
Performance Analysis of Parallel Processing on GPU for

Simple Mathematical Computations

Mastura Diana MARIESKA
1*

, M. Ridho Putra SUFA
2
, Adi WIDIANTO

3
, Novi

YUSLIANI
4
, and Rahmat Izwan HEROZA

5

Faculty of Computer Science, Sriwijaya University, Palembang, Indonesia

*Corresponding author: mastura.diana@informatika.org

ABSTRACT

Over time, more and more data being produced. We need high-processing computing to process this big data.

One solution to this problem is to implement parallel processing using a Graphical Computing Unit (GPU).

Theoretically, processing mathematical computation on GPU will always be faster than CPU, because GPU

has more than hundreds of Arithmetic Logical Units (ALUs) while CPU only has less than 10 ALUs. But to

be able to process data on GPU, we need to explicitly transfer data from RAM to global memory of GPU.

This process creates fairly high cost. In this research, we analyze performance of GPU compared to CPU for

2 mathematical computations, namely 1-dimensional vector addition and 2-dimensional matrix

multiplication. From experimental result, we can conclude that for 1-dimensional vector addition, however

big the data size, it is better to use CPU than GPU. In this case, cost of data transmission is more significant

than acceleration of parallel computational process. For 2-dimensional matrix multiplication, if we use

matrix larger than 96 x 96 floating point, it is better to use GPU than CPU.

Keywords: parallel processing, NVIDIA GPU, CUDA, processing time, general purpose computing

Advances in Intelligent Systems Research, volume 172

Sriwijaya International Conference on Information Technology

and Its Applications (SICONIAN 2019)

Copyright © 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 294

Introduction

In this industry 4.0 era, we need high-processing
computing to process big data. One computer, even
though it has very high computing power, still has
limitations in processing speed. One solution to this
problem is to implement parallel processing, which is
processing data using more than one agents at the same
time. Agent can be a processor, a separate device such as
a GPU, or another PC.
One of the parallel solutions that widely used is
processing with a Graphical Computing Unit (GPU),
which is often called as general-purpose computing on
GPU (GPGPU). GPU that was originally designed to
process graphics can now be used for scientific
computation processing. GPU as computing unit is not
much different than CPU, they both have Arithmetic
Logical Unit (ALU). ALU in GPU has lower complexity
but larger amount. ALU in CPU has higher complexity
but small amount. CPU has less than 10 ALUs while GPU
has more than 100 ALUs [1]. This characteristic make the
GPU is more suitable for simple computation of large data
(data parallelism) and CPU is more suitable for complex
computation (task parallelism).
Another characteristic of GPU is GPU has its own
memory which is separate from RAM. Therefore, each
data that we want to process in the GPU must first be
explicitly transferred from RAM to GPU. This raises a
fairly high cost. This study aims to find out whether
simple computation processing on the GPU is faster than

the CPU even though there is an overhead in terms of data
transmission.
There have been several studies comparing CPU
performance with GPU. However, existing research
mostly use specific advanced computing cases, such as
relativistic fluid dynamic [2], dense linear algebra [3], and
Compressed sparse row Matrix-Vector (CsrMV) [4]. This
study focuses on the case of basic computing with 1-
dimensional and 2-dimensional data. Hopefully, the
results of this study can become a reference for
researchers when they have to choose between CPU or
GPU.
There are 2 cases of basic floating-point computation
which used to compare CPU and GPU. Those 2 cases are
addition of 1-dimensional vector and multiplication of 2-
dimensional matrix. Both cases were chosen because they
have low data dependency. Cases with low data
dependency are very suitable to be implemented in
parallel.
In this research, we used processing time (in milliseconds)
as measurement metric. Some experimental tests were
conducted to measure the processing time of both cases
while using variance of data amount. The benchmarking
tests were conducted on CPU and GPU at the same PC.
The implementation of the benchmarking application on
the GPU uses NVIDIA CUDA, while the CPU uses Java
as programming language.
There are 9 sections in this paper. The first section is
introduction. Second section describes GPU programming

mailto:mastura.diana@informatika.org

using CUDA. Other research about CPU and GPU
comparison is elaborated in Section III. Section IV is
explanation about thread hierarchy and memory hierarchy
of CUDA Programming Model. Section V describes
application design. Section VI explains about performance
metrics. Section VII describes hardware specification and
benchmarking scenario. The result of processing time
measurement for each scenario in form of graphs is shown
in Section VIII. The last section is conclusion.

GPU PROGRAMMING USING CUDA

The GPU is a microprocessor. Main task of GPU is to
manipulate pixel data and generate display to monitor.
This process includes performing certain tasks such as fast
mathematical calculations. The CPU can sequentially
execute processes with multiple cores and must wait until
the end of execution to start a new one. GPUs have
thousands of cores. These cores are capable of performing
thousands of parallel mathematical operations.
Technically, programming using a GPU is faster than
using a CPU, because the GPU is specifically designed for
intensive computing. The calculation in GPU is very
parallel, as it for graphical rendering. Therefore, in GPU
design, more transistors are devoted to data processing
rather than data caching and flow control. Comparison of
hardware architecture CPU and GPU is illustrated in
Figure 1.

Figure 1. Hardware Architecture of CPU and GPU [5]

NVIDIA corp. introduced CUDA® in November 2006.
CUDA is a general-purpose parallel computing platform
and application programming interface (API) model that
uses NVIDIA GPU parallel computing machines to solve
complex computing problems in a more efficient way than
on CPUs. By using this platform, software engineers and
software developers will be able to use GPU for general
purpose computation. This approach is called GPGPU
(General-Purpose computing on Graphics Processing
Units). The CUDA platform is a software layer that
provides direct access to the GPU's virtual instruction set
and parallel computational elements to run the compute
kernels.

RELATED RESEARCH

There are some researches in field of GPU-CUDA
performance analysis. Among others is [6], which is
conducted comparison between CPU-GPU performance
using benchmark application GpuTest and Furmark. The
conclusion of that research is the performance of the GPU
when compared to that of CPU is always step ahead in all
application. In reference [3], GPU-CUDA performance
analysis is conducted for dense linear algebra. Conclusion
of that research is the optimizations attain 80%-90% of
the peak speeds possible for large matrices. Reference [4]

compares the performance of CPU and GPU-CUDA for
Compressed sparse row Matrix-Vector (CsrMV). It
concludes that GPU-CUDA has better performance and
more consistent than than traditional CsrMV in CPU.
Other researches that focused on GPU-CUDA
performance analysis are [2] and [7]. That researches
focus on parallel computing on case study. In [2], CUDA-
based GPU code performed parallel simulations of
relativistic fluid dynamic. The result is CUDA-based GPU
code is approximately two orders of magnitude faster than
CPU. In [7] proposed GPU based parallel clustering
method for electric power big data . The algorithm based
on CUDA proposed in this paper solved the problem of
massive load curve clustering in CPU with high speedup
ratio and strong adaptability performance. In this research,
we conducted performance analysis of parallel processing
with matrix multiplication in GPU-CUDA, which
compared to traditional CPU.

CUDA PROGRAMMING MODEL

Thread Hierarchy

Parallel execution in CUDA is implemented by creating
many threads that carried task at the same time. Each
thread has index called threadIdx. Thread in CUDA is a 3-
component vector. Each thread can be identified using a
one-dimensional, two-dimensional or three-dimensional
thread index. These threads can form one-dimensional,
two-dimensional or three-dimensional blocks of threads,
called thread block. This design provides a natural way to
calculate all the elements of a domain, such as vectors,
matrices or volumes.
The thread index and the thread ID are directly related: for
one-dimensional blocks, they are identical; for two-
dimensional block sizes (Dx, Dy), the thread ID of the
index thread (x, y) is (x + y Dx); for three-dimensional
block sizes (Dx, Dy, Dz), the thread ID of the index thread
(x, y, z) is (x + y Dx + z Dx Dy).
The number of threads per block is limited because all
block threads must be in the same processor core and must
share limited memory resources from that core. In the
current GPU, thread blocks can contain up to 1024
threads. However, the kernel can be executed by multiple
blocks of threads in the same way, so that the total number
of threads is equal to the number of threads per block
multiplied by the number of blocks.
The blocks are organized into a thread blocks grid of one-
dimensional, two-dimensional or three-dimensional, as
shown in Figure 2. The number of thread blocks in the
grid is generally determined by the size of the data being
processed or the number of system processors, which can
greatly exceed.
Programmer can specify number of threads per block and
number of blocks per grid using <<< ... >>> syntax. The
parameter can be of type int or dim3. Two-dimensional
blocks or grids can be determined as in the example
above. Each block in the grid can be identified by a one-
dimensional, two-dimensional or three-dimensional index
accessible in the kernel through the default blockIdx
variable. The dimension of the thread block in the kernel
can be accessed through the default blockDim variable.

Advances in Intelligent Systems Research, volume 172

295

Figure 2. Grid and Thread Blocks [5]

Memory Hierarchy

During its execution, each CUDA threads can access data
from multiple memory spaces. This memory hierarchy is
illustrated by Figure 3. Each thread has local personal
memory. Each block of threads has shared memory visible
to all block threads and has the same lifespan as the block.
All threads have access to the same global memory.
In addition, there are two other kind of memory; constant
and texture memory space. These two memories are read-
only memory spaces available for all threads. The global,
constant and texture memory space have their own
specializations and optimized for different memory uses.
The global, constant and textures memory spaces are
persistent when starting the kernel with the same
application. Texture memory also provides different
addressing modes. For some specific data formats, texture
memory provides data filtering.

Figure 3. Memory Hierarchy of NVIDIA GPU [5]

APPLICATION DESIGN

Vector Addition

Vector addition is a simple mathematic problem using 1
dimension of data. Given 2 vector with the same size, A
and B. Every element of vector A and B will be added to
vector C. Vector addition is a basic and simple
computation in scientific computing. It has low data
dependency. Every ith element can be added separately.
The pseudocode of vector addition is as follow.

Matrix Multiplication

Matrix multiplication is a simple mathematic problem
using 2 dimensions of data. By definition, the product of
an a x b matrix A by an u x v matrix B is an a x v matrix
C. The pseudocode of matrix multiplication is as follow.

Matrix multiplication is a common computation in parallel
programming because it has low data dependencies.
Because the data dependency is low, we can break that
data into smaller parts and then work on each of data
simultaneously. For example, for multiplying 2 matrices
of size a x v, we can take a subset of matrices into of size
m x n where 0 < m < a and 0 < n < v. This subset then can
be multiplied separately in 1 thread. Linkages between
data are taken into account when adding up the results of
each element of the multiplication.

procedure vectorAddition (A,B,C)

for i = 1 to n do

C[i] = A[i] + B[i];

end for;

procedure matrix_multiplication (A,B,C)

for i = 1 to a do

for j = v to k do

Cij = 0;

for s = 1 to b do

Cij = Cij+(Ais * Bsj);

end for;

end for;

end for;

Advances in Intelligent Systems Research, volume 172

296

PERFORMANCE METRIC

In this research, we use only one performance metric,
which is processing time in milliseconds. To measure the
time, at the beginning part of the code we will record the
start time, while the end part of the code we will record
the end time. Processing time is the difference between
start time and end time.

Processing Time of CPU

The program implementation on the CPU uses the Java
programming language. To measure processing time, we
use the System library, precisely the nanoTime() function.
The output of this function will be divided by 1,000,000
to get the processing time value in milliseconds.
Recording processing time starts after data
initializationand ended after the vector addition or matrix
multiplication calculation is complete.

Processing Time of GPU

The program implementation on the GPU uses CUDA.
Processing time on the GPU is recorded using the
cudaEventCreate() function. This function produces
values in milliseconds and has a resolution of
approximately half a microsecond. The timing of this
function is measured on the GPU clock, so the resolution
is independent from operating system influence [8]. Start
time is recorded after data initialization is complete, but
before copying data to GPU memory. This is because
copying data to GPU memory is an overhead that must be
done in order to be able to process data on GPU. End time
recording is done after copying the resulting data from
GPU memory to RAM.

Specification and Scenarios

In this research we use one PC that has NVIDIA GPU as
graphic card and intel processor as CPU. Hardware
specification used for this research is shown from Table 1
below.

Table 1. Hardware Specifications

CPU

Processor Intel Core i7-6700HQ

Number of Core 4 cores @ 2.60GHz

L1 Cache 4 x 32 KBytes

L2 Cache 4 x 256 KBytes

L3 Cache 6 MBytes

Memory 8GB

GPU

GPU Name Nvidia GeForce GTX 950M

Total Memory 4096MBytes

Number of Core 5 cores

Max Clock Rate 928MHz

Memory Clock Rate 2505Mhz

Memory Bus Width 128-bit

Total Constant Memory 65536 bytes

Total Shared Memory per Block 49152 bytes

Total Number of Register per Block 65536

Maximum Thread per Multiprocessor 2048

Maximum Thread per Block 1024

Max Dimension of a Thread Block (1024, 1024, 64)

Max Dimension Size of a Grid Size (2147483647, 65535, 65535)

Advances in Intelligent Systems Research, volume 172

297

Benchmarking scenarios are divided into 2 scenarios;
small data scenario and large data scenario. Small and
large data sizes differ for each case of vector addition and
matrix multiplication. Small and large values are
determined through experiments. In vector addition, small
data size is in the range of 100,000 to 1,000,000 data with
a difference of 100,000 data for each variant. While the
size of large data in vector addition is in the range of
10,000,000 to 100,000,000 data with a difference of
10,000,000 data for each variant. So, there are a total of
20 variants of data for vector addition cases.
In matrix multiplication, the data used is 2 square matrices
of size n x n. In the small data scenario, the value of n is
in the range of 16 to 192 data with a difference of 16 data
for each variant. Whereas for large data scenarios, the size
of the matrix is in the range 192 to 1024 data with a
difference of 64 data for each variant. So, there are 12
variants of data for small data scenarios and 14 variants of
data for large data scenarios.
For each data variation in each case, the processing time
was measured 10 times, then we calculated average values
from those measurements. This is because in the general
purpose operating system, a running process can be
interrupted by operating system if there are other
processes that have a higher priority. For this reason, it is
important that processing time calculations cannot be
done only for once but must be an average of several
experiments.

RESULT ANALYSIS

Vector Addition

Figure 4 shows comparation of processing time in CPU
and GPU for vector addition.

Figure 4. Processing Time of Vector Addition for
Small Data

From figure 4 and figure 5, we can conclude that for
vector addition, CPU is always faster than GPU. In the
small data scenario, the processing time difference
between the CPU and GPU is only two times. But in the
large data scenario, the processing time difference
increases to 3 times. The cost of sending data from RAM
to GPU memory is too high and is not proportional to the
acceleration of parallel computing.

Figure 5. Processing Time of Vector Addition for
Large Data

Matrix Multiplication

Graph below is comparation of processing time in CPU
and GPU for matrix multiplication.

Figure 6. Processing Time of Matrix Multiplication for
Small Data

Figure 7. Processing Time of Matrix Multiplication for
Large Data

For matrix multiplication case, we can conclude that for
small size of data (less than 96 x 96 floating point),
processing time of CPU is lower than GPU. For matrix
size larger than 96 x 96, processing time of CPU is
significantly higher than GPU. At the largest data, which
is 1024 x 1024, processing time of CPU is more than 3
times higher than GPU.

Advances in Intelligent Systems Research, volume 172

298

Result of this research is a little bit different than other
related research. In other research such in [2][3][4],
concluded that processing in GPU is always faster than
processing in CPU. It turns out that for complex case such
as matrix multiplication, GPU is able to process data
faster that CPU. This makes the overhead of data
transmission from RAM to GPU is less significant. But
for simple computation using 1 dimensional data, like in
vector addition, CPU can perform faster data processing.
Because in simple computation, data transmission cost is
more significant than acceleration of parallel processing.

CONCLUSION

We have evaluated performance of GPU compared to
CPU for simple mathematical computation. We
implemented 2 different kind of computational cases
using different data dimension, namely 1-dimensional
vector addition and 2-dimensional matrix multiplication.
From experimental result, we can conclude that for 1-
dimensional vector addition, however much the data size,
it is better to use CPU than GPU. In this case, cost of data
transmission is more significant than acceleration of
computational process. For 2-dimensional matrix
multiplication, if we use matrix larger than 96 x 96
floating point, it is better to use GPU than CPU.

REFERENCES
[1] A. Rege, ‘An Introduction to Modern GPU
Architecture’, NVIDIA Present., 2009.

[2] D. Bazow, U. Heinz, and M. Strickland,
‘Massively parallel simulations of relativistic fluid
dynamics on graphics processing units with CUDA’,
Comput. Phys. Commun., vol. 225, pp. 92–113, 2018.

[3] V. Volkov and J. W. Demmel, ‘Benchmarking
GPUs to tune dense linear algebra’, 2008 SC - Int. Conf.
High Perform. Comput. Networking, Storage Anal. SC
2008, no. November, 2008.

[4] D. Merrill and M. Garland, ‘Merge-based
Parallel Sparse Matrix-Vector Multiplication’, no.
November, 2016.

[5] NVIDIA, ‘Cuda C Programming Guide’,
Program. Guid., no. September, pp. 1–261, 2015.

[6] C. Naikodi, ‘Performance Evaluation of CPU-
GPU with CUDA Architecture Performance Evaluation of
CPU-GPU with CUDA Architecture’, no. March, 2017.

[7] C. Ji, Z. Xiong, C. Fang, H. Lv, and K. Zhang,
‘A GPU based parallel clustering method for electric
power big data’, Proc. - 2017 4th Int. Conf. Inf. Sci.
Control Eng. ICISCE 2017, pp. 29–33, 2017.

[8] NVIDIA, ‘CUDA Toolkit Documentation’.
[Online]. Available: https://docs.nvidia.com/cuda/.
[Accessed: 05-Aug-2019].

Advances in Intelligent Systems Research, volume 172

299

