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1.  INTRODUCTION

Formal verification can reveal the unexposed defects in a safety-
critical system. As a prominent formal verification technique, 
model checking is an automatic and complete verification tech-
nique of finite state systems against correctness properties, which 
was pioneered respectively by Clarke and Emerson [1] and by 
Queille and Sifakis [2] in the early 1980’s. Whereas model checking 
techniques focus on the absolute correctness of systems, in practice 
such rigid notions are hard, or even impossible, to ensure. Instead, 
many systems exhibit stochastic aspects [3] which are essential 
for among others: modeling unreliable and unpredictable system 
behavior (message garbling or loss), model-based performance 
evaluation (i.e., estimating system performance and dependability) 
and randomized algorithms (leader election or consensus algo-
rithms). Automatic formal verification of stochastic systems by 
model checking is called stochastic model checking or probabilistic 
model checking [4].

Stochastic model checking algorithms rely on a combination 
of model checking techniques for classical model checking and 
numerical methods for calculating probabilities. So, stochastic 
model checking faces more severe state explosion problem, com-
pared with classical model checking [5]. There are some works 
to deal with this problem through bounded probabilistic model 
checking [6], abstraction refinement [7], compositional verifica-
tion [8] and so on. The crucial notion of compositional verification 
is “divide and conquer”. It can decompose the whole system into 
separate components and conquer each component separately. The 

compositional verification techniques include assume-guarantee 
reasoning [9], contract-based methods [10] and invariant-based 
methods [11]. This paper focuses on assume-guarantee reasoning, 
which is an automatic method of compositional verification. To 
account for the relationship between the whole system and its dif-
ferent components, assume-guarantee reasoning gives some rules, 
which can change the global verification of a system into local  
verification of individual components.

Theoretically speaking, applying the assume-guarantee reasoning 
into stochastic model checking is a feasible way to solve the state 
explosion problem. There is some research work done in this direc-
tion [12–15]. We argue that applying the assume-guarantee reason-
ing into stochastic model checking should solve the following four 
issues, which is named as AG-SMC problem: (1) How to generate 
appropriate assumptions. (2) How to check the assume-guarantee 
triple. (3) How to construct a counterexample. (4) How to verify a 
stochastic system composed of n (n ≥ 2) components.

1.1.  Related Work

According to the generation type of assumptions, we divided the 
existed work into two categories.

1.1.1. � Manual interactive assumption  
generation

On the existing theory of Markov Decision Process (MDP) model 
of combinatorial analysis [16], Kwiatkowska et al. [17] first gives 
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out assume-guarantee reasoning for verifying probabilistic autom-
aton (PA) model, including asymmetric assumption-guarantee 
rule (ASYM), circular assumption-guarantee rule (CRIC) and 
asynchronous assumption-guarantee rule (ASYNC). It solves the 
AG-SMC problem as follows: (1) It generates the assumptions 
through the manual interactive method. (2) In the triple of the form 
〈A〉≥PAM〈P〉≥PG, system model M is a PA, the assumption 〈A〉≥PA and 
guarantee 〈P〉≥PG are probabilistic safety properties, represented by 
deterministic finite automaton (DFA). When system component M 
satisfies assumptions A with minimum probability PA, it will be 
able to satisfy property P with minimum probability PG. Checking 
the triple can be reduced to multi-objective model checking 
[18], which is equivalent to a linear programming (LP) problem.  
(3) It does not involve to construct the counterexamples. (4) It ver-
ifies a stochastic system composed of n ≥ 2 components through 
multi-component asymmetric assume-guarantee rule (ASYM-N). 
The core idea of ASYM-N rule is similar to CRIC rule, i.e., the 
component M1 satisfies the guarantee 〈A1〉≥PAM1

, then the guarantee 
〈A1〉≥PAM1

 as the assumption of the component M2, let the component 
M2 can satisfy the guarantee 〈A2〉≥PAM2

, …, until the component Mn 
that satisfies the assumption 〈An–1〉≥PAMn–1

 can satisfy the guarantee 
〈P〉≥PG. If all above-mentioned conditions hold, the entire system 
model M1||M2|| ··· ||Mn will satisfy the guarantee 〈P〉≥PG.

1.1.2.  Automated assumption generation

Bouchekir and Boukala [19], He et al. [20], Komuravelli et al. [21], 
Feng et al. [22] and [23] are the automated assumption generation 
methods for solving the AG-SMC problem. They can be divided 
into the following three kinds further.

1.1.2.1.  Learning-based assumption generation

Based on the learning-based assume-guarantee reasoning (LAGR) 
technology and the ASYM rule proposed in Segala [16], Feng et al. 
[22] proposes L*-based learning framework for PA model, which 
can be used to verify whether the given PA model satisfies the prob-
abilistic safety property. Feng et al. [22] uses the cases to demon-
strate the performance of its method, including the client–server, 
sensor network and the randomized consensus algorithm. For the 
AG-CSMC problem, Segala [16] can be specifically described in 
the following four aspects: (1) Through the L* learning algorithm, 
the process of generating an appropriate assumption 〈A〉≥PA is fully 
automated, i.e., we need to generate a closed and consistent obser-
vation table through membership queries, to generate a conjectured 
assumption, and then verify the correctness of the assumption 
through equivalence queries. (2) It checks the assume-guarantee 
triple through multi-objective model checking [18]. (3) In the 
whole learning process, Feng et al. [22] adopts the method pro-
posed in Han et al. [24] to generate probabilistic counterexamples 
for refining the current assumption, i.e., the PRISM [25] is used 
to obtain the error state nodes in the model, and then the proba-
bilistic counterexamples are constructed by using Eppstein’s [26] 
algorithm. (4) The verification problem of a stochastic system com-
posed of n ≥ 2 components is not solved.

Feng et al. [23] makes further research based on Feng et al. [22] 
and uses several large cases to demonstrate the performance of it, 

including client–server, sensor network, randomized consensus 
algorithm and Mars Exploration Rovers (MER). For the AG-CSMC 
problem, compared with Feng et al. [23] and Feng et al. [22], the 
contribution of Feng et al. [23] is reflected in the better solution of 
the first sub-problem and the solution of the fourth sub-problem, 
which will be illustrated in the following two aspects: (1) Feng et al. 
[23] compares the assumption generation process between the L* 
learning algorithm and the NL* learning algorithm, and finds that 
NL* often needs fewer membership and equivalence queries than 
L* in large cases. (2) Based on Segala [16], Feng et al. [23] uses the 
ASYM-N rule to propose a learning framework for compositional  
stochastic model checking, and uses it to verify the multi-
component stochastic system. So far, in the learning-based assump-
tion generation method, four sub-problems of AG-CSMC problem 
have been solved basically.

1.1.2.2.  Symbolic learning-based assumption generation

One deficiency of learning-based assumption generation method 
is that the learning framework is sound but incomplete. Based 
on ASYM rule, He et al. [20] proposes an assume-guarantee rule 
containing weighted assumption for the first time, and provides a 
sound and complete learning framework, which can verify whether 
the probabilistic safety properties are satisfied on the MDP model. 
Through randomized consensus algorithm, wireless LAN proto-
col, FireWire protocol and randomized dining philosophers, He 
et al. [20] demonstrates the performance of its method. For the 
AG-CSMC problem, He et al. [20] can be specifically described 
in the following four aspects: (1) The weighted assumption can 
be represented by Multi-terminal Binary Decision Diagrams 
(MTBDD). Based on the L* learning algorithm, He et al. [20] pro-
poses an MTBDD learning algorithm to automatically generate the 
weighted assumption, which is represented by a k-Deterministic 
Finite Automaton (k-DFA). MTBDD learning algorithm can make 
membership queries on binary strings of arbitrary lengths and 
answer membership queries on valuations over fixed variables by 
the teacher. (2) Through the weighted extension of the classical 
simulation relation, He et al. [20] presents a verification method of 
the assume-guarantee triple containing the weighted assumption. 
(3) Similarly to Feng et al. [22], He et al. [20] also constructs the 
necessary probabilistic counterexamples in the learning process 
through Han et al. [24]. (4) The verification problem of a stochastic 
system composed of n ≥ 2 components is not solved.

In Bouchekir and Boukala [19], the method realizes automatic assum
ption generation through the Symbolic Learning-based Assume-
Guarantee Reasoning technology, also known as the Probabilistic 
Symbolic Compositional Verification (PSCV). The PSCV method 
provides a sound and complete symbolic assume-guarantee 
rule to verify whether the MDP model satisfies the Probabilistic 
Computation Tree Logic (PCTL) property. It is a new approach 
based on the combination of assume-guarantee reasoning and sym-
bolic model checking techniques. Bouchekir and Boukala [19] uses 
randomized mutual exclusion, client–server, randomized dining 
philosophers, randomized self-stabilizing algorithm and Dice to 
demonstrate the performance of its method. For the AG-CSMC 
problem, Bouchekir and Boukala [19] can be specifically described 
in the following four aspects: (1) Appropriate assumptions are auto-
matically generated by symbolic MTBDD learning algorithm, and 
represented by interval MDP (IMDP), thus ensuring the complete-
ness of symbolic assume-guarantee rule. Moreover, in addition, to 
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reduce the size of the state space, the PSCV method encodes both 
system components and assumptions implicitly using compact data 
structures, such as BDD or MTBDD. (2) Bouchekir and Boukala [19] 
uses the method in He et al. [20] to verify assume-guarantee triple. 
(3) To refine assumptions, the PSCV method [27] uses the causality 
method to construct counterexamples, i.e., it uses K* algorithm [28] 
in the DiPro tool to construct counterexamples, and applies the algo-
rithms in Debbi and Bourahla [29] to construct the most indicative 
counterexample. (4) Verification of a stochastic system composed of 
n ≥ 2 components is not involved.

1.1.2.3. � Assumption generation based on  
abstraction-refinement

The method in Komuravelli et al. [21] is similar to Counterexample 
Guided Abstraction Refinement (CEGAR) [30]. It uses the Assume-
Guarantee Abstraction Refinement technology to propose an 
assume-guarantee compositional verification framework for Labeled 
Probabilistic Transition Systems (LPTSes), which can verify whether 
the given LPTS model satisfies the safe-PCTL property. Komuravelli 
et al. [21] uses the client–server, MER and wireless sensor network 
to demonstrate the performance of its method. For the AG-CSMC 
problem, Komuravelli et al. [21] can be specifically described in 
the following four aspects: (1) The method can use tree counter-
examples from checking one component to refine the abstraction 
of another component. Then, it uses the abstraction as the assump-
tions for assume-guarantee reasoning, represented by LPTS. (2) It 
uses a strong simulation relationship to check the assume-guarantee 
triple. (3) The process of constructing tree counterexample can be 
reduced to check the Satisfiability Modulo Theories problem, and 
then solve it through Yices [31]. (4) It also verifies an n-component 
stochastic system (n ≥ 2) by the ASYM-N rule.

1.2.  Our Contribution

This paper presents some improvements based on the probabi-
listic assume-guarantee framework proposed in Feng et al. [23]. 
On one hand, our optimization is to verify each membership and 
equivalence query, to seek a counterexample, which can prove the 
property is not satisfied. If the counterexample is not spurious, the 
generation of the assumptions will stop, and the verification pro-
cess will also terminate immediately. On the other hand, a potential 
shortage of the ASYM displays that the sole assumption A about M1 
is present, but the additional assumption about M2 is nonexistent. 
We thus apply the SYM rule to the compositional verification of 
PAs and extend the rule to verify an n-component system (n ≥ 2). 
Through several large cases, it is shown that our improvements are 
feasible and efficient.

1.3.  Paper Structure

The rest of the paper is organized as follows. Section 2 introduces 
the preliminaries used in this paper, which include PAs, model 
checking and the NL* algorithm. Section 3 presents a composi-
tional stochastic model checking framework based on the SYM 
rule and optimizes the learning framework. Then, the framework is 
extended to an n-component system (n ≥ 2) in Section 4. Section 5 

develops a prototype tool for the framework, and compares it with 
Feng et al. [23] by several large cases. Finally, Section 6 concludes 
the paper and presents direction for future research.

2.  BACKGROUND

2.1.  Probabilistic Automata

Probabilistic automata [3,17,32,33] can model both probabilistic 
and nondeterministic behavior of systems, which is a slight gen-
eralization of MDPs. The verification algorithms for MDPs can be 
adapted for PAs.

In the following, Dist(V) is defined as the set of all discrete proba-
bility distributions over a set V. hv is defined as the point distribu-
tion on v ∈ V. m1 × m2 ∈ Dist(V1 × V2) is the product distribution 
of m1 ∈ Dist(V1) and m2 ∈ Dist(V2).

Definition 1. (probabilistic automaton) A probabilistic automaton 
(PA) is a tuple M V v LM M= ( , , , , )a d  where V is a set of states, 
v V∈  is an initial state, aM is an alphabet for all the action, dM ⊆ V 
× (aM ∪ {τ}) × Dist(V) is a probabilistic transition relation. τ is an 
invisible action, and L: V ® 2AP is a labeling function mapping each 
state to a set of atomic propositions taken from a set AP.

In any state v of a PA M, we use the transition v→
a
m  to denote that 

(v, a, m) ∈ dM, where a ∈ aM ∪ {τ} is an action label. m is a proba-
bility distribution over state v. All transitions are nondeterministic, 
and it will make a random choice according to the distribution m. 

A trace through M is a (finite or infinite) sequence v v0 1

0 0 1 1

→ → ⋅⋅⋅
a m a m, ,

 

where v v0 = ,  and for each i ≥ 0, vi i

i

→
a

m  is a transition and mi (vi+1) 
> 0. The sequence of actions a0, a1, ..., after removal of any t, from 
a trace t is also called a path. An adversary s is sometimes referred 
to as scheduler, policy, or strategy, which maps any finite path to a 
sub-distribution over the available transitions in the last state of the 
path. This paper focuses on are finite-memory adversaries, which 
store information about the history in a finite-state automaton (see 
Baier and Katoen [3] Definition 10.97; pp. 848). We define TraceM

s  
as the set of all traces through M under the control of adversary 
s, and AdvM as the set of all potential adversaries for M. For an 
adversary, we define a probability space PrM

s  on TraceM
s , and the 

probability space can know the probability of the adversary s.

Definition 2. (Parallel composition of PAs) If M V v LM M1 1 1 11 1
= ( , , , , )a d

M V v LM M1 1 1 11 1
= ( , , , , )a d  and M V v LM M2 2 2 22 2

= ( , , , , )a d  are PAs, then their 
parallel composition is denoted as M1||M2. It is given by the 
PA( , ( , ), , , )V V v v LM M M M1 2 1 2 1 2 1 2

´ Èa a d ||  where dM1||M2
 is defined 

such that ( , )v v1 2 1 2
a m m → ×  if and only if one of the following 

holds:
		  v v M M1 1 2 2 1 2

a am m a a a →  → ∈ ∩, and � (1)

		  v v M M1 1 2 2 1 2

a m m h a a a t → = ∈ ∪, ( ) { }\and � (2)

		  v v M M2 2 1 1 2 1

a m m h a a a t → = ∈ ∪, ( ) { }\and � (3)

and	       L v v L v L v( , ) ( ) ( )1 2 1 1 2 2= ∪ � (4)

Definition 3. (Alphabet extension of PA) For any PA M V v LM M= ( , , , , )a d
PA M V v LM M= ( , , , , )a d  and set of actions y, we extend the alphabet of M to 
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y, denoted M[y], as follows: M y V v y LM M y[ ] ( , , , , )[ ]= ∪a d  where 
dM[y] is a probabilistic transition relation on M[y], and dM[y] = dM ∪ 
{(v, a, hv)|v ∈ V Λ a ∈ y\aM}.

For any state v = (v1, v2) of M1||M2, the projection of v on Mi, 
denoted by v ↾Mi

. Then, we extend it to distributions on the state 
space V1 × V2 of M1||M2. For each trace t on M1||M2, the projection 
of t on Mi, denoted by t ↾Mi

, i.e., the trace can be acquired from Mi 
by projecting each state of t onto Mi and removing all the actions 
not in the alphabet aMi

.

Definition 4. (Adversary projections) Let us suppose that M1 and 
M2 are PAs, s is an adversary of M1 || M2. The projection of s on Mi 
is denoted as s ↾Mi

, which is the adversary on Mi, for any finite trace 
ti of Mi, s ↾Mi

 (t) (a, mi) equals:

 
{| , | |}( ) ( )( ) ||Pr Trace

Pr

s s

s

s a m m mt t t t tM M M i M ii i

Mi

⋅ ∈ ∧ = ∧ =∑ 1 2
 

 (( )ti

� (5)

2.2. � Model Checking for  
Probabilistic Automata

Here, we concentrate on action-based properties over PAs, defined 
regarding their traces. In essence, we use regular languages over 
actions to describe these properties. A regular safety property P 
signifies a set of infinite words w, the usual notation is ℒ(P), that is 
represented by a regular language of bad prefixes, because its finite 
words any (possibly empty) extension is not in ℒ(P). Formally, we 
describe that set for P by a DFA P V v FP P

err = ( , , , , )a d , V is a set 
of states, v V∈  is an initial state, aP is an alphabet, transition func-
tion dP: V × aP ® V and a set of accepting states F ⊆ V, which can 
store the set of bad prefixes of infinite words w. Formally, a regular 
safety language ℒ(P) is defined as:

	    ( ) { ) ( )}P PP= ∈w a ww( |no prefix of is in err � (6)

Provided a PA M and regular safety property P, alphabet aP ⊆ aM, 
an infinite trace t of M satisfies P, denoted t ⊨ P, if and only if t ↾ aP 
∈ ℒ(P). For a finite trace t′ of M, if some infinite traces t of which 
t′ is a prefix satisfies P, we denote as t′ ⊨ P. For an adversary s ∈ 
AdvM, we define the probability of M under s satisfying P as:

		        Pr Pr Tracedef
M M MP t t Ps ss( ) { | }∈  � (7)

That is to say PrM Ps ( )  indicates the probability of a corresponding 
trace t (the trace t is included by the component M under adversary 
s and satisfies the property P).

Next, we define the minimum probability of satisfying P as:

			     Pr inf Prmin
Adv

def
M MP P

M
( ) ( )s

s
∈ � (8)

inf PrAdvs
s

∈ M M P( )  denotes that PrM Ps ( )  of infimum is taken over by 
all adversaries s for M.

A probabilistic safety property 〈P〉≥PG contains a safety property P 
and a sound probability bound PG. For example, the probability of 
a success happening is at least 0.98. We have a PA M satisfies this 
property, denoted M ⊨ 〈P〉≥PG, if and only if the probability of satis-
fying P is at least PG for any adversary:

  M P P P
PG M M M

≥
⇔ ∀ ∈ ≥ ⇔ ≥⋅s sAdv Pr PG Pr PGmin( ) ( ) � (9)

According to the above formulae, the verification of a probabilistic 
safety property 〈P〉≥PG on a PA M can be transformed into calcula-
tion of the minimum probability Prmin

M P( ), i.e., we should calculate 
the maximum probability of reaching a set of accepting states in the 
product of M ⊗ P err (see Kwiatkowska et al. [33] Definition 6 for 
details), where the DFA P err represents the safety property P. In fact, 
a finite-memory adversary is necessary, because such an adversary 
s always exists, which leads to Pr Prmin

M MP Ps ( ) ( )= . Particularly, this 
extreme case also holds:

			   M P t PtM 
≥

⇔ ∀ ∈ ⋅
1

Trace � (10)

Definition 5. (Assume-guarantee triple) If 〈A〉≥PA and 〈P〉≥PG are 
probabilistic safety properties, M is a PA and alphabet aP ⊆ aA ∪ 
aM, then:

		      
A

A P
M

M M

A

A A

≥ ≥
⇔ ∀ ∈

≥ ⇒ ≥
PA PG

M P Adv

Pr PA Pr PG

s a

a
s

a
s

[ ]

[ ] [ ]

.

( )( ) ( )
�

(11)

where 〈A〉≥PA is also called as assumption and M[aA] is, as described 
in Section 2.1, M with its alphabet extended to include aA.

Determining whether an assume-guarantee triple holds can reduce 
to multi-objective probabilistic model checking [18,33]. In the 
absence of an assumption (denoted by 〈true〉), checking the triple 
can reduce to normal model checking:

			   true M P M P
PG PG≥ ≥

⇔  � (12)

2.3.  NL* Learning Algorithm

The NL* Learning algorithm [34] is a popular active learning 
algorithm (since they can ask queries actively) for Residual Finite-
State Automata (RFSA) [35,36]. It is developed from L* algorithm, 
and has some similar features with L* algorithm. It also needs 
an automaton to accept each unknown regular language, and a 
Minimally Adequate Teacher (MAT) to answer membership and 
equivalence queries.

Generally, the RFSA may generate extra nondeterministic choices 
in the product PA [37] and it is a subclass of Nondeterministic 
Finite-state Automata (NFA). So, we must transform NFA A into 
a corresponding DFA A through the standard subset construc-
tion algorithm [38]. Although we cannot acquire more succinct 
assumptions because of the transform step, NL* algorithm may 
have a faster learning procedure than L* algorithm [23].

3. � ASSUME-GUARANTEE REASONING 
WITH SYM RULE

3.1.  Symmetric Rule

At present, compositional stochastic model checking is imple-
mented based on the ASYM [22,23,33,39], which can generate the 
corresponding assumption for only one component of the system. 
We present the SYM for the compositional stochastic model check-
ing PAs.
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Theorem 1. Let us suppose that M1, M2 are PAs and 〈AM1
〉≥PAM1

, 
〈AM2

〉≥PAM2
, 〈P〉≥PG are probabilistic safety properties. Respectively, 

their alphabets satisfy aAM1
 ⊆ aM2

, aAM2
 ⊆ aM1

 and aP ⊆ aAM1
 ∪ aAM2

. 
co〈AM1

〉≥PAM1
 denote the co-assumption for M1 which is the comple-

ment of 〈AM1
〉≥PAM1

, similarly for co〈AM2
〉≥PAM2

, the following SYM rule 
holds:

1

2

3

1
1

2
2

1
1

2
2

1

2

:

:

: ||

A M P

A M P

co A co A

M

M

M M

M

M

M M

≥ ≥

≥ ≥

≥ ≥



PA PG

PA PG

PA PA



 = ∅

≥
true

PG
M M P1 2||

Theorem 1 indicates that, if each assumption about corresponding 
component can be acquired, we will be able to decide whether the 
property 〈P〉≥PG holds on M1||M2. The particular interpretation of 
Theorem 1 is shown below.

The meaning of the premise 1 is “whenever M1 satisfies AM1
 with 

probability at least PAM1
, then it will satisfy P with probability at 

least PG”, 〈AM1
〉≥PAM1

 also indicates these traces with probability at 
least PAM1

 in AM1
. So it can be represented by AM

M
1

1
1

err

PA< −
 (see 

Section 2.2, AM1

err  is same as P err). The premise 2 is similar to the 
premise 1.

In the premise 3, the assumption and its complement have the 
same alphabet. There is no common trace in the composition of 
the co-assumptions. Note that co〈AM1

〉≥PAM1
 (i.e., 〈AM1

〉<PAM1
) can be 

represented by AM
M

1
1

1

err

PA≥ −
.

So an infinite trace can be accepted by ℒ(co〈AM1
〉≥PAM1

||co〈AM2
〉≥PAM2

), 
which can convert into a prefix of the infinite trace is not accepted 

by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .

Proof of Theorem 1. We provide the proof of Theorem 1 in the  
following. This requires Lemma 1, which derives from Kwiatkowska 
et al. [33].

Lemma 1. Let us suppose that M1, M2 are PAs, s ∈ AdvM1||M2
, y ⊆ 

aM1||M2
 and i = 1, 2. If A is regular safety properties such that aA ⊆ 

aMi[y], then:
			       Pr PrM M M yA A

i

Mi y

1 2|| [ ]( ) ( )[ ]s s= 
� (13)

Proof (of Theorem 1). The proof is by contradiction. Assume that 
the premise 1, 2 and 3 hold, but the conclusion does not. Since 
M1||M2 ⊭ 〈P〉≥PG, we will be able to find an adversary s ∈ AdvM1||M2

, 
such that Pr PGM M P

1 2|| ( )s < . Now, it follows that:

				    Pr PGM M P
1 2||
s ( ) < � (14)

By Lemma 1 since aP ⊆ aAM1
 ∪ aAM2

 ⊆ aM1[aAM1
]

			           ⇒ ( ) <Pr PGM AM

M AM P
1 1

1 1
[ ]

[ ]

a

s a

� (15)

by the premise 1 and Definition 5

			   

" Î

³

Þ

s

a

s

s

a

a

Adv

Pr PA

Pr

M M

M M M

M

AM

M AM

AM

M

A
1 2

1 1

1 1

1 1

1
1

||

[ ]

.

( ( )
[ ]

[ ]




11 1

[ ]
( ) )

aAM P ³ PG

�

(16)

by modus tollens since (15) and (16)

			     ⇒ <Pr PAM M MAM

M AM A
1 1

1 1

1 1[ ]

[ ]
( )a

s a

� (17)

Similarly

			     Pr PAM M MAM

M AM A
2 2

2 2

2 2[ ]

[ ]
( )a

s a
< � (18)

by the premise 3
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[ ] 

22 2
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aAM AM M<



PA � (19)

Our assumption contradicts (19), so this adversary s is nonexis-
tent. Next, we will use a simple example to illustrate the rule (taken 
from Kwiatkowska et al. [33]).

Example 1. Figure 1 shows two PAs M1 and M2. The switch of a 
device M2 is controlled by a controller M1. Once the emergence of 
the detect signal, M1 can send a warn signal before the shutdown 
signal, but the attempt may be not successful with probability 0.2. 
M1 issues the shutdown signal directly, this will lead to the occur-
rence of a mistake in the device M2 with probability 0.1 (i.e., M2 will 
not shut down correctly). The DFA P err indicates that action fail 
never occurs. We need to verify whether M1||M2 ⊨ 〈P〉≥0.98 holds.

For checking whether 〈true〉M1||M2 〈P〉≥0.98 holds, we use the rule 
(SYM) and two probabilistic safety properties 〈AM1

〉≥0.9 and 〈AM2
〉≥0.8 

(see Section 3.2 for details) as the assumptions about M1 and M2. 
They are represented by DFA AM1

err  and AM2

err  in Figure 2 (since 
alphabet aAM1 

is same as aAM2
, AM1

err  is also same as AM2

err). Note that 
only state a2 is in the set of accepting states F (see Section 2.2) and 
indicates that the safety property P is violated.

Figure 1 | (a) Probabilistic automata M1, (b) probabilistic automata M2 
and (c) DFA P err for the safety property P.
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Figure 2 | Assumptions AM1

err, AM2

err  for M1, M2.

should be included in the assumption AM1
. If t1 is not in the assump-

tion AM1
, we will try to find corresponding traces in M1 and M2. If 

their probability violates the probabilistic safety property 〈P〉≥PG, t1 
will be not a spurious counterexample. We can think the model does 
not satisfy the property, otherwise continue to answer the next mem-
bership query after checking until the appearance of a conjectured 
assumption AM1

. Then, the MAT answers an equivalence query. 
Through a multi-objective model checking technique [18,33], we 
can calculate the probability of a conjectured assumption, which is 
an interval IA1

. If IA1
 is an empty interval, the framework will construct 

a probabilistic counterexample cex(s, w, c). s is an adversary for M1 
with Pr PGM P

1

s ( ) < . w is a witness for 〈AM1
〉≥PAM1

 (PAM
1
 is a lower bound 

of the interval IA1
) in M1[aAM1

], i.e., a set w of infinite traces in M1
s  is 

defined as Pr(w) ≥ PAM1
 and t1↾M1

 ⊨ AM1
 for all t1 ∈ w. A set c of finite 

traces in M1
s  (i.e., M c

1
s , ) such that Pr(c) >1 – PG and t1↾M1 

⊭ P for 
all t1 ∈ c. In short, probabilistic counterexamples are more complex 
than nonprobabilistic counterexamples. More details are provided in 
Feng et al. [22] and Ma et al. [40]. Next, we must check whether 
the appearance of a trace t1 in the probabilistic counterexample 
cex(s, w, c) causes the violation of 〈P〉≥PG on M1||M2. If the trace 
exists, the execution of the learning algorithm will be terminated. 
Otherwise, the learning algorithm will refine the original conjecture 
and generate a new assumption. When all the conjectured assump-
tions are successful to be generated, we judge whether there exists 
any common trace that can be accepted by ℒ(co〈AM1

〉IA1
||co〈AM2

〉IA2
). It 

requires us to do Counterexample Analysis. If counterexample does 
not exist, we can conclude that M1||M2 ⊨ 〈P〉≥PG.

On the contrary, we need to check whether it is a spurious coun-
terexample, let the conjectured assumption becomes stronger than 
necessary. If the spurious counterexample exists, the conjectured 
assumption must be refined once again. When the conjectured 
assumption is updated, the framework will return a lower and an 
upper bound on the minimum probability of safety property P hold-
ing. This measure means that it can provide some valuable informa-
tion to the user, even if the framework could not produce an accurate 
judgment. More details are described in the following sections.

3.2.2.  Answering membership queries

Minimally adequate teacher is responsible for the membership que-
ries, i.e., checking t1||M1 ⊨ 〈P〉≥PG. t1 represents the trace in which 
each transition has probability 1. If trace tM1

 ∈ M1, tM
2
 ∈ M2 and  

tM1
↾AM1

 = tM2
↾AM1

 = t1, then P1 and P2 are the probability of trace tM1
 and 

tM
2
 respectively. If the trace tM1

 or tM2
 has action fail and P1 * 1 > 1 – 

PG (i.e., t1||M1 ⊭ 〈P〉≥PG), t1 will not be included in assumption AM1
 

and it will be in AM1

err . Then, we use t1 to verify c ∈ ℒ(M1||M2). If P1 * 
P2 > 1 – PG, t1 will be the counterexample c of ℒ(M1||M2). We define 
cex(s  ′, c′) as a probabilistic counterexample trace, and cex(s  ′, c′) 
= cex(P1 * P2, c) here. If t1 is the counterexample c, we can conclude 
M1|| M2 ⊭ 〈P〉≥PG. Then the learning algorithm is terminated and 
returns the probabilistic counterexample trace cex(s ′, c′). Otherwise, 
the MAT continues to answer the membership queries, until it pro-
duces a conjectured assumption AM1

, similarly for t2||M2 ⊨ 〈P〉≥PG. 
Note that alphabet aAM1

 is same as aAM2
 in most cases, because aAM1

 
and aAM2

 all reflect the same safety property P essentially. If aAM1
 is 

same as aAM2
, t2||M2 ⊨ 〈P〉≥PG can be omitted, and AM1

 is same as AM2
.

We can compute the probability of AM1
 and AM2

 in the prem-
ise 1 and 2, because we can solve these queries: 〈A〉≥PA M〈P〉IG=? 
and 〈A〉IA=? M〈P〉≥PG, through multi-objective model checking, 
as shown in Etessami et al. [18] and Kwiatkowska et al. [33]. 
Actually, if there exists any adversary of the component M that 
satisfies the strongest assumption 〈A〉≥1 but violate the probabi-
listic safety property 〈P〉≥PG, the interval IA will be empty in the 
second question.

Through premise 3, in AM1 0 1

err

≥ .
, we can find a counterexample cex(0.2, 

〈shutdown〉), but corresponding counterexample in AM2 0 2

err

≥ .
 is 

nonexistent (since action fail exists). So prefixes of all infinite traces 

in A AM M1 20 1 0 2

err err

≥ ≥. .
||  can be accepted by  A AM M1 20 1 0 2

err err

≥ ≥( ). .
||  

and we can think M1||M2 ⊨ 〈P〉≥0.98 holds. Note that if a trace in 
AM2 0 2

err

≥ .
 corresponding to multiple traces in M2, we give prefer-

ence to the trace with action fail. Besides, we can find that the trace 
〈shutdown〉 is a prefix of 〈shutdown, warn〉, 〈shutdown, shutdown〉 
and 〈shutdown, off〉, so there is no need to consider for the last 
three traces.

3.2. � Improved Learning Framework  
for SYM Rule

Inspired by assume-guarantee verification of PAs [23], we 
propose an improved learning framework that generates 
assumptions for compositional stochastic model checking 
two-component PAs with SYM. The inputs are components M1, 
M2, a probabilistic safety property 〈P〉≥PG and the alphabets aAM1

, 
aAM2

. The aim is to verify whether M1||M2 ⊨ 〈P〉≥PG by learning 
assumptions. If these assumptions exist, it can conclude that the 
〈P〉≥PG holds on the system M1||M2. It outperforms [23] in cases 
the model does not satisfy the properties. Essentially, the orig-
inal learning framework [23] only searches a counterexample 
after the conjectured assumption generation. Our method is to 
search a counterexample in each membership and equivalence 
query to prove M1||M2 ⊭ 〈P〉≥PG.

3.2.1.  Overview

The NL*-based learning framework for compositional stochastic 
model checking with rule SYM is shown in Figure 3. Here, the MAT 
first answers a membership query: whether a given finite trace t1 
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Figure 3 | NL*-based learning framework for the rule SYM.

Example 2. We execute the learning algorithm on PAs M1, M2 
from Example 1, and the property is set as 〈P〉≥0.99. The alphabet 
aAM1

 is {warn, shutdown, off}, To build its the first conjectured 
assumption, the algorithm can generate some traces t1:

〈warn〉, 〈off〉, 〈shutdown〉, 〈shutdown, shutdown〉, 〈shutdown, 
warn〉 and 〈shutdown, off〉. 

The first two return true, i.e., they should be in the conjectured 
assumption. All of the others return false. Since tM2

 has action fail 
and P1 * 1 = 0.2 * 1 > 1 − 0.99 = 0.01, trace 〈shutdown〉 returns false. 
We can find that the trace 〈shutdown〉 is a prefix of 〈shutdown, 
shutdown〉, 〈shutdown, warn〉 and 〈shutdown, off〉, so they all 
return false. Since P1 * P2 = 0.2 * 0.1 > (1 − 0.99) = 0.01, 〈shutdown〉 
is a counterexample c of the target language ℒ(M1||M2), the learn-
ing algorithm is terminated and returns the probabilistic counter-
example trace cex(0.02, 〈shutdown〉).

3.2.3. � Answering conjectures for  
each component

〈(AM1
)i〉IA1

=? M1〈P〉≥PG (i.e., 〈AM1
〉≥PAM1

M1〈P〉≥PG in SYM) can be  
calculated by multi-objective model checking [18,33]. The widest 

interval IA1
 is defined as [PAM1

, 1] and PAM
1
 = 1 − (1 − PG)/P1. P1 

is the probability of trace tM1
, if the trace tM1

 ∈ M1 or tM2
 ∈ M2 has 

action fail and tM1
 ↾AM1

 = tM2
↾AM1 

= t1, t AM1 1
∈ err . i = 1 indicates that 

this is the first conjectured assumption 〈(AM1
)1〉IA1

. If IA
1
 = Ø, even 

under the conjectured assumption 〈AM
1
〉≥1, M1 still violates 〈P〉≥PG. 

We can construct a probabilistic counterexample cex(s, w, c) 
[22,40] to indicate that 〈AM1

〉≥1M1〈P〉≥PG does not hold. Next, we 
consider whether the probabilistic counterexample cex(s, w, c) 
also belongs to the language ℒ(M1‖M2), i.e., if cex(s, w, c) is not 
a spurious counterexample (through checking M M Pc

1 2
s , || 

³PG  
[22]), it will prove the conclusion M1‖M2 ⊭ 〈P〉≥PG. We can directly 
obtain a probabilistic counterexample trace cex(s ′, c′) from cex(s, 
w, c). If cex(s, w, c) is spurious, we need to acquire all traces in 
the set T = c ↾AM1

. Then, we should find out those traces, which are 
currently included in the conjectured assumption 〈(AM1

)1〉IA1
 but in 

fact should be excluded, because it violates the properties 〈P〉≥PG. 
In other words, we need to find some bad traces t1 = tM1

↾AM1
, tM1

 ∈ c, 

which is not in AM1

err. All those traces t1 will be provided to NL*, and 
it will produce a conjectured assumption 〈(AM1

)2〉IA1
 again. Similarly, 

we deal with the component M2.



	 Y. Liu and R. Li / International Journal of Networked and Distributed Computing 8(2) 94–107	 101

Example 3. We still execute the learning algorithm on PAs M1, M2 
and property 〈P〉≥0.98 from Example 1. The first conjectured assum
ptions AM1

 and AM2
 are represented by AM1

err and AM2

err  in Figure 4.  
We can calculate the result IA1

 = [0.9, 1], since: 

tM2
 = 〈shutdown, fail〉, 

tM2
↾AM1

 = 〈shutdown〉 = tM1
↾AM1

,
tM1

 = 〈detect, shutdown〉, 

PAM1
 = 1 − (1 − PG)/P1 = 1 − (1 − 0.98)/0.2 = 0.9. 

Similarly, since: 

PAM2
 = 1 − (1 − PG)/P2 = 1 − (1 − 0.98)/0.1 = 0.8, we can obtain IA

2
 

= [0.8, 1]. We cannot find any trace, which is not in AM1

err or AM2

err,  
but actually violates the properties 〈P〉≥0.98. So 〈(AM1

)1〉[0.9, 1] and 
〈(AM2

)1〉[0.8, 1] will be returned to NL* algorithm.

3.2.4. � Compositional verification  
of assumptions

If the interval IA
1
 and IA

2
 are nonempty, we will check premise 3 

of SYM, we need to verify whether ℒ(co〈(AM1
)i〉IA1

 || co 〈(AM2
)j〉IA2

) = 
Ø. Here, the conjectured assumption AM1

 is the one derived after i 
iterations of learning, similarly for j. PAM1

 is the lower bound of the 
interval IA1

, similarly for PAM2
.

So ℒ(co〈(AM1
)i〉IA1

 || co 〈(AM2
)j〉IA2

) can simplify to ℒ(co〈AM1
〉≥PAM1

 || co 
〈AM2

〉≥PAM2
), which can convert into the problem whether a prefix of 

the infinite trace is not accepted by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .  

Then, counterexample is analyzed by the following process. If the 
trace t AM1 1

∈ err , we need to find the probability PM1
 of the trace tM1

, if 
and only if tM1

 ∈ M1 and tM1
↾AM1

 = t1. If tM1
 is not unique, we will first 

return the trace with action fail. If it is nonexistent, we will return 
the trace with minimum probability for all tM1

. When the returned 
trace has action fail, the spurious counterexample trace cex(s1, c1) 

= cex(PM1
, t1) will not exist in AM

M
1

1
1

err

PA≥ −
, otherwise it will exist. 

Note that cex(s1, c1) cannot prove M1||M2 ⊭ 〈P〉≥PG and it indicates 

that a trace satisfies the property 〈P〉≥PG in AM
M

1
1

1

err

PA≥ −
essentially. 

So we call it as spurious counterexample trace. Similarly, we return 
the cex(s2, c2) = cex(PM2

, t2) as spurious counterexample trace in 

AM
M

2
2

1

err

PA≥ −
. When AM

M
1

1
1

err

PA≥ −
 and AM

M
2

2
1

err

PA≥ −
 all have spurious 

counterexample trace, the spurious counterexample trace cex(s, c) = 

Figure 4 | The first conjectured assumptions AM1

err, AM2

err  for M1, M2.

cex(PM1* PM2
, t1||t2) will may exist in  A AM M

M M
1

1
2

2
1 1

err

PA

err

PA≥ − ≥ −





|| .  

Next, if PM1
 * PM2

 > 1 – PG, a prefix of the infinite trace is not 

accepted by  A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| . So we need to use 

the spurious counterexample traces cex(s1, c1) and cex(s2, c2) 
to weaken the corresponding assumptions, i.e., t1 and t2 will be 
added in the assumption AM1

 and AM2
 respectively, then the con-

jectured assumptions must be refined once again. Otherwise, if 
PM1* PM2

 ≤ 1 – PG, it will be not a spurious counterexample trace in 

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| .

Finally, if any spurious counterexample trace in A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





||  

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





|| is nonexistent, we can obtain two assumptions 

〈AM1
〉IA1

 and 〈AM2
〉IA2

 to prove M1||M2 ⊨ 〈P〉≥PG.

Example 4. We continue the execution of the algorithm from 
Example 3. We must do counterexample analysis for it. Intuitively, 
we can find a spurious counterexample trace cex(0.8, 〈warn, shut-
down〉) in AM1 0 1

err

≥ .
 and cex(1, 〈warn, shutdown〉) in AM2 0 2

err

≥ .
.

Since 0.8 * 1 = 0.8, we can find that the spurious counterexample trace in 

 A AM M
M M

1
1

2
2

1 1

err

PA

err

PA≥ − ≥ −





||  may be cex(0.8, 〈warn, shutdown〉). 

Since 0.8 > 1 – 0.98 = 0.02, cex(0.8, 〈warn, shutdown〉) is the spuri-

ous counterexample trace of  A AM M1 20 1 0 2

err err

≥ ≥( ). .
||  and the trace 

〈warn, shutdown〉 cannot be accepted by  A AM M1 20 1 0 2

err err

≥ ≥( ). .
|| . 

So we use the spurious counterexample trace to weaken the corre-
sponding assumption, i.e., the trace 〈warn, shutdown〉 needs to be 
added to the corresponding assumption. The second conjectured 
assumption AM1

 (AM2
 is same as AM1

) is shown in Figure 2, which can 
prove M1||M2 ⊨ 〈P〉≥0.98.

3.2.5. � Generation of lower and  
upper bounds

In each iteration of the NL* algorithm, we can obtain the tight-
est bounds from the iterative process of assumptions (show in the 
bottom of Figure 3). If the learning framework cannot provide a 
definitive result (i.e., the runtime is more than the waiting time), 
some valuable quantitative information will be returned. For each 
conjectured assumption, we have a lower bound lb(A, P) and an 
upper bound ub(A, P) on the probabilistic safety property P.

We can calculate p A AA M M M M
* ( , )( ) ( )= min Pr Prmin min

1 1 2 2
 and generate 

a corresponding adversary s ∈ AdvM (M is the component about 
selected assumption), then we compute A M P

p IA G≥ =* ?  through 
multi-objective model checking [18,33].

For the interval lb Pr ubmin( , ) ( , )( )||A P P A PM M≤ ≤
1 2

, we have:

		         lb( ) minA P IG, ( )= � (20)

		      ub Pr if Advmin( , ) ,( ) ( )
||

A P P
M M M= ∈

1 2 1
s s � (21)
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The proof of the tightest bounds is similar to Feng et al. [22]. Note 
that information generation of bounds may lead to little extra work.

4. � ASSUME-GUARANTEE REASONING 
WITH SYM-N RULE

4.1.  Symmetric Rule

We present a symmetric assume-guarantee rule SYM in the pre-
vious section, which can solve the problem of verification of a 
stochastic system about two components. Here, we will make an 
extension to it. Let it can be used to verify a stochastic system com-
posed of n ≥ 2 components: M1||M2||···||Mn.

Theorem 2. Let M1, M2, …, Mn are PAs, for i ∈{1,  2, …, n}, 〈AMi
〉≥PAMi

 
is an assumption for the corresponding component Mi , 〈P〉≥PG is a 
probabilistic safety property. Their alphabets satisfy aAMi

 ⊆ aM1
 ∪ ··· ∪ 

aMi–1
 ∪ aMi+1

 ∪ ··· ∪ aMn
, and aP ⊆ aAM1

 ∪ aAM2
 ∪ ··· ∪ aAMn

 respectively. 
co〈AMi

〉≥PAMi
 denotes the co-assumption for Mi which is the comple-

ment of 〈AMi
〉≥PAMi

, the following SYM-N rule holds:

1
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1
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Proof by contradiction. Assume that the premise 1, 2, …, n + 1 
hold, but the conclusion does not. We can obtain an adversary s ∈ 
AdvM1||M2||···||Mn

, such that Pr PGM M Mn
P

1 2|| || ||�
s ( ) < . Now, it follows that:

			       Pr PGM M Mn
P

1 2|| || ||�
s ( ) < � (22)

by Lemma 1 since aP ⊆ aAM1
 ∪ aAM2

 ∪ ··· ∪ aAMn
 ⊆ aM1[aAM1

]

			       Þ <Pr PGM A M
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by the premise 1 and Definition 5
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by modus tollens since (23) and (24)
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Our assumption contradicts (27), so this adversary s is nonexis-
tent. Next, we will use Example 5 to explain the rule.

Example 5. The example is the extension of Example 1. Figure 5 
shows three PAs M1, M2, M3 and a probabilistic safety property 
〈P〉≥0.98. The component M2 indicates that the time signal may reap-
pear with probability 0.5 before the shutdown signal. We will show 
the verification process by the method of SYM-N rule.

Similar to Example 1, through multi-objective model checking 
[18,33], we can acquire three assumptions 〈A〉M1 ≥ 0.9, 〈A〉M2 ≥ 1 and 

〈A〉M3 ≥ 0.8, which are represented by DFA AM1

err, AM2

err and AM3

err in Figure 6.

Through premise n + 1, we can find a spurious counterexample 
trace cex(0.2, 〈shutdown〉) in AM1 0 1

err

≥ .
 and cex(1, 〈shutdown〉) 

in AM2 0

err

≥
, but corresponding spurious counterexample trace in 

AM3 0 2

err

≥ .
 is nonexistent (since action fail exists). So prefixes of all 

infinite traces in A A AM M M1 2 30 1 0 0 2

err err err

≥ ≥ ≥. .
|| ||  can be accepted by 

 A A AM M M1 2 30 1 0 0 2

err err err

≥ ≥ ≥( ). .
|| ||  and we can think M1||M2||M3 ⊨ 

〈P〉≥0.98 holds.

4.2. � Improved Learning Framework  
for SYM-N Rule

The NL*-based learning framework in Figure 7 can be used for 
verifying a stochastic system composed of n ≥ 2 components: 
M1||M2||···||Mn. We first answer membership queries through solv-
ing the problem tj||Mj ⊨ 〈P〉≥PG, for j ∈ {1, 2, ..., n}. The process is 
similar to Section 3.2.2 but it is a little different. In Counterexample 
Analysis for Membership Queries, if tj||Mj ⊭ 〈P〉≥PG, the framework 
will verify whether tj is a counterexample c of the target language 

Figure 5 | (a) Probabilistic automata M1, (b) Probabilistic automata M2,  
(c) Probabilistic automata M3 and (d) DFA P err for the property P.

Figure 6 | Assumptions AM1

err, AM2

err , AM3

err  for M1, M2, M3.
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Figure 7 | NL*-based learning framework for the rule SYM-N.

ℒ(M1||M2|| ··· ||Mn). If tj is the counterexample c, the framework 
will return the trace tj and the product of the probabilities of corre-
sponding traces in all components as cex(s ′, c′), and we can find 
that the property is violated, i.e., M1||M2|| ··· ||Mn ⊭ 〈P〉≥PG. Then, we 
need to answer equivalence queries through tackling the problem 
〈(AMj

)ij
〉IAj =? Mj〈P〉≥PG, ij indicates the number of iterations about the 

assumption AM
j
 and the process of solving the problem shows in 

Section 3.2.3.

In Counterexample Analysis for Conjectures, the framework will 
check if the counterexample cex(s, w, c) belongs to the target language 
ℒ(M1||M2|| ··· ||Mn). The problem can transform into checking whether 
M M M Pj

c
n1 ||� �|| || ||,s 

≥PG  holds, similarly to Feng et al. [22].
Next, the framework needs to verify ℒ(co〈(AM1

)i1
〉IA1

||co〈(AM2
)i2
〉IA2

||···||co〈(AMn
)in
〉IAn

) = Ø. It can simplify to find a trace that can be 

accepted by: ℒ(co〈AM1
〉≥PAM1

||co〈AM2
〉≥PAM2

||···||co〈AMn
〉≥PAMn

), and con-
vert into finding a prefix of the infinite trace is not accepted by:
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Figure 8 | Prototype tool.
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In Counterexample Analysis for Assumptions, if we cannot find 
any spurious counterexample trace, ℒ(co〈(AM1

)i1
〉IA1

||co〈(AM2
)i2
〉IA2

||  
··· ||co〈(AMn

)in
〉IAn

) will be empty and the framework will return 
assumptions 〈AM1

〉IA1
, 〈AM2

〉IA2
, ···, 〈AMn

〉IAn
 to prove that the property is 

satisfied, i. M1||M2||···||Mn ⊨ 〈P〉≥PG. On the contrary, we need to use 
the spurious counterexample traces to weaken the corresponding 
assumptions. We no longer go into details here.

The framework also can return the tightest bounds of the property 
P satisfied over the system M1||M2|| ··· ||Mn from the iterative pro-
cess of assumptions. We can calculate:

p A A AA M M M M M Mn n

* ( , , , )( ) ( ) ( )= …min Pr Pr Prmin min min
1 1 2 2

and generate a corresponding adversary s ∈ AdvMi
, for i ∈ {1, 2, 

..., n}. Then, we compute A M P
p IA G≥ =* ?  through multi-objective 

model checking [18,33]. In the end, the lower bound lb(A, P) is 
min(IG) and the upper bound ub(A, P) is Prmin

M M Mi n
P

1 ||
( )

� �|| || ||s .

5.  RESULTS

As shown in Figure 8, we have developed a prototype tool for our 
learning framework. It accepts a model and corresponding prop-
erty as inputs and returns the verification result. Verification result 
can be classified into three categories:

	(1)	 Some assumptions are provided to prove that model satisfies 
the property. 

	(2)	 Counterexample trace cex(s′, c′) is provided to prove that 
model violates the property.

	(3)	 Bounds of which the property P holds are provided, if 
the appropriate assumption or counterexample cannot be 
obtained. 

We use PRISM [25] and counterexample construction algorithm 
(i.e., particle swarm optimization algorithm [40]) to form a MAT. 
Then through the libalf [41] learning library, we can implement the 
NL* algorithm and pose membership and equivalence queries to 

a MAT. The MAT uses the PRISM modeling language to describe 
models and probabilistic safety properties. In the interior of the 
MAT, PRISM can provide the transition matrix (indicate that the 
transition relation of states in the model) and failure states (indicate 
that a property is violated) to counterexample construction algo-
rithm. The algorithm can find all shortest paths of the same length 
and calculate the probability of each path, to construct probabilistic 
counterexamples. Through constructed counterexamples, we can 
respond to these queries of libalf. All experiments are run on a 3.3 
GHz PC with 8 GB RAM. Feng et al. [22] uses the L* learning algo-
rithm to produce the probabilistic assumptions. On this basis, Feng 
et al. [23] proves that NL* learning algorithm has more efficient 
than L* in large-scale cases. Our method thus is based on NL*. We 
use several large cases to demonstrate our learning framework and 
compare with the method of Feng et al. [23]. We adopt the first two 
cases form [23], and modify them a little, because we focus on the 
conditions that the model does not satisfy the properties. To ensure 
the correctness of the experimental results, we change the cases 
through different means. The first case is a network of N sensors. 
In the network, a channel can issue some data to a processor, but 
it may crash because some data packets are lost. Through the SYM 
rule, we make the composition of the N sensors and a channel as a 
component M1, the processor as the other component M2. We will 
verify the probabilistic safety property, i.e., network never crashes 
with a certain probability. We will increase the probability of prob-
abilistic safety property to satisfy our experimental requirements, 
and the verified property is 〈P〉≥0.994. Table 1 shows experimental 
results for the sensor network.

The second case is the client–server model studied from Pasareanu 
et al. [42]. Feng et al. [23] injects (probabilistic) failures into one 
or more of the N clients and changes the model into a stochastic 
system. In client–server model, each client can send requests for 

Table 1 | Sensor network experimental results 

Case study 
[sensor 
network]

Sensor 
numbers

Component 
sizes SYM ASYM [23]

|M1| |M2| MQ Time(s) MQ Time(s)

1 72 32 16 1.5 25 2.7
2 1184 32 16 1.8 25 2.9
3 10662 32 16 2.4 25 3.9
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Table 2 | Client–server experimental results 

Case study [client–server] Client numbers
Component sizes SYM ASYM [23]

|M1| |M2| MQ Time (s) MQ Time (s)

Server (nonprobability) Client (1 failure) 3 16 45 100 2.5 161 5.2
5 36 405 325 6.9 519 12.4
7 64 3645 833 63.1 1189 140.1

Server (nonprobability) Client (N failures) 3 16 125 175 4.6 213 5.9
4 25 625 336 8.3 393 11.4
5 36 3125 226 4.9 648 18.1

Server (probability) Client (1 failure) 3 16 45 120 0.31 187 5.7
5 36 405 379 7.8 583 16.4
7 64 3645 937 28.1 1308 45.5

Server (probability) Client (N failure) 3 16 125 176 3.9 265 6.6
4 25 625 337 7.4 507 12.2
5 36 3125 568 66.2 839 90.3

Table 3 | Randomized consensus algorithm experimental results 

Case study 
[consensus] [N R K]

Component sizes SYM ASYM [23]

|M1| |M2| Time (s) Time (s)

2 3 20 3217 389 12.1 11.6
2 4 4 431649 571 82.2 80.7
3 3 20 38193 8837 355.8 350.2

Table 4 | Performance comparison of the rule (SYM) and the rule (SYM-N) 

Case study  
[parameters]

Component sizes SYM SYM-N

|M1| |M2| Time (s) Time (s)

Sensor network [N] 4 72776 32 Time-out 16.6
5 428335 32 Time-out 40.7

Client–server [N] 6 49 15625 Time-out 20.4
7 64 78125 Time-out 80.9

reservations to use a common resource, the server can grant or 
deny a client’s request, and the model must satisfy the mutual exclu-
sion property (i.e., conflict in using resources between clients) with 
certain minimum probability. Through the SYM rule, we make 
the server as a component M1 and the composition of N clients as  
the other component M2. The verified property is 〈P〉≥0.9.We use the 
method of Feng et al. [23] to inject (nonprobabilistic and proba-
bilistic) failures into the server respectively. Table 2 shows experi-
mental results for the client–server.

To consider the case where the model satisfies the properties, 
the last case is randomized consensus algorithm from Feng et al. 
[23] without modification. The algorithm models N distributed 
processes trying to reach consensus and uses, in each round, a 
shared coin protocol parameterized by K. The verified property 
is 〈P〉≥0.97504, and 0.97504 is the minimum probability of consensus 
being reached within R rounds. Through the SYM rule, the system 
is decomposed into two PA components: M1 for the coin protocol 
and M2 for the interleaving of N processes.

In Tables 1 and 2, the component sizes of the M1 and M2 are 
denoted as |M1| and |M2|, and the performance is measured by the 
total number of Membership Queries (MQ) and runtimes (Time). 
Note that Time includes counterexample construction, NFA trans-
lation and the learning process. Moreover, for the accuracy of the 
results, we select the counterexamples in the same order as Feng 
et al. [23] in each equivalence query. Note that Feng et al. [23] has 
included comparisons with non-compositional verification, so this 
paper only compares with Feng et al. [23].

As shown in Tables 1 and 2, the experiment results show that our 
framework is more efficient than Feng et al. [23]. Obviously, we 
can observe that, for all cases, runtimes and the number of the 
membership queries in our framework are less than Feng et al. 
[23]. Moreover, the runtimes need less in our framework, when the 
model has a large scale. A larger size model may have less runtimes 
and the number of membership queries than a smaller model. 
However, this is not proportion with the model size. The efficiency 
of our framework depends only on the time of a counterexample 
(indicate that the probabilistic safety property is violated) appears 
in conjectured assumptions. The earlier a counterexample appears, 
the more efficient our framework performs.

In Table 3, the component sizes of the M1 and M2 is also denoted 
as |M1| and |M2|. The performance is measured only by total runtimes 

(Time), because both methods have the same amount of MQ if the 
model satisfies the properties. Because of the cost of early detec-
tion, we can find that our methods need to spend more time than 
Feng et al. [23] and cost grows with the model size. But compared 
with acquirement of optimization in Tables 1 and 2, the cost is 
acceptable in Table 3.

Table 4 compares the performance of the rule (SYM) and the rule 
(SYM-N). We impose a time-out of 5 h. Sensor network model has 
N sensors and client–server model has N clients. In client–server 
model, each client and server all have a (probabilistic) failure. For 
the use of rule (SYM-N), we decompose M1 into separate sensor 
and compose each sensor and a channel as a component in sensor 
network model, and decompose M2 further into separate client in 
client–server model. Moreover, the performance is measured by 
the total runtimes (Time). In all large cases, the rule (SYM-N) has 
more advantage than the rule (SYM). For example, in the case of 
sensor network model with four sensors, the component M1 has 
72776 states and the component M2 has 32 states. The total runtime 
of the compositional verification by the rule (SYM) more than 5 h, 
but the use of the rule (SYM-N) only needs 16.6 s. This is because 
the size of the component M1 is too large for the rule (SYM), and 
the counterexample construction algorithm needs more time to 
give the conclusion. 
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6.  DISCUSSION

We first present a sound SYM for compositional stochastic model 
checking. Then, we propose a learning framework for composi-
tional stochastic model checking PAs with rule SYM, based on the 
optimization of LAGR techniques. Our optimization can terminate 
the learning process in advance, if a counterexample appears in any 
membership and equivalence query. We also extend the framework 
to support the assume-guarantee rule SYM-N which can be used 
for reasoning about a stochastic system composed of n ≥ 2 compo-
nents: M1||M2|| ··· ||Mn. Experimental results show that our method 
can improve the efficiency of the original learning framework [23]. 
Similar to Feng et al. [22] and Kwiatkowska et al. [33], it can return 
the tightest bounds for the safety property as a reference as well.

In the future, we intend to develop our learning framework to 
produce richer classes of probabilistic assumption (for example 
weighted automata as assumptions [39]) and extend it to deal with 
more expressive types of probabilistic models.
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