
Nature of Probability-Based Proof Number Search 

Anggina PRIMANITA
1,2*

, Hiroyuki IIDA
1
 

1School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1211, 

Ishikawa, Japan 
2Informatics Department, Universitas Sriwijaya, Indonesia 

*Corresponding author: S1820431@jaist.ac.id

Abstract  
Probability-based Proof Number Search (PPN-Search) is a best-first search algorithm that possesses a unique 

nature. It combines two kinds of information from a tree structure, namely, information from visited nodes 

and yet to be visited nodes. Information coming from visited nodes is determined based on winning status. 
On the other hand, information from yet to be visited (unexplored) nodes is determined by employing play-

out technique in leaf nodes. All of the information is combined into a value called probability-based proof 

number (PPN). In this paper, PPN-Search is employed to solve randomly generated Connect Four positions. 
Its results are compared to two other well-known best-first search algorithms, namely Proof Number Search 

and Monte-Carlo Proof Number Search. The limitation of PPN-Search related to the use of real numbers is 

identified based on the experiment. To increase the performance of PPN-Search while preserving its 

strength, an improvement technique using precision rate is introduced. Analysis from further experiments 
shows that the addition of the precision rate value accentuates the nature of PPN-Search, especially in its 

ability to combine information into PPN, which leads to increased performance. It is marked by reduced 

number of nodes needed to be explored up to 57% compared to implementation without precision rate. 
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Background 

Proof number search (PNS) [1] is a best-first search 

algorithm that was initially introduced as a mean to find the 

game-theoretic value. It is implemented as part of the 

attempt to solve a game. PNS uses two values, proof 

number and disproof number (pn and dn for short, 

respectively) as indicators. The proof number of a node 

represents the smallest number of leaf nodes that have to be 

proven in order to prove that it is a win, while the disproof 

number represents the smallest number of leaf nodes that 

have to be disproved in order to prove that it is a loss. 

Essentially, pn and dn are numbers that represent the 

difficulty to prove a node. These numbers hold importance 

in choosing the most proving node (MPN), which is the 

node that will be expanded for subsequent search. 

Employing PNS and its variants to find a game-theoretic 

value has shown to be fruitful [2] . However, there were 

problems which arose from its implementation. The 

problems observed include: (1) a large amount of memory 

space usage, (2) difficulty in application to a non-tree state 

space, and (3) overly long solutions caused by its depth-

first behavior [3]. Moreover, PNS also encounters the see-

saw effect [4]. An improvement of PNS that aims to reduce 

the usage of computation resource if the Depth-first Proof 

Number (df-pn) Search [5]. It turns PNS, a best-first search 

algorithm, into depth-first search by introducing iterative 

deepening into the algorithm. Through the usage of 

iterative deepening, df-pn expands less interior node, as 

well as reduce the amount of proof number and disproof 

number that has to be recomputed. 

Another prevalent algorithm that was employed to attempt 

solving games is the Monte-Carlo Tree Search (MCTS). Its 

usage has become well known especially in the field of Go. 

It is a part of the search algorithm that has led to AlphaGo’s 

wins against top grandmasters [6]. Monte-Carlo Search is 

proposed by Coulom in [7], then Kocsis and Szepesvári 

introduced the concept of upper confidence bounds applied 

to trees (UCT) in [8]. Thereafter, Chaslot in [9] developed 

MCTS. It aims to overcome the difficulty found in building 

heuristic knowledge for a non-terminal game state by 

employing stochastic simulations [10]. Multiple 

simulations have shown to be an effective method to 

determine game-playing strategy. The MCTS framework 

consists of four major steps, namely selection, expansion, 

simulation, and backpropagation. The algorithm starts with 

selecting the next action based on a stored value (selection), 

and then, when it encounters a state that cannot be found in 

the tree, it expands the node. The node expansion is based 

on multiple randomly simulated games. The value is then 

stored and backpropagated to the root of the tree, where the 

algorithm continues to repeat the steps until the desired 

outcome is reached. 

With both strengths, i.e., combining PNS and MCTS, we 

can increase the expected quality of a game solver. One 

early example of this combination is the Monte-Carlo Proof 

Number Search (MCPNS) [11]. The algorithm is proposed 

as an improvement to PNS as it offers a higher degree of 

flexibility than PNS, while it still retains its reliability. Its 

main framework is similar to that of MCTS, but it uses the 

Monte-Carlo evaluation to guide PNS in expanding nodes, 

resulting in a more efficient order. In its implementation, 

however, MCPNS employed the MIN/SUM rules in its 

backpropagation step. The MIN/SUM rules have the 

drawback to compute results from integer numbers, instead 

of real numbers produced from statistical results in its 

simulation. 

To conform to the requirement of processing real numbers 

derived from statistical probability, a new variant of PNS 

has been proposed. It is called probability-based proof 

number search (PPN-Search) [12]. It applies the idea of 



“searching with probabilities” first suggested by [13] to 

draw better results from real numbers produced by Monte-

Carlo simulation in the play-out step. PPN-Search is 

independently developed but uses similar principles with 

Product Propagation (PP) [14]. The main difference 

between PPN-Search and PP is that PPN-Search indicator 

is derived from both the explored and unexplored area of 

the tree to obtain information about the current state of the 

game. PP, on the other hand, utilizes the information only 

from the explored area of the tree [15]. In its introduction, 

PPN-Search was implemented to solve a simulated 

balanced game-tree structure, called P-Game Tree. The 

experiment shows a significant and meaningful result, but, 

its nature and characteristics are still unexplored. 

This paper employs PPN-Search to solve positions of a real 

game, Connect Four. Experiments conducted in this article 

consist of the application of PPN-Search to solve real game 

positions and compare them to other major algorithms. Its 

advantages, limitations, and possible improvement are 

mentioned. 

Probability-based Proof Number Search 

Probability-based proof number search (PPN-Search) is a 

game solver algorithm that aims to improve the idea of 

PNS. It uses an indicator called “Probability-based Proof 

Number” (PPN) to indicate the probability of proving a 

node [12]. In a leaf node, its PPN is derived from the 

Monte-Carlo evaluation. This value is then being 

backpropagated to an internal node using AND/OR 

probability rules. Details of PPN-Search are specified in the 

following two subsections. 

 

Probability-based Proof Number. A probability-based 

proof number is a number that specifies the probability of 

a node to be proven in an AND/OR tree. There are three 

types of nodes in such a tree, viz. terminal node, leaf node, 

and internal node. All of these nodes have its own PPN 

(n.PPN) that is calculated based on the following formula: 

 

If a node n is a terminal leaf node: 

If (n) is a winning node, 

𝑛. 𝑝𝑝𝑛 = 1 (1) 
If (n) is not a winning node, 

𝑛. 𝑝𝑝𝑛 = 0 (2) 
If a node n is a leaf node, then let R be the winning rate as 

a result of game play-out, and 𝜃 is a small positive number 

close to 0: 

 

If  𝑅 ∈ (0,1), 

𝑛. 𝑝𝑝𝑛 = 𝑅 (3) 
If 𝑅 = 1, 

𝑛. 𝑝𝑝𝑛 = 𝑅 − 𝜃 (4) 
If 𝑅 = 0, 

𝑛. 𝑝𝑝𝑛 = 𝑅 + 𝜃 (5) 
If a node n is an internal node, then: 

If (n) is an OR node, 

𝑛. 𝑝𝑝𝑛 = 1 − ∏ 1

𝑛𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑛

− 𝑛𝑐 . 𝑝𝑝𝑛 

(6) 

If (n) is an AND node, 

𝑛. 𝑝𝑝𝑛

= ∏ 𝑛𝑐 . 𝑝𝑝𝑛

𝑛𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑛

 

(6) 

 

as seen on the formula, PPN that is assigned to an OR and 

AND internal node is the product of its child values. Fig. 1 

illustrates these calculations. 

PPN of a node contains two different information derived 

from the current game-tree. The first information is 

acquired from the current known tree structure (Eq. 1). The 

second information is derived from the currently unknown 

tree structure. Eq. 2 is employed to calculate the probability 

of winning or losing from the current position, thus, 

providing more information from part of the tree that is yet 

to be expanded. 

While obtaining PPN of a node, every statistical value 

produced by a simulated game is accounted (Fig. 1). This 

is different than the MIN/SUM rules used by MCPNS (Fig. 

2). Usage of MIN/SUM rules may disregard some of these 

values due to its rule. 

To avoid confusion, in this paper the first player is always 

an OR node. At any given node, PPN signifies the 

possibility of the node to be proved; a higher value means 

that it is more likely to be proved, which means that from 

the root position, it is more likely for the first player to win 

the game. PPN of the left side AND node in Fig. 1 is the 

result of applying Eq. (7). Its PPN is the product of all its 

children. PPN of the OR node at the top of the subtree is 

the result of applying Eq. (6). As seen in the figure, children 

of all nodes affect the way PPN is calculated. The 

distinction of the probability rule application can be 

observed as the game-tree of MCPNS is displayed in Fig. 

2. MCPNS applies the AND/OR rule in updating its pmc 

value. The left side AND node’s pmc is the sum of all its 

children, and the top OR node’s pmc is the minimum pmc 

of its children. In this case, the pmc that has been previously 

calculated does not affect the value of the top OR node. 

 

Algorithm of Probability-based Proof Number. The 

PPN-Search consists of four following steps: 

Selection: For all nodes, select the child with maximum 

PPN at OR nodes, and child with minimum PPN at AND 

nodes. Regard these nodes as the most proving node (MPN) 

for expansion. 

Expansion: Expand the most proving node. In this phase, 

all available next moves from the MPN position is regarded 

as child. 

Play-out: For positions that are not already in the tree. 

Simulate the move in a random self-play mode until the end 

of the game. After several play-outs, the PPNs of expanded 

nodes are derived from Monte-Carlo evaluations. In this 

step, if the result of simulations (R) is equal to 1 or 0, it is 

either reduced or added with a small value (θ) to 

differentiate it from Leaf node. 

Backpropagation: Update the PPNs from extended nodes 

back to the root, while following the AND/OR probability 

rules given in subsection 2.1. 

all of the steps are repeated until PPN of the root node 

reaches 1 or 0 (see Algorithm 1). If the PPN is equal to 1, 

the game is defined as solved.  
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Figure 1. Illustration of PPN calculation in PPN-

Search. OR nodes are displayed as square, while AND 

nodes are displayed as circle. 

 
 

Figure 2. Illustration of pmc calculation in MCPNS. 

OR nodes are displayed as square, while AND nodes 

are displayed as circle.  

 

Probability-based Proof Number Search on 

Connect Four 

Connect Four is a two-player perfect information board 

game. The objective of the game is to line up four chips in 

an either horizontal, vertical, or diagonal manner. The 

game can be won as quick as 13-ply or until the board is 

filled in 42-ply, making the depth of the tree to be highly 

varied. There are also possibilities for sudden death moves 

to occur during the game which made its game-tree 

structure unbalanced. In terms of complexity, Connect Four 

has a fairly good game-tree. This is due to its move 

limitation as well as the size of the board. All of these traits 

of Connect Four made it suitable to be used as test-bed to 

observe the nature and characteristics of PPN-Search as it 

is vastly different than the previous experiment. 

 

Experimental Setup. The experiment is configured to 

check algorithms’ performance in limited time and memory 

space. In the experiment, 200 Connect Four positions were 

generated. Each position contains 12-ply randomly 

generated moves. Three different algorithms, PNS, 

MCPNS, and PPN-Search were given the task to solve each 

position independently. All algorithms are stopped once it 

expands into 35,000,000 nodes or the time elapsed reaches 

420 seconds. For the experiment, parameters for each 

algorithm are as follows; For MCPNS and PPN-Search, the 

number of simulated moves is 60, and for PPN-Search, θ = 

0.01. The number of iterations performed, of nodes visited, 

and time used to solve the position were measured. 

The experiments were performed by a computer with Intel 

i5-8400 processor running at 2.81 GHz using 8 GB of 

RAM, running Windows 10, on a 64-bit machine. To 

ensure the correctness and independent measurement, the 

experiments are performed sequentially. It means that only 

one position is solved by one algorithm at a time. 

 

Experimental Result. The result of the experiment is 

shown in Fig. 3. All of the positions produced the same 

conclusion unless it reached either the set limit. In the 

limited configuration, PNS performs the best, with the most 

amount of positions being solved and unsolved, totaling in 

122 positions. The second-best performing algorithm is 

PPN-Search. It solved a total of 102 positions. The 

algorithm with the least performance is MCPNS as it solves 

a total of 80 out of 200 positions. 

One notable thing from this experiment result is that PNS 

is bounded by the amount of memory available, while PPN-

Search and MCPNS are bounded by time. All of the PNS 

that stopped midway of the search is because it exceeds the 

number of nodes visited, while all of PPN-Search and 

MCPNS stopped midway because it exceeds the time limit 

set for the experiment. 

 

Prolonged Search in PPN-Search. Based on its nature, 

PPN-Search combines two kinds of information, the 

information from explored part of the tree (visited nodes) 

and information from the unexplored part of the tree (yet to 

be visited nodes). PNS, on the other hand, only uses 

information gained from explored part of the tree. With 

more sources of information, PPN-Search should be able to 

utilize it to reach to the conclusion. To further inspect the 

utilization of this information, change of PPN of the root of 

the Connect Four position that has the highest time 

difference between PNS and PPN-Search is inspected. The 

highest time difference between PNS and PPN-Search is 

322.345 second. For such position, PPN-Search visited the 

total of 2,295,856 nodes, while PNS and MCPNS visited 

1,921,730 and 1,114,283 nodes respectively. This case 

indicates that PPN-Search was not able to fully combine the 

information from both parts of the tree, which leads to sub-

optimal performance. To explain why such occurrences 
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exist, PPN value of the root for every 10,000 iterations of 

the chosen position is displayed in Fig. 4. 

 

 
Figure 3. Number of Connect Four positions solved, 

unsolved, and out of bounds by PNS, MCPNS, and 

PPN-Search. 

 

 
Figure 4. PPN value of the root of the position with the 

highest time difference between PNS and PPN-Search. 

 

The PPN value of the root at the first 10,000 iterations is 

0.005794, which is also the peak value for the entire solving 

process. The value is then kept decreasing and stabilized 

between the 70,000th iteration until the 170,000th iteration. 

A sudden increase appears at the 180,000th iteration, in 

which the value of PPN of the root is equal to 0.001699. 

Following the sudden increase, the PPN value stayed 

steadily under 0.001 for the rest of the search process. 

Based on the output value, PPN value of the root already 

hits 0.000000 by the 340,000th iteration, however, the 

algorithm keeps iterating until it reaches the total of 

677,765 iterations, which is almost twice number of 

iterations. This also affects the number of nodes needed to 

solve the position. By the 340,000th iteration, total number 

of nodes explored is 1,205,010 nodes, while at the 

677,765th iteration, total number of nodes explored is also 

almost twice, that is 2,274,949 nodes. 

To observe the problem from different perspective, a 

solved position with a large time difference is observed. In 

this position, the elapsed time difference between PNS and 

PPN-Search is 77.802 second. For this position, PPN-

Search visited a total of 661,783 nodes, while PNS and 

MCPNS visited 11,055 and 1,567 nodes respectively. In 

this case, the difference between total nodes visited by PNS 

and MCPNS is very big. Observation of PPN value of the 

root of the second chosen position (Fig. 5 shows similar 

trend to that of the first chosen position. At the first 10,000 

iterations, the PPN value of the root is 0.99995. The PPN 

value keeps changing between the start until the 100,000th 

iteration, in which it outputs PPN value of 1.00000. 

However, in the same fashion of the previous position, the 

algorithm keeps iterating until 214,110 iterations. 

 

 
Figure 5. PPN value of the root of a solved position 

with substantial time difference between PNS and 

PPN-Search. 

 

From the two observations, it can be concluded that one of 

the problems that occur in PPN-Search is the prolonged 

search problem. This problem occurs when the PPN value 

of the root hits either 1 or 0, but the algorithm keeps 

searching, resulting in longer search time. Prolonged search 

problem stems from the precision of floating-point 

representation in the computer system. Floating point is 

represented as fractions of the binary system in the 

computer memory, hence, a floating-point representation 

of a certain value, albeit that it has integer representation, 

might not be exact [16]. In this implementation of PPN-

Search, although the PPN value of the root has reached the 

value of 0.000000, it still contains a very small number 

trailing behind, thus, not recognized as a conclusive value. 

The programming language of which the algorithms are 

implemented in C++, however, this also applies to other 

popular programming languages such as Python or Java, 

which made the problem unavoidable. The following 

section proposes an approach that can be used to mitigate 

the identified problem. 

Precision of Probability-based Proof Number 

Search 

PPN-Search suffers from prolonged search problem that is 

caused by the representation of floating-point. To tackle 

this problem, a solution is proposed. The solution is to 

apply a precision rate (pr). The application of this rate is 

aimed to reduce the rounding error in comparing the PPN 

root value. The pr value is applied in Algorithm 1 to 

become Algorithm 2. The rest of the algorithm is not 

affected by this change. 
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To show the efficacy of this enhancement, experiments 

with different values of θ and pr is performed. 

 

Experimental Setup. To see the influence of pr value in 

PPN-Search performance, an experiment is done using the 

same hardware in Section 3.1. PPN-Search is employed to 

solve the same 200 positions generated in the previous 

experiment. Search is ended when the position is 

considered to be solved, unsolved, or it reaches the limit of 

420 seconds or 35,000,000 nodes. 

In the precision experiment, two different values of θ are 

used, viz. 0.01 and 0.001. Three different pr values are used 

with the chosen θ. The pr values are 0.001, 0.0001, and 

0.00001. This setup results in six different configurations. 

 

Experimental Result and Analysis. Six different 

configurations of θ and pr value is used to solve 200 

Connect Four positions. Result of the configuration for θ = 

0.01 is shown in Fig. 6 while the result for θ = 0.001 is 

shown in Fig. 7. 

Figure 6. Number of positions solved, unsolved and out of 

bounds by PPN-Search with θ = 0.01. 

 
Figure 7. Number of positions solved, unsolved, and 

out of bounds by PPN-Search with θ = 0.001. 

With the application of pr value, the total positions that 

reach a conclusion, whether it is solved or unsolved, is 

increased. The configuration that leads to the highest 

amount of positions is the configuration with θ = 0.001 and 

pr = 0.001, with the total of 135 positions. This is higher 

than that of PNS (122 positions) and MCPNS (82 positions) 

from the first experiment. Elapsed time and nodes explored 

are also affected by the application of pr value. The average 

elapsed time and nodes explored is displayed in Table 1. 

Change of θ value does not significantly affect the average 

time and node, but, the increase of precision rate yields 

longer elapsed time and higher number of nodes visited. 

The same with total number of solved positions, 

configuration with θ = 0.001 and pr = 0.001 has shown the 

best performance. 

Based on the experiment result, a small number of pr value 

leads to increasing the total number of positions that 

reaches a conclusion. However, lowering pr value to a rate 

where it is less precise than that of θ would lead to false 

conclusions. In this case, the best pr value would be that of 

the same with precision, or one rate above it. Increase and 

decrease of the value beyond it would decrease the 

performance of PPN-Search. 

 

Table 1. Average time and node for each PPN-Search configurations 

θ pr Average Time (s) Average Node 

0.01 no precision 251.180925 2,004,052.895 

0.01 0.001 183.256315  1,323,718.975 

0.01 0.0001 214.63364  1,582,187.985 

0.01 0.00001 226.707205  1,667,750.875 

0.001 0.001 174.90736  1,269,587.96 

0.001 0.0001 217.987025  1,614,710.08 

0.001 0.00001 229.07937  1,638,641.2 
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DISCUSSION

Experimental results of implementing three best first 

algorithms to Connect Four show that there are positions in 

which PPN-Search performs sub-optimally. It visits more 

nodes than PNS before solving positions with the same 

result. This is against the idea of which PPN-Search is 

based on. Of which that it does not have to visit all of the 

nodes, but instead, combining information for the visited 

node, and the probability of unexplored nodes. 

Upon further observation, one of the problems identified 

that cause PPN-Search to underperform is the prolonged 

search. This problem stems from the usage of real number 

in PPN-Search. The previous algorithms, PNS and 

MCPNS, uses integer-based backpropagation technique. 

Because of this technique, the precision of floating-point 

does not affect its performance. PPN-Search uses real 

number-based backpropagation technique, in which the 

PPN of a node went through product operations. With this 

change, a new risk related to precision arose. 

To negate the risk related to precision, a new parameter 

called precision rate is introduced to PPN-Search 

algorithm. the results of the experiments with various 

configurations show that the addition of pr value increases 

the performance of PPN-Search without affecting its 

accuracy result. Observation upon the results shows that the 

closer the pr value to θ the better PPN-Search performance 

result will be. However, pr value cannot be lower than θ, as 

it will decrease the performance of PPN-Search 

The results produced from the experiments demonstrate 

that PPN-Search with pr value reduces the number of 

explored nodes needed to solve a position up to 57%. This 

implies that even with a smaller number of explored nodes, 

it can exploit information from unexplored area and 

combines it to reach the desired conclusion. This identified 

nature leads to a new hypothesis, that PPN-Search is 

suitable for a game that requires a long look-ahead strategy. 

PPN-Search has been introduced to solve two different tree 

structures, balanced and unbalanced. In both 

implementations, PPN-Search demonstrates better 

performance than the other algorithms. However, it has not 

been tested with a game that requires long look-ahead 

strategy. The current state of best performance algorithm 

on different tree structures is shown in Table 2. For a game 

with a hard problem, the current best performing algorithm 

is depth-first proof number search (Df-pn). It is an 

expansion of PNS that is aimed to tackle larger problems. 

In the future, it is important to see the expansion of 

probability-based search idea into its depth-first version 

and test it on a game with bigger tree size and harder 

problems to test this hypothesis. 

CONCLUSION

PPN-Search is a best first search algorithm that employs 

information from both inside and outside of a game-tree. In 

this paper, PPN-Search is employed to solve randomly 

generated Connect Four positions. Results from the 

application allow a problem related to the implementation 

of PPN-Search algorithm to be identified. The prolonged 

search problem arises because PPN-Search is highly 

dependent on real number-based operations. To alleviate 

the problem, a new parameter is introduced. Result of the 

improvement shows that PPN-Search is able to solve more 

positions in limited configurations than other best first 

search algorithms. Implementations of PPN-Search on 

different tree structures show that in the event of reduced 

explored information, PPN-Search is able to reach the 

desired conclusion by exploiting information from 

unexplored part of a game-tree.

 

Table 2. Best performance search algorithms in different tree structure. 

Tree Structure Complexity Best Performance Algorithm 

Balanced Tree Small (easy) PPN-Search on P-game tree [12] 

Unbalanced Tree Big (hard) Df-pn in Go [17] 

Unbalanced Tree Small (easy) PPN-Search on Connect Four 

 

Further works in this direction include, but is not limited to 

(1) application of PPN-Search in other real game with a 

larger tree; (2) expansion into depth-first version of PPN-

Search (df-PPNS); (3) comparison between depth-first 

proof number search and df-PPNS in (very) hard problem 

domains. 
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