
Nature of Probability-Based Proof Number Search

Anggina PRIMANITA
1,2*

, Hiroyuki IIDA
1

1School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1211,

Ishikawa, Japan
2Informatics Department, Universitas Sriwijaya, Indonesia

*Corresponding author: S1820431@jaist.ac.id

Abstract
Probability-based Proof Number Search (PPN-Search) is a best-first search algorithm that possesses a unique

nature. It combines two kinds of information from a tree structure, namely, information from visited nodes

and yet to be visited nodes. Information coming from visited nodes is determined based on winning status.
On the other hand, information from yet to be visited (unexplored) nodes is determined by employing play-

out technique in leaf nodes. All of the information is combined into a value called probability-based proof

number (PPN). In this paper, PPN-Search is employed to solve randomly generated Connect Four positions.
Its results are compared to two other well-known best-first search algorithms, namely Proof Number Search

and Monte-Carlo Proof Number Search. The limitation of PPN-Search related to the use of real numbers is

identified based on the experiment. To increase the performance of PPN-Search while preserving its

strength, an improvement technique using precision rate is introduced. Analysis from further experiments
shows that the addition of the precision rate value accentuates the nature of PPN-Search, especially in its

ability to combine information into PPN, which leads to increased performance. It is marked by reduced

number of nodes needed to be explored up to 57% compared to implementation without precision rate.

Keywords: best first search, Probability-based Proof Number Search, Connect Four

Advances in Intelligent Systems Research, volume 172

Sriwijaya International Conference on Information Technology

and Its Applications (SICONIAN 2019)

Copyright © 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 485

Background

Proof number search (PNS) [1] is a best-first search

algorithm that was initially introduced as a mean to find the

game-theoretic value. It is implemented as part of the

attempt to solve a game. PNS uses two values, proof

number and disproof number (pn and dn for short,

respectively) as indicators. The proof number of a node

represents the smallest number of leaf nodes that have to be

proven in order to prove that it is a win, while the disproof

number represents the smallest number of leaf nodes that

have to be disproved in order to prove that it is a loss.

Essentially, pn and dn are numbers that represent the

difficulty to prove a node. These numbers hold importance

in choosing the most proving node (MPN), which is the

node that will be expanded for subsequent search.

Employing PNS and its variants to find a game-theoretic

value has shown to be fruitful [2] . However, there were

problems which arose from its implementation. The

problems observed include: (1) a large amount of memory

space usage, (2) difficulty in application to a non-tree state

space, and (3) overly long solutions caused by its depth-

first behavior [3]. Moreover, PNS also encounters the see-

saw effect [4]. An improvement of PNS that aims to reduce

the usage of computation resource if the Depth-first Proof

Number (df-pn) Search [5]. It turns PNS, a best-first search

algorithm, into depth-first search by introducing iterative

deepening into the algorithm. Through the usage of

iterative deepening, df-pn expands less interior node, as

well as reduce the amount of proof number and disproof

number that has to be recomputed.

Another prevalent algorithm that was employed to attempt

solving games is the Monte-Carlo Tree Search (MCTS). Its

usage has become well known especially in the field of Go.

It is a part of the search algorithm that has led to AlphaGo’s

wins against top grandmasters [6]. Monte-Carlo Search is

proposed by Coulom in [7], then Kocsis and Szepesvári

introduced the concept of upper confidence bounds applied

to trees (UCT) in [8]. Thereafter, Chaslot in [9] developed

MCTS. It aims to overcome the difficulty found in building

heuristic knowledge for a non-terminal game state by

employing stochastic simulations [10]. Multiple

simulations have shown to be an effective method to

determine game-playing strategy. The MCTS framework

consists of four major steps, namely selection, expansion,

simulation, and backpropagation. The algorithm starts with

selecting the next action based on a stored value (selection),

and then, when it encounters a state that cannot be found in

the tree, it expands the node. The node expansion is based

on multiple randomly simulated games. The value is then

stored and backpropagated to the root of the tree, where the

algorithm continues to repeat the steps until the desired

outcome is reached.

With both strengths, i.e., combining PNS and MCTS, we

can increase the expected quality of a game solver. One

early example of this combination is the Monte-Carlo Proof

Number Search (MCPNS) [11]. The algorithm is proposed

as an improvement to PNS as it offers a higher degree of

flexibility than PNS, while it still retains its reliability. Its

main framework is similar to that of MCTS, but it uses the

Monte-Carlo evaluation to guide PNS in expanding nodes,

resulting in a more efficient order. In its implementation,

however, MCPNS employed the MIN/SUM rules in its

backpropagation step. The MIN/SUM rules have the

drawback to compute results from integer numbers, instead

of real numbers produced from statistical results in its

simulation.

To conform to the requirement of processing real numbers

derived from statistical probability, a new variant of PNS

has been proposed. It is called probability-based proof

number search (PPN-Search) [12]. It applies the idea of

“searching with probabilities” first suggested by [13] to

draw better results from real numbers produced by Monte-

Carlo simulation in the play-out step. PPN-Search is

independently developed but uses similar principles with

Product Propagation (PP) [14]. The main difference

between PPN-Search and PP is that PPN-Search indicator

is derived from both the explored and unexplored area of

the tree to obtain information about the current state of the

game. PP, on the other hand, utilizes the information only

from the explored area of the tree [15]. In its introduction,

PPN-Search was implemented to solve a simulated

balanced game-tree structure, called P-Game Tree. The

experiment shows a significant and meaningful result, but,

its nature and characteristics are still unexplored.

This paper employs PPN-Search to solve positions of a real

game, Connect Four. Experiments conducted in this article

consist of the application of PPN-Search to solve real game

positions and compare them to other major algorithms. Its

advantages, limitations, and possible improvement are

mentioned.

Probability-based Proof Number Search

Probability-based proof number search (PPN-Search) is a

game solver algorithm that aims to improve the idea of

PNS. It uses an indicator called “Probability-based Proof

Number” (PPN) to indicate the probability of proving a

node [12]. In a leaf node, its PPN is derived from the

Monte-Carlo evaluation. This value is then being

backpropagated to an internal node using AND/OR

probability rules. Details of PPN-Search are specified in the

following two subsections.

Probability-based Proof Number. A probability-based

proof number is a number that specifies the probability of

a node to be proven in an AND/OR tree. There are three

types of nodes in such a tree, viz. terminal node, leaf node,

and internal node. All of these nodes have its own PPN

(n.PPN) that is calculated based on the following formula:

If a node n is a terminal leaf node:

If (n) is a winning node,

𝑛. 𝑝𝑝𝑛 = 1 (1)
If (n) is not a winning node,

𝑛. 𝑝𝑝𝑛 = 0 (2)
If a node n is a leaf node, then let R be the winning rate as

a result of game play-out, and 𝜃 is a small positive number

close to 0:

If 𝑅 ∈ (0,1),

𝑛. 𝑝𝑝𝑛 = 𝑅 (3)
If 𝑅 = 1,

𝑛. 𝑝𝑝𝑛 = 𝑅 − 𝜃 (4)
If 𝑅 = 0,

𝑛. 𝑝𝑝𝑛 = 𝑅 + 𝜃 (5)
If a node n is an internal node, then:

If (n) is an OR node,

𝑛. 𝑝𝑝𝑛 = 1 − ∏ 1

𝑛𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑛

− 𝑛𝑐 . 𝑝𝑝𝑛

(6)

If (n) is an AND node,

𝑛. 𝑝𝑝𝑛

= ∏ 𝑛𝑐 . 𝑝𝑝𝑛

𝑛𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑛

(6)

as seen on the formula, PPN that is assigned to an OR and

AND internal node is the product of its child values. Fig. 1

illustrates these calculations.

PPN of a node contains two different information derived

from the current game-tree. The first information is

acquired from the current known tree structure (Eq. 1). The

second information is derived from the currently unknown

tree structure. Eq. 2 is employed to calculate the probability

of winning or losing from the current position, thus,

providing more information from part of the tree that is yet

to be expanded.

While obtaining PPN of a node, every statistical value

produced by a simulated game is accounted (Fig. 1). This

is different than the MIN/SUM rules used by MCPNS (Fig.

2). Usage of MIN/SUM rules may disregard some of these

values due to its rule.

To avoid confusion, in this paper the first player is always

an OR node. At any given node, PPN signifies the

possibility of the node to be proved; a higher value means

that it is more likely to be proved, which means that from

the root position, it is more likely for the first player to win

the game. PPN of the left side AND node in Fig. 1 is the

result of applying Eq. (7). Its PPN is the product of all its

children. PPN of the OR node at the top of the subtree is

the result of applying Eq. (6). As seen in the figure, children

of all nodes affect the way PPN is calculated. The

distinction of the probability rule application can be

observed as the game-tree of MCPNS is displayed in Fig.

2. MCPNS applies the AND/OR rule in updating its pmc

value. The left side AND node’s pmc is the sum of all its

children, and the top OR node’s pmc is the minimum pmc

of its children. In this case, the pmc that has been previously

calculated does not affect the value of the top OR node.

Algorithm of Probability-based Proof Number. The

PPN-Search consists of four following steps:

Selection: For all nodes, select the child with maximum

PPN at OR nodes, and child with minimum PPN at AND

nodes. Regard these nodes as the most proving node (MPN)

for expansion.

Expansion: Expand the most proving node. In this phase,

all available next moves from the MPN position is regarded

as child.

Play-out: For positions that are not already in the tree.

Simulate the move in a random self-play mode until the end

of the game. After several play-outs, the PPNs of expanded

nodes are derived from Monte-Carlo evaluations. In this

step, if the result of simulations (R) is equal to 1 or 0, it is

either reduced or added with a small value (θ) to

differentiate it from Leaf node.

Backpropagation: Update the PPNs from extended nodes

back to the root, while following the AND/OR probability

rules given in subsection 2.1.

all of the steps are repeated until PPN of the root node

reaches 1 or 0 (see Algorithm 1). If the PPN is equal to 1,

the game is defined as solved.

Advances in Intelligent Systems Research, volume 172

486

Figure 1. Illustration of PPN calculation in PPN-

Search. OR nodes are displayed as square, while AND

nodes are displayed as circle.

Figure 2. Illustration of pmc calculation in MCPNS.

OR nodes are displayed as square, while AND nodes

are displayed as circle.

Probability-based Proof Number Search on

Connect Four

Connect Four is a two-player perfect information board

game. The objective of the game is to line up four chips in

an either horizontal, vertical, or diagonal manner. The

game can be won as quick as 13-ply or until the board is

filled in 42-ply, making the depth of the tree to be highly

varied. There are also possibilities for sudden death moves

to occur during the game which made its game-tree

structure unbalanced. In terms of complexity, Connect Four

has a fairly good game-tree. This is due to its move

limitation as well as the size of the board. All of these traits

of Connect Four made it suitable to be used as test-bed to

observe the nature and characteristics of PPN-Search as it

is vastly different than the previous experiment.

Experimental Setup. The experiment is configured to

check algorithms’ performance in limited time and memory

space. In the experiment, 200 Connect Four positions were

generated. Each position contains 12-ply randomly

generated moves. Three different algorithms, PNS,

MCPNS, and PPN-Search were given the task to solve each

position independently. All algorithms are stopped once it

expands into 35,000,000 nodes or the time elapsed reaches

420 seconds. For the experiment, parameters for each

algorithm are as follows; For MCPNS and PPN-Search, the

number of simulated moves is 60, and for PPN-Search, θ =

0.01. The number of iterations performed, of nodes visited,

and time used to solve the position were measured.

The experiments were performed by a computer with Intel

i5-8400 processor running at 2.81 GHz using 8 GB of

RAM, running Windows 10, on a 64-bit machine. To

ensure the correctness and independent measurement, the

experiments are performed sequentially. It means that only

one position is solved by one algorithm at a time.

Experimental Result. The result of the experiment is

shown in Fig. 3. All of the positions produced the same

conclusion unless it reached either the set limit. In the

limited configuration, PNS performs the best, with the most

amount of positions being solved and unsolved, totaling in

122 positions. The second-best performing algorithm is

PPN-Search. It solved a total of 102 positions. The

algorithm with the least performance is MCPNS as it solves

a total of 80 out of 200 positions.

One notable thing from this experiment result is that PNS

is bounded by the amount of memory available, while PPN-

Search and MCPNS are bounded by time. All of the PNS

that stopped midway of the search is because it exceeds the

number of nodes visited, while all of PPN-Search and

MCPNS stopped midway because it exceeds the time limit

set for the experiment.

Prolonged Search in PPN-Search. Based on its nature,

PPN-Search combines two kinds of information, the

information from explored part of the tree (visited nodes)

and information from the unexplored part of the tree (yet to

be visited nodes). PNS, on the other hand, only uses

information gained from explored part of the tree. With

more sources of information, PPN-Search should be able to

utilize it to reach to the conclusion. To further inspect the

utilization of this information, change of PPN of the root of

the Connect Four position that has the highest time

difference between PNS and PPN-Search is inspected. The

highest time difference between PNS and PPN-Search is

322.345 second. For such position, PPN-Search visited the

total of 2,295,856 nodes, while PNS and MCPNS visited

1,921,730 and 1,114,283 nodes respectively. This case

indicates that PPN-Search was not able to fully combine the

information from both parts of the tree, which leads to sub-

optimal performance. To explain why such occurrences

Advances in Intelligent Systems Research, volume 172

487

exist, PPN value of the root for every 10,000 iterations of

the chosen position is displayed in Fig. 4.

Figure 3. Number of Connect Four positions solved,

unsolved, and out of bounds by PNS, MCPNS, and

PPN-Search.

Figure 4. PPN value of the root of the position with the

highest time difference between PNS and PPN-Search.

The PPN value of the root at the first 10,000 iterations is

0.005794, which is also the peak value for the entire solving

process. The value is then kept decreasing and stabilized

between the 70,000th iteration until the 170,000th iteration.

A sudden increase appears at the 180,000th iteration, in

which the value of PPN of the root is equal to 0.001699.

Following the sudden increase, the PPN value stayed

steadily under 0.001 for the rest of the search process.

Based on the output value, PPN value of the root already

hits 0.000000 by the 340,000th iteration, however, the

algorithm keeps iterating until it reaches the total of

677,765 iterations, which is almost twice number of

iterations. This also affects the number of nodes needed to

solve the position. By the 340,000th iteration, total number

of nodes explored is 1,205,010 nodes, while at the

677,765th iteration, total number of nodes explored is also

almost twice, that is 2,274,949 nodes.

To observe the problem from different perspective, a

solved position with a large time difference is observed. In

this position, the elapsed time difference between PNS and

PPN-Search is 77.802 second. For this position, PPN-

Search visited a total of 661,783 nodes, while PNS and

MCPNS visited 11,055 and 1,567 nodes respectively. In

this case, the difference between total nodes visited by PNS

and MCPNS is very big. Observation of PPN value of the

root of the second chosen position (Fig. 5 shows similar

trend to that of the first chosen position. At the first 10,000

iterations, the PPN value of the root is 0.99995. The PPN

value keeps changing between the start until the 100,000th

iteration, in which it outputs PPN value of 1.00000.

However, in the same fashion of the previous position, the

algorithm keeps iterating until 214,110 iterations.

Figure 5. PPN value of the root of a solved position

with substantial time difference between PNS and

PPN-Search.

From the two observations, it can be concluded that one of

the problems that occur in PPN-Search is the prolonged

search problem. This problem occurs when the PPN value

of the root hits either 1 or 0, but the algorithm keeps

searching, resulting in longer search time. Prolonged search

problem stems from the precision of floating-point

representation in the computer system. Floating point is

represented as fractions of the binary system in the

computer memory, hence, a floating-point representation

of a certain value, albeit that it has integer representation,

might not be exact [16]. In this implementation of PPN-

Search, although the PPN value of the root has reached the

value of 0.000000, it still contains a very small number

trailing behind, thus, not recognized as a conclusive value.

The programming language of which the algorithms are

implemented in C++, however, this also applies to other

popular programming languages such as Python or Java,

which made the problem unavoidable. The following

section proposes an approach that can be used to mitigate

the identified problem.

Precision of Probability-based Proof Number

Search

PPN-Search suffers from prolonged search problem that is

caused by the representation of floating-point. To tackle

this problem, a solution is proposed. The solution is to

apply a precision rate (pr). The application of this rate is

aimed to reduce the rounding error in comparing the PPN

root value. The pr value is applied in Algorithm 1 to

become Algorithm 2. The rest of the algorithm is not

affected by this change.

Advances in Intelligent Systems Research, volume 172

488

To show the efficacy of this enhancement, experiments

with different values of θ and pr is performed.

Experimental Setup. To see the influence of pr value in

PPN-Search performance, an experiment is done using the

same hardware in Section 3.1. PPN-Search is employed to

solve the same 200 positions generated in the previous

experiment. Search is ended when the position is

considered to be solved, unsolved, or it reaches the limit of

420 seconds or 35,000,000 nodes.

In the precision experiment, two different values of θ are

used, viz. 0.01 and 0.001. Three different pr values are used

with the chosen θ. The pr values are 0.001, 0.0001, and

0.00001. This setup results in six different configurations.

Experimental Result and Analysis. Six different

configurations of θ and pr value is used to solve 200

Connect Four positions. Result of the configuration for θ =

0.01 is shown in Fig. 6 while the result for θ = 0.001 is

shown in Fig. 7.

Figure 6. Number of positions solved, unsolved and out of

bounds by PPN-Search with θ = 0.01.

Figure 7. Number of positions solved, unsolved, and

out of bounds by PPN-Search with θ = 0.001.

With the application of pr value, the total positions that

reach a conclusion, whether it is solved or unsolved, is

increased. The configuration that leads to the highest

amount of positions is the configuration with θ = 0.001 and

pr = 0.001, with the total of 135 positions. This is higher

than that of PNS (122 positions) and MCPNS (82 positions)

from the first experiment. Elapsed time and nodes explored

are also affected by the application of pr value. The average

elapsed time and nodes explored is displayed in Table 1.

Change of θ value does not significantly affect the average

time and node, but, the increase of precision rate yields

longer elapsed time and higher number of nodes visited.

The same with total number of solved positions,

configuration with θ = 0.001 and pr = 0.001 has shown the

best performance.

Based on the experiment result, a small number of pr value

leads to increasing the total number of positions that

reaches a conclusion. However, lowering pr value to a rate

where it is less precise than that of θ would lead to false

conclusions. In this case, the best pr value would be that of

the same with precision, or one rate above it. Increase and

decrease of the value beyond it would decrease the

performance of PPN-Search.

Table 1. Average time and node for each PPN-Search configurations

θ pr Average Time (s) Average Node

0.01 no precision 251.180925 2,004,052.895

0.01 0.001 183.256315 1,323,718.975

0.01 0.0001 214.63364 1,582,187.985

0.01 0.00001 226.707205 1,667,750.875

0.001 0.001 174.90736 1,269,587.96

0.001 0.0001 217.987025 1,614,710.08

0.001 0.00001 229.07937 1,638,641.2

Advances in Intelligent Systems Research, volume 172

489

DISCUSSION

Experimental results of implementing three best first

algorithms to Connect Four show that there are positions in

which PPN-Search performs sub-optimally. It visits more

nodes than PNS before solving positions with the same

result. This is against the idea of which PPN-Search is

based on. Of which that it does not have to visit all of the

nodes, but instead, combining information for the visited

node, and the probability of unexplored nodes.

Upon further observation, one of the problems identified

that cause PPN-Search to underperform is the prolonged

search. This problem stems from the usage of real number

in PPN-Search. The previous algorithms, PNS and

MCPNS, uses integer-based backpropagation technique.

Because of this technique, the precision of floating-point

does not affect its performance. PPN-Search uses real

number-based backpropagation technique, in which the

PPN of a node went through product operations. With this

change, a new risk related to precision arose.

To negate the risk related to precision, a new parameter

called precision rate is introduced to PPN-Search

algorithm. the results of the experiments with various

configurations show that the addition of pr value increases

the performance of PPN-Search without affecting its

accuracy result. Observation upon the results shows that the

closer the pr value to θ the better PPN-Search performance

result will be. However, pr value cannot be lower than θ, as

it will decrease the performance of PPN-Search

The results produced from the experiments demonstrate

that PPN-Search with pr value reduces the number of

explored nodes needed to solve a position up to 57%. This

implies that even with a smaller number of explored nodes,

it can exploit information from unexplored area and

combines it to reach the desired conclusion. This identified

nature leads to a new hypothesis, that PPN-Search is

suitable for a game that requires a long look-ahead strategy.

PPN-Search has been introduced to solve two different tree

structures, balanced and unbalanced. In both

implementations, PPN-Search demonstrates better

performance than the other algorithms. However, it has not

been tested with a game that requires long look-ahead

strategy. The current state of best performance algorithm

on different tree structures is shown in Table 2. For a game

with a hard problem, the current best performing algorithm

is depth-first proof number search (Df-pn). It is an

expansion of PNS that is aimed to tackle larger problems.

In the future, it is important to see the expansion of

probability-based search idea into its depth-first version

and test it on a game with bigger tree size and harder

problems to test this hypothesis.

CONCLUSION

PPN-Search is a best first search algorithm that employs

information from both inside and outside of a game-tree. In

this paper, PPN-Search is employed to solve randomly

generated Connect Four positions. Results from the

application allow a problem related to the implementation

of PPN-Search algorithm to be identified. The prolonged

search problem arises because PPN-Search is highly

dependent on real number-based operations. To alleviate

the problem, a new parameter is introduced. Result of the

improvement shows that PPN-Search is able to solve more

positions in limited configurations than other best first

search algorithms. Implementations of PPN-Search on

different tree structures show that in the event of reduced

explored information, PPN-Search is able to reach the

desired conclusion by exploiting information from

unexplored part of a game-tree.

Table 2. Best performance search algorithms in different tree structure.

Tree Structure Complexity Best Performance Algorithm

Balanced Tree Small (easy) PPN-Search on P-game tree [12]

Unbalanced Tree Big (hard) Df-pn in Go [17]

Unbalanced Tree Small (easy) PPN-Search on Connect Four

Further works in this direction include, but is not limited to

(1) application of PPN-Search in other real game with a

larger tree; (2) expansion into depth-first version of PPN-

Search (df-PPNS); (3) comparison between depth-first

proof number search and df-PPNS in (very) hard problem

domains.

REFERENCES

[1] L. V. Allis, M. van der Meulen and H. J. van Den

Herik, "Proof-number Search,“ Artificial

Intelligence, Bd. 66, Nr. 1, pp. 91-124, (1994).

[2] H. J. van Den Herik and M. H. Winands, "Proof-

number Search and Its Variants,“ in Oppositional

Concepts in Computational Intelligence,

Springer, (2008), pp. 99-118.

[3] A. Kishimoto, M. H. Winands, M. Muller and J.

T. Saito, "Game-tree Search Using Proof

Numbers: The First Twenty Years,“ ICGA

Journal, Bd. 35, Nr. 3, pp. 131-156, (2012).

[4] T. Ishitobi, A. Plaat, H. IIda and H. J. van den

Herik, "Reducing The Seesaw Effect With Deep

Proof-Number Search,“ in Advances in

Computer Games, Springer International

Publishing, (2015), pp. 185-197.

Advances in Intelligent Systems Research, volume 172

490

[5] A. Nagai, "Df-pn Algorithm for Searching

AND/OR Trees and Its Applications,“ PhD

thesis, Department of Information Science,

University of Tokyo, (2002).

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L.

Sifre, G. van Den Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam and M. Lanctot,

"Mastering the Game of Go With Deep Neural

Networks and Tree Search,“ Nature, Bd. 529, Nr.

7587, p. 484, *2016).

[7] R. Coulom, "Efficient Selectivity and Backup

Operators in Monte-Carlo Tree Search,“ in

International Conference on Computer and

Games, (2006).

[8] L. Kocsis and C. Szepesvari, “Bandid Based

Monte-Carlo Planning,“ in ECML-06, 2006.

[9] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. v.

D. Herik, J. W. H. M. Uiterwijk and B. Bouzy,

“Progressive Strategies for Monte-Carlo Tree

Search,“ New Mathematics and Natural

Computation, Bd. 4, Nr. 3, pp. 343-357, (2008).

[10] C. Guillaume, E. Bakkes, I. Szita and P. Sponck,

“Monte-Carlo Tree Search: A new Framework

for Game AI,“ in In Proceedings of AIIDEC-08,

(2008).

[11] J.-T. Saito and G. Chaslot, “Monte-Carlo Proof

Number Search for Computer Go,“ in

International Conference on Computer and

Games, (2006).

[12] Z. Song and H. v. D. H. H. J. IIda, “Probability

based Proof Number Search,“ in Proceedings of

the 11th International Conference on Agents and

Artificial Intelligence, {ICAART} 2019, (2018).

[13] A. J. Palay, “Searching with Probabilities,“

Carnegie-Mellon Univ. Pittsburgh PA Dept of

Computer Science, (1983).

[14] A. Saffidine and T. Cazenave, “Developments on

Product Propagation,“ in International

Conference on Computers and Games, (2013).

[15] D. Stern, R. Herbrich and T. Graepel, “Learning

to Solve Game Trees,“ in Proceedings of the 24th

international conference on Machine learning,

(2007).

[16] W. Kahan, “IEEE standard 754 for binary

floating-point arithmetic,“ Lecture Notes on the

Status of IEEE, Bd. 754, p. 11, (1996).

[17] A. Kishimoto and M. Muller, “Df-pn in Go: An

Application to The One-Eye Problem,“ Advances

in computer games, pp. 125-141, (2004).

Advances in Intelligent Systems Research, volume 172

491

