate
judgment. More details are described in the following sections.

3.2.2.  Answering membership queries

Minimally adequate teacher is responsible for the membership que-
ries, i.e., checking t1||M1 ⊨ 〈P〉≥PG. t1 represents the trace in which
each transition has probability 1. If trace tM1

 ∈ M1, tM
2
 ∈ M2 and

tM1
↾AM1

 = tM2
↾AM1

 = t1, then P1 and P2 are the probability of trace tM1
 and

tM
2
 respectively. If the trace tM1

 or tM2
 has action fail and P1 * 1 > 1 –

PG (i.e., t1||M1 ⊭ 〈P〉≥PG), t1 will not be included in assumption AM1

and it will be in AM1

err . Then, we use t1 to verify c ∈ ℒ(M1||M2). If P1 *
P2 > 1 – PG, t1 will be the counterexample c of ℒ(M1||M2). We define
cex(s  ′, c′) as a probabilistic counterexample trace, and cex(s  ′, c′)
= cex(P1 * P2, c) here. If t1 is the counterexample c, we can conclude
M1|| M2 ⊭ 〈P〉≥PG. Then the learning algorithm is terminated and
returns the probabilistic counterexample trace cex(s ′, c′). Otherwise,
the MAT continues to answer the membership queries, until it pro-
duces a conjectured assumption AM1

, similarly for t2||M2 ⊨ 〈P〉≥PG.
Note that alphabet aAM1

 is same as aAM2
 in most cases, because aAM1

and aAM2

 all reflect the same safety property P essentially. If aAM1
 is

same as aAM2
, t2||M2 ⊨ 〈P〉≥PG can be omitted, and AM1

 is same as AM2
.

We can compute the probability of AM1
 and AM2

 in the prem-
ise 1 and 2, because we can solve these queries: 〈A〉≥PA M〈P〉IG=?
and 〈A〉IA=? M〈P〉≥PG, through multi-objective model checking,
as shown in Etessami et al. [18] and Kwiatkowska et al. [33].
Actually, if there exists any adversary of the component M that
satisfies the strongest assumption 〈A〉≥1 but violate the probabi-
listic safety property 〈P〉≥PG, the interval IA will be empty in the
second question.

Through premise 3, in AM1 0 1

err

≥ .
, we can find a counterexample cex(0.2,

〈shutdown〉), but corresponding counterexample in AM2 0 2

err

≥ .
 is

nonexistent (since action fail exists). So prefixes of all infinite traces

in A AM M1 20 1 0 2

err err

≥ ≥. .
|| can be accepted by  A AM M1 20 1 0 2

err err

≥ ≥(). .
||

and we can think M1||M2 ⊨ 〈P〉≥0.98 holds. Note that if a trace in
AM2 0 2

err

≥ .
 corresponding to multiple traces in M2, we give prefer-

ence to the trace with action fail. Besides, we can find that the trace
〈shutdown〉 is a prefix of 〈shutdown, warn〉, 〈shutdown, shutdown〉
and 〈shutdown, off〉, so there is no need to consider for the last
three traces.

3.2. � Improved Learning Framework
for SYM Rule

Inspired by assume-guarantee verification of PAs [23], we
propose an improved learning framework that generates
assumptions for compositional stochastic model checking
two-component PAs with SYM. The inputs are components M1,
M2, a probabilistic safety property 〈P〉≥PG and the alphabets aAM1

,
aAM2

. The aim is to verify whether M1||M2 ⊨ 〈P〉≥PG by learning
assumptions. If these assumptions exist, it can conclude that the
〈P〉≥PG holds on the system M1||M2. It outperforms [23] in cases
the model does not satisfy the properties. Essentially, the orig-
inal learning framework [23] only searches a counterexample
after the conjectured assumption generation. Our method is to
search a counterexample in each membership and equivalence
query to prove M1||M2 ⊭ 〈P〉≥PG.

3.2.1.  Overview

The NL*-based learning framework for compositional stochastic
model checking with rule SYM is shown in Figure 3. Here, the MAT
first answers a membership query: whether a given finite trace t1

100	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

Figure 3 | NL*-based learning framework for the rule SYM.

Example 2. We execute the learning algorithm on PAs M1, M2
from Example 1, and the property is set as 〈P〉≥0.99. The alphabet
aAM1

 is {warn, shutdown, off}, To build its the first conjectured
assumption, the algorithm can generate some traces t1:

〈warn〉, 〈off〉, 〈shutdown〉, 〈shutdown, shutdown〉, 〈shutdown,
warn〉 and 〈shutdown, off〉.

The first two return true, i.e., they should be in the conjectured
assumption. All of the others return false. Since tM2

 has action fail
and P1 * 1 = 0.2 * 1 > 1 − 0.99 = 0.01, trace 〈shutdown〉 returns false.
We can find that the trace 〈shutdown〉 is a prefix of 〈shutdown,
shutdown〉, 〈shutdown, warn〉 and 〈shutdown, off〉, so they all
return false. Since P1 * P2 = 0.2 * 0.1 > (1 − 0.99) = 0.01, 〈shutdown〉
is a counterexample c of the target language ℒ(M1||M2), the learn-
ing algorithm is terminated and returns the probabilistic counter-
example trace cex(0.02, 〈shutdown〉).

3.2.3. � Answering conjectures for
each component

〈(AM1
)i〉IA1

=? M1〈P〉≥PG (i.e., 〈AM1
〉≥PAM1

M1〈P〉≥PG in SYM) can be
calculated by multi-objective model checking [18,33]. The widest

interval IA1
 is defined as [PAM1

, 1] and PAM
1
 = 1 − (1 − PG)/P1. P1

is the probability of trace tM1
, if the trace tM1

 ∈ M1 or tM2
 ∈ M2 has

action fail and tM1
 ↾AM1

 = tM2
↾AM1

= t1, t AM1 1
∈ err . i = 1 indicates that

this is the first conjectured assumption 〈(AM1
)1〉IA1

. If IA
1
 = Ø, even

under the conjectured assumption 〈AM
1
〉≥1, M1 still violates 〈P〉≥PG.

We can construct a probabilistic counterexample cex(s, w, c)
[22,40] to indicate that 〈AM1

〉≥1M1〈P〉≥PG does not hold. Next, we
consider whether the probabilistic counterexample cex(s, w, c)
also belongs to the language ℒ(M1‖M2), i.e., if cex(s, w, c) is not
a spurious counterexample (through checking M M Pc

1 2
s , || 

³PG
[22]), it will prove the conclusion M1‖M2 ⊭ 〈P〉≥PG. We can directly
obtain a probabilistic counterexample trace cex(s ′, c′) from cex(s,
w, c). If cex(s, w, c) is spurious, we need to acquire all traces in
the set T = c ↾AM1

. Then, we should find out those traces, which are
currently included in the conjectured assumption 〈(AM1

)1〉IA1
 but in

fact should be excluded, because it violates the properties 〈P〉≥PG.
In other words, we need to find some bad traces t1 = tM1

↾AM1
, tM1

 ∈ c,

which is not in AM1

err. All those traces t1 will be provided to NL*, and
it will produce a conjectured assumption 〈(AM1

)2〉IA1
 again. Similarly,

we deal with the component M2.

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 101

Example 3. We still execute the learning algorithm on PAs M1, M2
and property 〈P〉≥0.98 from Example 1. The first conjectured assum
ptions AM1

 and AM2
 are represented by AM1

err and AM2

err in Figure 4.
We can calculate the result IA1

 = [0.9, 1], since:

tM2
 = 〈shutdown, fail〉,

tM2
↾AM1

 = 〈shutdown〉 = tM1
↾AM1

,
tM1

 = 〈detect, shutdown〉,

PAM1
 = 1 − (1 − PG)/P1 = 1 − (1 − 0.98)/0.2 = 0.9.

Similarly, since:

PAM2
 = 1 − (1 − PG)/P2 = 1 − (1 − 0.98)/0.1 = 0.8, we can obtain IA

2

= [0.8, 1]. We cannot find any trace, which is not in AM1

err or AM2

err,
but actually violates the properties 〈P〉≥0.98. So 〈(AM1

)1〉[0.9, 1] and
〈(AM2

)1〉[0.8, 1] will be returned to NL* algorithm.

3.2.4. � Compositional verification
of assumptions

If the interval IA
1
 and IA

2
 are nonempty, we will check premise 3

of SYM, we need to verify whether ℒ(co〈(AM1
)i〉IA1

 || co 〈(AM2
)j〉IA2

) =
Ø. Here, the conjectured assumption AM1

 is the one derived after i
iterations of learning, similarly for j. PAM1

 is the lower bound of the
interval IA1

, similarly for PAM2
.

So ℒ(co〈(AM1
)i〉IA1

 || co 〈(AM2
)j〉IA2

) can simplify to ℒ(co〈AM1
〉≥PAM1

 || co
〈AM2

〉≥PAM2
), which can convert into the problem whether a prefix of

the infinite trace is not accepted by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .

Then, counterexample is analyzed by the following process. If the
trace t AM1 1

∈ err , we need to find the probability PM1
 of the trace tM1

, if
and only if tM1

 ∈ M1 and tM1
↾AM1

 = t1. If tM1
 is not unique, we will first

return the trace with action fail. If it is nonexistent, we will return
the trace with minimum probability for all tM1

. When the returned
trace has action fail, the spurious counterexample trace cex(s1, c1)

= cex(PM1
, t1) will not exist in AM

M
1

1
1

err

PA≥ −
, otherwise it will exist.

Note that cex(s1, c1) cannot prove M1||M2 ⊭ 〈P〉≥PG and it indicates

that a trace satisfies the property 〈P〉≥PG in AM
M

1
1

1

err

PA≥ −
essentially.

So we call it as spurious counterexample trace. Similarly, we return
the cex(s2, c2) = cex(PM2

, t2) as spurious counterexample trace in

AM
M

2
2

1

err

PA≥ −
. When AM

M
1

1
1

err

PA≥ −
 and AM

M
2

2
1

err

PA≥ −
 all have spurious

counterexample trace, the spurious counterexample trace cex(s, c) =

Figure 4 | The first conjectured assumptions AM1

err, AM2

err for M1, M2.

cex(PM1* PM2
, t1||t2) will may exist in  A AM M

M M
1

1
2

2
1 1

err

PA

err

PA≥ − ≥ −





|| .

Next, if PM1
 * PM2

 > 1 – PG, a prefix of the infinite trace is not

accepted by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| . So we need to use

the spurious counterexample traces cex(s1, c1) and cex(s2, c2)
to weaken the corresponding assumptions, i.e., t1 and t2 will be
added in the assumption AM1

 and AM2
 respectively, then the con-

jectured assumptions must be refined once again. Otherwise, if
PM1* PM2

 ≤ 1 – PG, it will be not a spurious counterexample trace in

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .

Finally, if any spurious counterexample trace in A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





||

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| is nonexistent, we can obtain two assumptions

〈AM1
〉IA1

 and 〈AM2
〉IA2

 to prove M1||M2 ⊨ 〈P〉≥PG.

Example 4. We continue the execution of the algorithm from
Example 3. We must do counterexample analysis for it. Intuitively,
we can find a spurious counterexample trace cex(0.8, 〈warn, shut-
down〉) in AM1 0 1

err

≥ .
 and cex(1, 〈warn, shutdown〉) in AM2 0 2

err

≥ .
.

Since 0.8 * 1 = 0.8, we can find that the spurious counterexample trace in

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| may be cex(0.8, 〈warn, shutdown〉).

Since 0.8 > 1 – 0.98 = 0.02, cex(0.8, 〈warn, shutdown〉) is the spuri-

ous counterexample trace of  A AM M1 20 1 0 2

err err

≥ ≥(). .
|| and the trace

〈warn, shutdown〉 cannot be accepted by  A AM M1 20 1 0 2

err err

≥ ≥(). .
|| .

So we use the spurious counterexample trace to weaken the corre-
sponding assumption, i.e., the trace 〈warn, shutdown〉 needs to be
added to the corresponding assumption. The second conjectured
assumption AM1

 (AM2
 is same as AM1

) is shown in Figure 2, which can
prove M1||M2 ⊨ 〈P〉≥0.98.

3.2.5. � Generation of lower and
upper bounds

In each iteration of the NL* algorithm, we can obtain the tight-
est bounds from the iterative process of assumptions (show in the
bottom of Figure 3). If the learning framework cannot provide a
definitive result (i.e., the runtime is more than the waiting time),
some valuable quantitative information will be returned. For each
conjectured assumption, we have a lower bound lb(A, P) and an
upper bound ub(A, P) on the probabilistic safety property P.

We can calculate p A AA M M M M
* (,)() ()= min Pr Prmin min

1 1 2 2
 and generate

a corresponding adversary s ∈ AdvM (M is the component about
selected assumption), then we compute A M P

p IA G≥ =* ? through
multi-objective model checking [18,33].

For the interval lb Pr ubmin(,) (,)()||A P P A PM M≤ ≤
1 2

, we have:

		     lb() minA P IG, ()= � (20)

		   ub Pr if Advmin(,) ,() ()
||

A P P
M M M= ∈

1 2 1
s s � (21)

102	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

The proof of the tightest bounds is similar to Feng et al. [22]. Note
that information generation of bounds may lead to little extra work.

4. � ASSUME-GUARANTEE REASONING
WITH SYM-N RULE

4.1.  Symmetric Rule

We present a symmetric assume-guarantee rule SYM in the pre-
vious section, which can solve the problem of verification of a
stochastic system about two components. Here, we will make an
extension to it. Let it can be used to verify a stochastic system com-
posed of n ≥ 2 components: M1||M2||···||Mn.

Theorem 2. Let M1, M2, …, Mn are PAs, for i ∈{1, 2, …, n}, 〈AMi
〉≥PAMi

is an assumption for the corresponding component Mi , 〈P〉≥PG is a
probabilistic safety property. Their alphabets satisfy aAMi

 ⊆ aM1
 ∪ ··· ∪

aMi–1
 ∪ aMi+1

 ∪ ··· ∪ aMn
, and aP ⊆ aAM1

 ∪ aAM2
 ∪ ··· ∪ aAMn

 respectively.
co〈AMi

〉≥PAMi
 denotes the co-assumption for Mi which is the comple-

ment of 〈AMi
〉≥PAMi

, the following SYM-N rule holds:

1

2

1

1
1

2
2

1

2

:

:

:

:

A M P

A M P

A M P

n co A

n

M

M

M n

M

M

M

n
Mn

≥ ≥

≥ ≥

≥ ≥

+

PA PG

PA PG

PA PG

�


11

1
2

2

1 2

≥ ≥ ≥





 = ∅

PA PA PA

true
M M

n
Mn

co A co A

M M M

M M|| ||

|| ||

||

||

�

� nn P
≥PG

Proof by contradiction. Assume that the premise 1, 2, …, n + 1
hold, but the conclusion does not. We can obtain an adversary s ∈
AdvM1||M2||···||Mn

, such that Pr PGM M Mn
P

1 2|| || ||�
s () < . Now, it follows that:

			   Pr PGM M Mn
P

1 2|| || ||�
s () < � (22)

by Lemma 1 since aP ⊆ aAM1
 ∪ aAM2

 ∪ ··· ∪ aAMn
 ⊆ aM1[aAM1

]

			   Þ <Pr PGM A M

M A M P
1 1

1 1
[]

[]
()a

s a

� (23)

by the premise 1 and Definition 5

		

∀ ∈

⋅ ≥ ⇒

s

a

s

a

a

Adv

Pr PA

M M M

M M M M

n

A M

M A M

A
A Pr

1 2

1 1

1 1

1 1 1

|| || ||�

[] [

[]
()



MM

M A M P
1

1 1
]

[]
()

s a
≥



PG � (24)

by modus tollens since (23) and (24)

			 ⇒ <Pr PAM M MA M

M A M A
1 1

1 1

1 1[]

[]
()a

s a

� (25)

Similarly

			 Pr PAM M Mi AMi

Mi AMi

i i
A i n[]

[] () , { , , , }a

s a
< ∈ …2 3 � (26)

by the premise n + 1

 

Ø$ Î

< Ù Ù

s

a

s a

Adv

Pr PA Pr

M M M

M M M M

n

A M

M A M

n
A

1 2

1 1

1 1

1 1

|| || ||�

�. ()[]

[]

[[]

[]
()a

s a

A Mn

Mn A Mn

n n
AM M


<æ

è
ö
øPA � (27)

Our assumption contradicts (27), so this adversary s is nonexis-
tent. Next, we will use Example 5 to explain the rule.

Example 5. The example is the extension of Example 1. Figure 5
shows three PAs M1, M2, M3 and a probabilistic safety property
〈P〉≥0.98. The component M2 indicates that the time signal may reap-
pear with probability 0.5 before the shutdown signal. We will show
the verification process by the method of SYM-N rule.

Similar to Example 1, through multi-objective model checking
[18,33], we can acquire three assumptions 〈A〉M1 ≥ 0.9, 〈A〉M2 ≥ 1 and

〈A〉M3 ≥ 0.8, which are represented by DFA AM1

err, AM2

err and AM3

err in Figure 6.

Through premise n + 1, we can find a spurious counterexample
trace cex(0.2, 〈shutdown〉) in AM1 0 1

err

≥ .
 and cex(1, 〈shutdown〉)

in AM2 0

err

≥
, but corresponding spurious counterexample trace in

AM3 0 2

err

≥ .
 is nonexistent (since action fail exists). So prefixes of all

infinite traces in A A AM M M1 2 30 1 0 0 2

err err err

≥ ≥ ≥. .
|| || can be accepted by

 A A AM M M1 2 30 1 0 0 2

err err err

≥ ≥ ≥(). .
|| || and we can think M1||M2||M3 ⊨

〈P〉≥0.98 holds.

4.2. � Improved Learning Framework
for SYM-N Rule

The NL*-based learning framework in Figure 7 can be used for
verifying a stochastic system composed of n ≥ 2 components:
M1||M2||···||Mn. We first answer membership queries through solv-
ing the problem tj||Mj ⊨ 〈P〉≥PG, for j ∈ {1, 2, ..., n}. The process is
similar to Section 3.2.2 but it is a little different. In Counterexample
Analysis for Membership Queries, if tj||Mj ⊭ 〈P〉≥PG, the framework
will verify whether tj is a counterexample c of the target language

Figure 5 | (a) Probabilistic automata M1, (b) Probabilistic automata M2,
(c) Probabilistic automata M3 and (d) DFA P err for the property P.

Figure 6 | Assumptions AM1

err, AM2

err , AM3

err for M1, M2, M3.

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 103

Figure 7 | NL*-based learning framework for the rule SYM-N.

ℒ(M1||M2|| ··· ||Mn). If tj is the counterexample c, the framework
will return the trace tj and the product of the probabilities of corre-
sponding traces in all components as cex(s ′, c′), and we can find
that the property is violated, i.e., M1||M2|| ··· ||Mn ⊭ 〈P〉≥PG. Then, we
need to answer equivalence queries through tackling the problem
〈(AMj

)ij
〉IAj =? Mj〈P〉≥PG, ij indicates the number of iterations about the

assumption AM
j
 and the process of solving the problem shows in

Section 3.2.3.

In Counterexample Analysis for Conjectures, the framework will
check if the counterexample cex(s, w, c) belongs to the target language
ℒ(M1||M2|| ··· ||Mn). The problem can transform into checking whether
M M M Pj

c
n1 ||� �|| || ||,s 

≥PG holds, similarly to Feng et al. [22].
Next, the framework needs to verify ℒ(co〈(AM1

)i1
〉IA1

||co〈(AM2
)i2
〉IA2

||···||co〈(AMn
)in
〉IAn

) = Ø. It can simplify to find a trace that can be

accepted by: ℒ(co〈AM1
〉≥PAM1

||co〈AM2
〉≥PAM2

||···||co〈AMn
〉≥PAMn

), and con-
vert into finding a prefix of the infinite trace is not accepted by:

104	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

Figure 8 | Prototype tool.

 A A AM M M
M M

n
Mn

1
1

2
2

1 1 1

err

PA

err

PA

err

PA≥ − ≥ − ≥ −





|| ||||�

In Counterexample Analysis for Assumptions, if we cannot find
any spurious counterexample trace, ℒ(co〈(AM1

)i1
〉IA1

||co〈(AM2
)i2
〉IA2

||
··· ||co〈(AMn

)in
〉IAn

) will be empty and the framework will return
assumptions 〈AM1

〉IA1
, 〈AM2

〉IA2
, ···, 〈AMn

〉IAn
 to prove that the property is

satisfied, i. M1||M2||···||Mn ⊨ 〈P〉≥PG. On the contrary, we need to use
the spurious counterexample traces to weaken the corresponding
assumptions. We no longer go into details here.

The framework also can return the tightest bounds of the property
P satisfied over the system M1||M2|| ··· ||Mn from the iterative pro-
cess of assumptions. We can calculate:

p A A AA M M M M M Mn n

* (, , ,)() () ()= …min Pr Pr Prmin min min
1 1 2 2

and generate a corresponding adversary s ∈ AdvMi
, for i ∈ {1, 2,

..., n}. Then, we compute A M P
p IA G≥ =* ? through multi-objective

model checking [18,33]. In the end, the lower bound lb(A, P) is
min(IG) and the upper bound ub(A, P) is Prmin

M M Mi n
P

1 ||
()

� �|| || ||s .

5.  RESULTS

As shown in Figure 8, we have developed a prototype tool for our
learning framework. It accepts a model and corresponding prop-
erty as inputs and returns the verification result. Verification result
can be classified into three categories:

	(1)	 Some assumptions are provided to prove that model satisfies
the property.

	(2)	 Counterexample trace cex(s′, c′) is provided to prove that
model violates the property.

	(3)	 Bounds of which the property P holds are provided, if
the appropriate assumption or counterexample cannot be
obtained.

We use PRISM [25] and counterexample construction algorithm
(i.e., particle swarm optimization algorithm [40]) to form a MAT.
Then through the libalf [41] learning library, we can implement the
NL* algorithm and pose membership and equivalence queries to

a MAT. The MAT uses the PRISM modeling language to describe
models and probabilistic safety properties. In the interior of the
MAT, PRISM can provide the transition matrix (indicate that the
transition relation of states in the model) and failure states (indicate
that a property is violated) to counterexample construction algo-
rithm. The algorithm can find all shortest paths of the same length
and calculate the probability of each path, to construct probabilistic
counterexamples. Through constructed counterexamples, we can
respond to these queries of libalf. All experiments are run on a 3.3
GHz PC with 8 GB RAM. Feng et al. [22] uses the L* learning algo-
rithm to produce the probabilistic assumptions. On this basis, Feng
et al. [23] proves that NL* learning algorithm has more efficient
than L* in large-scale cases. Our method thus is based on NL*. We
use several large cases to demonstrate our learning framework and
compare with the method of Feng et al. [23]. We adopt the first two
cases form [23], and modify them a little, because we focus on the
conditions that the model does not satisfy the properties. To ensure
the correctness of the experimental results, we change the cases
through different means. The first case is a network of N sensors.
In the network, a channel can issue some data to a processor, but
it may crash because some data packets are lost. Through the SYM
rule, we make the composition of the N sensors and a channel as a
component M1, the processor as the other component M2. We will
verify the probabilistic safety property, i.e., network never crashes
with a certain probability. We will increase the probability of prob-
abilistic safety property to satisfy our experimental requirements,
and the verified property is 〈P〉≥0.994. Table 1 shows experimental
results for the sensor network.

The second case is the client–server model studied from Pasareanu
et al. [42]. Feng et al. [23] injects (probabilistic) failures into one
or more of the N clients and changes the model into a stochastic
system. In client–server model, each client can send requests for

Table 1 | Sensor network experimental results

Case study
[sensor
network]

Sensor
numbers

Component
sizes SYM ASYM [23]

|M1| |M2| MQ Time(s) MQ Time(s)

1 72 32 16 1.5 25 2.7
2 1184 32 16 1.8 25 2.9
3 10662 32 16 2.4 25 3.9

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 105

Table 2 | Client–server experimental results

Case study [client–server] Client numbers
Component sizes SYM ASYM [23]

|M1| |M2| MQ Time (s) MQ Time (s)

Server (nonprobability) Client (1 failure) 3 16 45 100 2.5 161 5.2
5 36 405 325 6.9 519 12.4
7 64 3645 833 63.1 1189 140.1

Server (nonprobability) Client (N failures) 3 16 125 175 4.6 213 5.9
4 25 625 336 8.3 393 11.4
5 36 3125 226 4.9 648 18.1

Server (probability) Client (1 failure) 3 16 45 120 0.31 187 5.7
5 36 405 379 7.8 583 16.4
7 64 3645 937 28.1 1308 45.5

Server (probability) Client (N failure) 3 16 125 176 3.9 265 6.6
4 25 625 337 7.4 507 12.2
5 36 3125 568 66.2 839 90.3

Table 3 | Randomized consensus algorithm experimental results

Case study
[consensus] [N R K]

Component sizes SYM ASYM [23]

|M1| |M2| Time (s) Time (s)

2 3 20 3217 389 12.1 11.6
2 4 4 431649 571 82.2 80.7
3 3 20 38193 8837 355.8 350.2

Table 4 | Performance comparison of the rule (SYM) and the rule (SYM-N)

Case study
[parameters]

Component sizes SYM SYM-N

|M1| |M2| Time (s) Time (s)

Sensor network [N] 4 72776 32 Time-out 16.6
5 428335 32 Time-out 40.7

Client–server [N] 6 49 15625 Time-out 20.4
7 64 78125 Time-out 80.9

reservations to use a common resource, the server can grant or
deny a client’s request, and the model must satisfy the mutual exclu-
sion property (i.e., conflict in using resources between clients) with
certain minimum probability. Through the SYM rule, we make
the server as a component M1 and the composition of N clients as
the other component M2. The verified property is 〈P〉≥0.9.We use the
method of Feng et al. [23] to inject (nonprobabilistic and proba-
bilistic) failures into the server respectively. Table 2 shows experi-
mental results for the client–server.

To consider the case where the model satisfies the properties,
the last case is randomized consensus algorithm from Feng et al.
[23] without modification. The algorithm models N distributed
processes trying to reach consensus and uses, in each round, a
shared coin protocol parameterized by K. The verified property
is 〈P〉≥0.97504, and 0.97504 is the minimum probability of consensus
being reached within R rounds. Through the SYM rule, the system
is decomposed into two PA components: M1 for the coin protocol
and M2 for the interleaving of N processes.

In Tables 1 and 2, the component sizes of the M1 and M2 are
denoted as |M1| and |M2|, and the performance is measured by the
total number of Membership Queries (MQ) and runtimes (Time).
Note that Time includes counterexample construction, NFA trans-
lation and the learning process. Moreover, for the accuracy of the
results, we select the counterexamples in the same order as Feng
et al. [23] in each equivalence query. Note that Feng et al. [23] has
included comparisons with non-compositional verification, so this
paper only compares with Feng et al. [23].

As shown in Tables 1 and 2, the experiment results show that our
framework is more efficient than Feng et al. [23]. Obviously, we
can observe that, for all cases, runtimes and the number of the
membership queries in our framework are less than Feng et al.
[23]. Moreover, the runtimes need less in our framework, when the
model has a large scale. A larger size model may have less runtimes
and the number of membership queries than a smaller model.
However, this is not proportion with the model size. The efficiency
of our framework depends only on the time of a counterexample
(indicate that the probabilistic safety property is violated) appears
in conjectured assumptions. The earlier a counterexample appears,
the more efficient our framework performs.

In Table 3, the component sizes of the M1 and M2 is also denoted
as |M1| and |M2|. The performance is measured only by total runtimes

(Time), because both methods have the same amount of MQ if the
model satisfies the properties. Because of the cost of early detec-
tion, we can find that our methods need to spend more time than
Feng et al. [23] and cost grows with the model size. But compared
with acquirement of optimization in Tables 1 and 2, the cost is
acceptable in Table 3.

Table 4 compares the performance of the rule (SYM) and the rule
(SYM-N). We impose a time-out of 5 h. Sensor network model has
N sensors and client–server model has N clients. In client–server
model, each client and server all have a (probabilistic) failure. For
the use of rule (SYM-N), we decompose M1 into separate sensor
and compose each sensor and a channel as a component in sensor
network model, and decompose M2 further into separate client in
client–server model. Moreover, the performance is measured by
the total runtimes (Time). In all large cases, the rule (SYM-N) has
more advantage than the rule (SYM). For example, in the case of
sensor network model with four sensors, the component M1 has
72776 states and the component M2 has 32 states. The total runtime
of the compositional verification by the rule (SYM) more than 5 h,
but the use of the rule (SYM-N) only needs 16.6 s. This is because
the size of the component M1 is too large for the rule (SYM), and
the counterexample construction algorithm needs more time to
give the conclusion.

106	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107

6.  DISCUSSION

We first present a sound SYM for compositional stochastic model
checking. Then, we propose a learning framework for composi-
tional stochastic model checking PAs with rule SYM, based on the
optimization of LAGR techniques. Our optimization can terminate
the learning process in advance, if a counterexample appears in any
membership and equivalence query. We also extend the framework
to support the assume-guarantee rule SYM-N which can be used
for reasoning about a stochastic system composed of n ≥ 2 compo-
nents: M1||M2|| ··· ||Mn. Experimental results show that our method
can improve the efficiency of the original learning framework [23].
Similar to Feng et al. [22] and Kwiatkowska et al. [33], it can return
the tightest bounds for the safety property as a reference as well.

In the future, we intend to develop our learning framework to
produce richer classes of probabilistic assumption (for example
weighted automata as assumptions [39]) and extend it to deal with
more expressive types of probabilistic models.

CONFLICTS OF INTEREST

The author declare they have no conflicts of interest.

ACKNOWLEDGMENTS

This work was supported by the Six Talent Peaks Project of Jiangsu
(No. RJFW-014), National Natural Science Foundation of China
(61303022), Natural Science Major Project of Jiangsu Higher Education
Institutions (17KJA520002), and Nanjing Scientific & Technological
Innovation Project for Outstanding Overseas Returnees.

REFERENCES

  [1]	 E.M. Clarke, E.A. Emerson, Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic, in: D. Kozen
(Eds.), Workshop on logics of programs, Lecture Notes in Computer
Science, vol. 131, Springer, Berlin, Heidelberg, 1981, pp. 52–71.

  [2]	 J.P. Queille, J. Sifakis, Specification and verification of concur-
rent systems in CESAR, in: M. Dezani-Ciancaglini, U. Montanari
(Eds.), International Symposium on Programming, Lecture Notes
in Computer Science, vol. 137, Springer, Berlin, Heidelberg, 1982,
pp. 337–351.

  [3]	 C. Baier, J-P. Katoen, Principles of Model Checking, MIT Press,
Cambridge, UK, 2008.

  [4]	 M. Kwiatkowska, G. Norman, D. Parker, Stochastic model check-
ing, in: M. Bernardo, J. Hillston (Eds.), Formal Methods for
Performance Evaluation (SFM), Lecture Notes in Computer
Science, vol. 4486, Springer, Berlin, Heidelberg, 2007, pp. 220–270.

  [5]	 V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, Automated ver-
ification techniques for probabilistic systems, in: M. Bernardo,
V. Issarny (Eds.), Formal Methods for Eternal Networked
Software Systems (SFM), Lecture Notes in Computer Science,
vol. 6659, Springer, Berlin, Heidelberg, 2011, pp. 53–113.

  [6]	 G.D. Penna, B. Intrigila, I. Melatti, E. Tronci, M.V. Zilli, Bounded
probabilistic model checking with the mura verifier, in: A.J. Hu,
A.K. Martin (Eds.), Formal Methods in Computer-Aided Design
(FMCAD), Lecture Notes in Computer Science, vol. 3312, Springer,
Berlin, Heidelberg, 2004, pp. 214–229.

  [7]	 E. Clarke, O. Grumberg, S. Jha, et al., Counterexample-guided
abstraction refinement, in: E.A. Emerson, A.P. Sistla (Eds.),
Computer Aided Verification (CAV), Lecture Notes in Computer
Science, vol. 1855, Springer, Berlin, Heidelberg, 2000, pp. 154–169.

  [8]	 H. Barringer, R. Kuiper, A. Pnueli, Now you may compose tem-
poral logic specifications, in: Sixteenth Annual ACM Symposium
on the Theory of Computing (STOC), ACM, New York, NY,
USA, 1984, pp. 51–63.

  [9]	 A. Pnueli, In transition from global to modular temporal rea-
soning about programs, in: K.R. Apt (Eds.), Logics and models
of Concurrent Systems, NATO ASI Series (Series F: Computer
and Systems Sciences), vol. 13, Springer, Berlin, Heidelberg,
1985, pp. 123–144.

[10]	 B. Meyer, Applying ‘Design by Contract’, Computer 25 (1992),
40–51.

[11]	 S. Bensalem, M. Bogza, A. Legay, T.H. Nguyen, J. Sifakis, R. Yan,
Incremental component-based construction and verification
using invariants, in: Formal Methods in Computer Aided Design
(FMCAD), IEEE, Piscataway, NJ, 2010, pp. 257–256.

[12]	 H. Barringer, C.S. Păsăreanu, D. Giannakopolou, Proof rules
for automated compositional verification through learning, in:
Proc. of the 2nd International Workshop on Specification and
Verification of Component Based Systems, 2003, pp. 14–21.

[13]	 M.G. Bobaru, C.S. Păsăreanu, D. Giannakopoulou, Automated
assume-guarantee reasoning by abstraction refinement, in: A. Gupta,
S. Malik (Eds.), Computer Aided Verification (CAV), Lecture Notes
in Computer Science, vol. 5123, Springer, Berlin, Heidelberg, 2008,
pp. 135–148.

[14]	 J.M. Cobleigh, D. Giannakopoulou, C.S. Păsăreanu, Learning
assumptions for compositional verification, in: H. Garavel,
J. Hatcliff (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Lecture Notes in Computer Science,
vol. 2619, Springer, Berlin, Heidelberg, 2003, pp. 331–346.

[15]	 O. Grumberg, D.E. Long, Model checking and modular verifica-
tion, ACM Trans. Program. Lang. Syst. 16 (1994), 843–871.

[16]	 R. Segala, Modeling and verification of randomized distributed
real-time systems, Department of Electrical Engineering and
Computer Science, MIT, 1995 (Also appears as Technical Report
MIT/LCS/TR–676).

[17]	 M. Kwiatkowska, G. Norman, D. Parker, H. Qu, Assume-
guarantee verification for probabilistic systems, in: J. Esparza,
R. Majumdar (Eds.), Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Lecture Notes in Computer
Science, vol. 6015, Springer, Berlin, Heidelberg, 2010, pp. 23–37.

[18]	 K. Etessami, M. Kwiatkowska, M.Y. Vardi, M. Yannakakis, Multi-
objective model checking of Markov decision processes, in:
O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science, vol. 4424, Springer, Berlin, Heidelberg, 2007,
pp. 50–65.

[19]	 R. Bouchekir, M.C. Boukala, Learning-based symbolic assume-
guarantee reasoning for Markov decision process by using inter-
val Markov process, Innov. Syst. Softw. Eng. 14 (2018), 229–244.

[20]	 F. He, X. Gao, B-Y. Wang, L. Zhang, Leveraging Weighted
Automata in Compositional Reasoning about Concurrent
Probabilistic Systems, 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2015,
pp. 503–514.

[21]	 A. Komuravelli, C.S. Păsăreanu, E.M. Clarke, Assume-
guarantee abstraction refinement for probabilistic systems, in:
P. Madhusudan, S.A. Seshia (Eds.), Computer Aided Verification,

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-540-30494-4_16
https://doi.org/10.1007/978-3-540-30494-4_16
https://doi.org/10.1007/978-3-540-30494-4_16
https://doi.org/10.1007/978-3-540-30494-4_16
https://doi.org/10.1007/978-3-540-30494-4_16
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/800057.808665
https://doi.org/10.1145/800057.808665
https://doi.org/10.1145/800057.808665
https://doi.org/10.1145/800057.808665
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1145/177492.177725
https://doi.org/10.1145/177492.177725
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-642-12002-2_3
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/978-3-540-71209-1_6
https://doi.org/10.1007/s11334-018-0316-7
https://doi.org/10.1007/s11334-018-0316-7
https://doi.org/10.1007/s11334-018-0316-7
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1007/978-3-642-31424-7_25

	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 107

(CAV) Lecture Notes in Computer Science, vol. 7358, Springer,
Berlin, Heidelberg, 2012, pp. 310–326.

[22]	 L. Feng, M. Kwiatkowska, D. Parker, Compositional verifica-
tion of probabilistic systems using learning, in: 2010 Seventh
International Conference on the Quantitative Evaluation of
Systems, IEEE, Williamsburg, VA, USA, 2010, pp. 133–142.

[23]	 L. Feng, M. Kwiatkowska, D. Parker, Automated learning of
probabilistic assumptions for compositional reasoning, in: D.
Giannakopoulou, F. Orejas (Eds.), Fundamental Approaches
to Software Engineering (FASE), Lecture Notes in Computer
Science, vol. 6603, Springer, Berlin, Heidelberg, 2011, pp. 2–17.

[24]	 T. Han, J.P. Katoen, D. Berteun, Counterexample generation in
probabilistic model checking, IEEE Trans. Softw. Eng. 35 (2009),
241–257.

[25]	 A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, PRISM:
a tool for automatic verification of probabilistic systems, in:
H. Hermanns, J. Palsberg (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science, vol. 3920, Springer, Berlin, Heidelberg, 2006,
pp. 441–444.

[26]	 D. Eppstein, Finding the k shortest paths, SIAM J. Comput. 28
(1998), 652–673.

[27]	 H. Debbi, A. Debbi, M. Bourahla, Debugging of probabilis-
tic systems using structural equation modelling, Int. J. Critic.
Comput. Based Syst. 6 (2017), 250–274.

[28]	 H. Aljazzar, S. Leue, K*: a heuristic search algorithm for finding
the k shortest paths, Artif. Intell. 175 (2011), 2129–2154.

[29]	 H. Debbi, M. Bourahla, Generating diagnoses for probabilistic
model checking using causality, Comput. Inform. Technol. 21
(2013), 13–22.

[30]	 H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR,
in: A. Gupta, S. Malik, Computer Aided Verification (CAV),
Lecture Notes in Computer Science, vol. 5123, Springer,
Berlin, Heidelberg, 2008, pp. 162–175.

[31]	 B. Dutertre, L. de Moura, The Yices SMT Solver, Technical
Report, SRI International, 2006.

[32]	 M.O. Rabin, Probabilistic automata, Inform. Control. 6 (1963),
230–245.

[33]	 L. Feng, On Learning Assumptions for Compositional Verification
of Probabilistic Systems, Ph.D. thesis, University of Oxford, 2013.

[34]	 B. Bollig, P. Habermehl, C. Kern, M. Leucker, Angluin-style
learning of NFA, in: Boutilier, Craig, Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI),
AAAI Press, Pasadena, CA, USA, 2009, pp. 1004–1009.

[35]	 F. Denis, A. Lemay, A. Terlutte, Residual finite state automata,
Fund. Inform. 51 (2002), 339–368.

[36]	 F. Denis, A. Lemay, A. Terlutte, Learning regular languages using
RFSAs, Theor. Comput. Sci. 313 (2004), 267–294.

[37]	 L. de Alfaro, Formal Verification of Probabilistic Systems,
Stanford University, 1997.

[38]	 M.O. Rabin, D.S. Scott, Finite automata and their decision
problems, IBM Journal of Research and Development, IBM J.
Res. Dev. 3 (1959), 114–125.

[39]	 F. He, X. Gao, M. Wang, B-Y. Wang, L. Zhang, Learning weighted
assumptions for compositional verification of Markov decision
processes, ACM Trans. Softw. Eng. Meth. 25 (2016), 1–39.

[40]	 Y. Ma, Z. Cao, Y. Liu, Counterexample generation in stochastic
model checking based on pso algorithm with heuristic, Int. J.
Softw. Eng. Knowl. Eng. 26 (2016), 1117–1143.

[41]	 B. Bollig, J.P. Katoen, C. Kern, M. Leucker, D. Neider, D.R.
Piegdon, libalf: The automata learning framework, in: T. Touili,
B. Cook, P. Jackson (Eds.), Computer Aided Verification (CAV),
Lecture Notes in Computer Science, vol. 6174, Springer, Berlin,
Heidelberg, 2010, pp. 360–364.

[42]	 C. Păsăreanu, D. Giannakopoulou, M. Bobaru, J.M. Cobleigh,
H. Barringer, Learning to divide and conquer: applying the L*
algorithm to automate assume-guarantee reasoning, Formal
Methods Syst Des. 32 (2008), 175–205.

https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1109/TSE.2009.5
https://doi.org/10.1109/TSE.2009.5
https://doi.org/10.1109/TSE.2009.5
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1137/S0097539795290477
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.2498/cit.1002115
https://doi.org/10.2498/cit.1002115
https://doi.org/10.2498/cit.1002115
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1016/j.tcs.2003.11.008
https://doi.org/10.1016/j.tcs.2003.11.008
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1145/2907943
https://doi.org/10.1145/2907943
https://doi.org/10.1145/2907943
https://doi.org/10.1142/S021819401650039X
https://doi.org/10.1142/S021819401650039X
https://doi.org/10.1142/S021819401650039X
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6

