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ABSTRACT 

Over time, more and more data being produced. We need high-processing computing to process this big data. 

One solution to this problem is to implement parallel processing using a Graphical Computing Unit (GPU). 

Theoretically, processing mathematical computation on GPU will always be faster than CPU, because GPU 

has more than hundreds of Arithmetic Logical Units (ALUs) while CPU only has less than 10 ALUs. But to 

be able to process data on GPU, we need to explicitly transfer data from RAM to global memory of GPU. 

This process creates fairly high cost. In this research, we analyze performance of GPU compared to CPU for 

2 mathematical computations, namely 1-dimensional vector addition and 2-dimensional matrix 

multiplication. From experimental result, we can conclude that for 1-dimensional vector addition, however 

big the data size, it is better to use CPU than GPU. In this case, cost of data transmission is more significant 

than acceleration of parallel computational process. For 2-dimensional matrix multiplication, if we use 

matrix larger than 96 x 96 floating point, it is better to use GPU than CPU. 
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Introduction

In  this  industry  4.0  era,  we  need  high-processing
computing  to  process  big  data.  One  computer,  even
though  it  has  very  high  computing  power,  still  has
limitations  in  processing  speed.  One  solution  to  this
problem  is  to  implement  parallel  processing,  which  is
processing data using more than one agents at the same
time. Agent can be a processor, a separate device such as
a GPU, or another PC.
One  of  the  parallel  solutions  that  widely  used  is
processing  with  a  Graphical  Computing  Unit  (GPU),
which  is  often  called  as  general-purpose  computing  on
GPU  (GPGPU).  GPU  that  was  originally  designed  to
process  graphics  can  now  be  used  for  scientific
computation  processing.  GPU as  computing  unit  is  not
much  different  than  CPU,  they  both  have  Arithmetic
Logical Unit (ALU). ALU in GPU has lower complexity
but larger amount.  ALU in CPU has higher  complexity
but small amount. CPU has less than 10 ALUs while GPU
has more than 100 ALUs [1]. This characteristic make the
GPU is more suitable for simple computation of large data
(data parallelism) and CPU is more suitable for complex
computation (task parallelism).
Another  characteristic  of  GPU  is  GPU  has  its  own
memory  which  is  separate  from RAM. Therefore,  each
data  that  we want  to  process  in  the  GPU must first  be
explicitly  transferred  from RAM to GPU. This  raises  a
fairly  high  cost.  This  study  aims  to  find  out  whether
simple computation processing on the GPU is faster than 

the CPU even though there is an overhead in terms of data
transmission.
There  have  been  several  studies  comparing  CPU
performance  with  GPU.  However,  existing  research
mostly  use  specific  advanced  computing  cases,  such  as
relativistic fluid dynamic [2], dense linear algebra [3], and
Compressed sparse row Matrix-Vector (CsrMV) [4]. This
study  focuses  on  the  case  of  basic  computing  with  1-
dimensional  and  2-dimensional  data.  Hopefully,  the
results  of  this  study  can  become  a  reference  for
researchers when they have to  choose between CPU or
GPU. 
There  are  2  cases  of  basic  floating-point  computation
which used to compare CPU and GPU. Those 2 cases are
addition of 1-dimensional vector and multiplication of 2-
dimensional matrix. Both cases were chosen because they
have  low  data  dependency.  Cases  with  low  data
dependency  are  very  suitable  to  be  implemented  in
parallel. 
In this research, we used processing time (in milliseconds)
as  measurement  metric.  Some  experimental  tests  were
conducted to measure the processing time of both cases
while using variance of data amount. The benchmarking
tests were conducted on CPU and GPU at the same PC.
The implementation of the benchmarking application on
the GPU uses NVIDIA CUDA, while the CPU uses Java
as programming language.
There  are  9  sections  in  this  paper.  The  first  section  is
introduction. Second section describes GPU programming
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using  CUDA.  Other  research  about  CPU  and  GPU
comparison  is  elaborated  in  Section  III.  Section  IV  is
explanation about thread hierarchy and memory hierarchy
of  CUDA  Programming  Model.  Section  V  describes
application design. Section VI explains about performance
metrics. Section VII describes hardware specification and
benchmarking  scenario.  The  result  of  processing  time
measurement for each scenario in form of graphs is shown
in Section VIII. The last section is conclusion.

GPU PROGRAMMING USING CUDA

The GPU is  a microprocessor.  Main task of GPU is  to
manipulate  pixel  data  and  generate  display  to  monitor.
This process includes performing certain tasks such as fast
mathematical  calculations.  The  CPU  can  sequentially
execute processes with multiple cores and must wait until
the  end  of  execution  to  start  a  new  one.  GPUs  have
thousands of cores. These cores are capable of performing
thousands of parallel mathematical operations.
Technically,  programming  using  a  GPU  is  faster  than
using a CPU, because the GPU is specifically designed for
intensive  computing.  The  calculation  in  GPU  is  very
parallel, as it for graphical rendering. Therefore, in GPU
design,  more  transistors  are  devoted  to  data  processing
rather than data caching and flow control. Comparison of
hardware  architecture  CPU  and  GPU  is  illustrated  in
Figure 1. 

Figure 1. Hardware Architecture of CPU and GPU [5]

NVIDIA corp.  introduced  CUDA® in  November  2006.
CUDA is a general-purpose parallel  computing platform
and application programming interface (API) model that
uses NVIDIA GPU parallel computing machines to solve
complex computing problems in a more efficient way than
on CPUs. By using this platform, software engineers and
software developers will be able to use GPU for general
purpose  computation.  This  approach  is  called  GPGPU
(General-Purpose  computing  on  Graphics  Processing
Units).  The  CUDA  platform  is  a  software  layer  that
provides direct access to the GPU's virtual instruction set
and parallel  computational  elements to run the compute
kernels.

RELATED RESEARCH

There  are  some  researches  in  field  of  GPU-CUDA
performance  analysis.  Among  others  is  [6],  which  is
conducted  comparison  between  CPU-GPU  performance
using benchmark application GpuTest and Furmark. The
conclusion of that research is the performance of the GPU
when compared to that of CPU is always step ahead in all
application.  In  reference  [3],  GPU-CUDA  performance
analysis is conducted for dense linear algebra. Conclusion
of that  research is  the optimizations attain 80%-90% of
the peak speeds possible for large matrices. Reference [4]

compares the performance of CPU and GPU-CUDA for
Compressed  sparse  row  Matrix-Vector  (CsrMV).  It
concludes that  GPU-CUDA has  better  performance and
more consistent than than traditional CsrMV in CPU.
Other  researches  that  focused  on  GPU-CUDA
performance  analysis  are  [2] and  [7].  That  researches
focus on parallel computing on case study. In [2], CUDA-
based  GPU  code  performed  parallel  simulations  of
relativistic fluid dynamic. The result is CUDA-based GPU
code is approximately two orders of magnitude faster than
CPU.  In  [7] proposed  GPU  based  parallel  clustering
method for electric power big data . The algorithm based
on CUDA proposed in this paper solved the problem of
massive load curve clustering in CPU with high speedup
ratio and strong adaptability performance. In this research,
we conducted performance analysis of parallel processing
with  matrix  multiplication  in  GPU-CUDA,  which
compared to traditional CPU.

CUDA PROGRAMMING MODEL

Thread Hierarchy

Parallel execution in CUDA is implemented by creating
many  threads  that  carried  task  at  the  same  time.  Each
thread has index called threadIdx. Thread in CUDA is a 3-
component vector. Each thread can be identified using a
one-dimensional,  two-dimensional  or  three-dimensional
thread  index.  These  threads  can  form  one-dimensional,
two-dimensional or three-dimensional blocks of threads,
called thread block. This design provides a natural way to
calculate all  the elements of a domain, such as vectors,
matrices or volumes.
The thread index and the thread ID are directly related: for
one-dimensional  blocks,  they  are  identical;  for  two-
dimensional block sizes  (Dx,  Dy),  the thread ID of  the
index thread (x, y) is (x + y Dx); for three-dimensional
block sizes (Dx, Dy, Dz), the thread ID of the index thread
(x, y, z) is (x + y Dx + z Dx Dy).
The number of threads per  block is  limited  because all
block threads must be in the same processor core and must
share  limited  memory  resources  from that  core.  In  the
current  GPU,  thread  blocks  can  contain  up  to  1024
threads. However, the kernel can be executed by multiple
blocks of threads in the same way, so that the total number
of  threads  is  equal  to  the  number  of  threads  per  block
multiplied by the number of blocks.
The blocks are organized into a thread blocks grid of one-
dimensional,  two-dimensional  or  three-dimensional,  as
shown in Figure 2. The number of thread blocks in the
grid is generally determined by the size of the data being
processed or the number of system processors, which can
greatly exceed.
Programmer can specify number of threads per block and
number of blocks per grid using <<< ... >>> syntax. The
parameter  can be of type int or dim3. Two-dimensional
blocks  or  grids  can  be  determined  as  in  the  example
above. Each block in the grid can be identified by a one-
dimensional, two-dimensional or three-dimensional index
accessible  in  the  kernel  through  the  default  blockIdx
variable. The dimension of the thread block in the kernel
can be accessed through the default blockDim variable.
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Figure 2. Grid and Thread Blocks [5]

Memory Hierarchy

During its execution, each CUDA threads can access data
from multiple memory spaces. This memory hierarchy is
illustrated  by  Figure  3.  Each  thread  has  local  personal
memory. Each block of threads has shared memory visible
to all block threads and has the same lifespan as the block.
All threads have access to the same global memory.
In addition, there are two other kind of memory; constant
and texture memory space. These two memories are read-
only memory spaces available for all threads. The global,
constant  and  texture  memory  space  have  their  own
specializations and optimized for different memory uses.
The  global,  constant  and  textures  memory  spaces  are
persistent  when  starting  the  kernel  with  the  same
application.  Texture  memory  also  provides  different
addressing modes. For some specific data formats, texture
memory provides data filtering.

Figure 3. Memory Hierarchy of NVIDIA GPU [5]

APPLICATION DESIGN

Vector Addition

Vector addition is a simple mathematic problem using 1
dimension of data. Given 2 vector with the same size, A
and B. Every element of vector A and B will be added to
vector  C.  Vector  addition  is  a  basic  and  simple
computation  in  scientific  computing.  It  has  low  data
dependency.  Every ith element  can  be added  separately.
The pseudocode of vector addition is as follow.

Matrix Multiplication

Matrix  multiplication  is  a  simple  mathematic  problem
using 2 dimensions of data. By definition, the product of
an a x b matrix A by an u x v matrix B is an a x v matrix
C. The pseudocode of matrix multiplication is as follow.

Matrix multiplication is a common computation in parallel
programming  because  it  has  low  data  dependencies.
Because the data dependency is  low, we can break that
data  into  smaller  parts  and  then  work  on  each  of  data
simultaneously. For example, for multiplying 2 matrices
of size a x v, we can take a subset of matrices into of size
m x n where 0 < m < a and 0 < n < v. This subset then can
be  multiplied  separately  in  1  thread.  Linkages  between
data are taken into account when adding up the results of
each element of the multiplication.

procedure vectorAddition (A,B,C) 

for i = 1 to n do

C[i] = A[i] + B[i];

end for;

procedure matrix_multiplication (A,B,C) 

for i = 1 to a do

for j = v to k do

Cij = 0;

for s = 1 to b do

Cij = Cij+(Ais * Bsj);

end for;

end for;

end for;
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PERFORMANCE METRIC

In  this  research,  we  use  only  one  performance  metric,
which is processing time in milliseconds. To measure the
time, at the beginning part of the code we will record the
start time, while the end part of the code we will record
the end time.  Processing time is  the difference between
start time and end time.

Processing Time of CPU

The program implementation on the CPU uses the Java
programming language. To measure processing time, we
use the System library, precisely the nanoTime() function.
The output of this function will be divided by 1,000,000
to  get  the  processing  time  value  in  milliseconds.
Recording  processing  time  starts  after  data
initializationand ended after the vector addition or matrix
multiplication calculation is complete.

Processing Time of GPU

The program implementation  on the  GPU uses  CUDA.
Processing  time  on  the  GPU  is  recorded  using  the
cudaEventCreate()  function.  This  function  produces
values  in  milliseconds  and  has  a  resolution  of
approximately  half  a  microsecond.  The  timing  of  this
function is measured on the GPU clock, so the resolution
is independent from operating system influence [8]. Start
time is recorded after data initialization is complete, but
before  copying  data  to  GPU  memory.  This  is  because
copying data to GPU memory is an overhead that must be
done in order to be able to process data on GPU. End time
recording is  done after  copying  the  resulting  data  from
GPU memory to RAM. 

Specification and Scenarios

In this research we use one PC that has NVIDIA GPU as
graphic  card  and  intel  processor  as  CPU.  Hardware
specification used for this research is shown from Table 1
below. 

Table 1.  Hardware Specifications

CPU

Processor Intel Core i7-6700HQ

Number of Core 4 cores  @ 2.60GHz

L1 Cache 4 x 32 KBytes

L2 Cache 4 x 256 KBytes

L3 Cache 6 MBytes

Memory 8GB

GPU

GPU Name Nvidia GeForce GTX 950M

Total Memory 4096MBytes

Number of Core 5 cores

Max Clock Rate 928MHz

Memory Clock Rate 2505Mhz

Memory Bus Width 128-bit

Total Constant Memory 65536 bytes

Total Shared Memory per Block 49152 bytes

Total Number of Register per Block 65536

Maximum Thread per Multiprocessor 2048

Maximum Thread per Block 1024

Max Dimension of a Thread Block (1024, 1024, 64)

Max Dimension Size  of a Grid Size (2147483647, 65535, 65535)
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Benchmarking  scenarios  are  divided  into  2  scenarios;
small  data  scenario  and  large  data  scenario.  Small  and
large data sizes differ for each case of vector addition and
matrix  multiplication.  Small  and  large  values  are
determined through experiments. In vector addition, small
data size is in the range of 100,000 to 1,000,000 data with
a difference of 100,000 data for each variant. While the
size  of  large  data  in  vector  addition  is  in  the  range of
10,000,000  to  100,000,000  data  with  a  difference  of
10,000,000 data for each variant. So, there are a total of
20 variants of data for vector addition cases.
In matrix multiplication, the data used is 2 square matrices
of size n x n. In the small data scenario, the value of n is
in the range of 16 to 192 data with a difference of 16 data
for each variant. Whereas for large data scenarios, the size
of  the  matrix  is  in  the  range  192  to  1024 data  with  a
difference of 64 data  for  each variant.  So,  there are 12
variants of data for small data scenarios and 14 variants of
data for large data scenarios.
For each data variation in each case, the processing time
was measured 10 times, then we calculated average values
from those measurements. This is because in the general
purpose  operating  system,  a  running  process  can  be
interrupted  by  operating  system  if  there  are  other
processes that have a higher priority. For this reason, it is
important  that  processing  time  calculations  cannot  be
done  only  for  once  but  must  be  an  average  of  several
experiments.

RESULT ANALYSIS

Vector Addition

Figure 4 shows comparation of processing time in CPU
and GPU for vector addition. 

Figure 4.  Processing  Time  of  Vector  Addition  for
Small Data

From  figure  4  and  figure  5,  we  can  conclude  that  for
vector addition, CPU is  always faster than GPU. In the
small  data  scenario,  the  processing  time  difference
between the CPU and GPU is only two times. But in the
large  data  scenario,  the  processing  time  difference
increases to 3 times. The cost of sending data from RAM
to GPU memory is too high and is not proportional to the
acceleration of parallel computing.

Figure 5.  Processing  Time  of  Vector  Addition  for
Large Data

Matrix Multiplication

Graph below is comparation of processing time in CPU
and GPU for matrix multiplication.

Figure 6. Processing Time of Matrix Multiplication for
Small Data

Figure 7. Processing Time of Matrix Multiplication for
Large Data

For matrix multiplication case, we can conclude that for
small  size  of  data  (less  than  96  x  96  floating  point),
processing time of CPU is lower than GPU. For matrix
size  larger  than  96  x  96,  processing  time  of  CPU  is
significantly higher than GPU. At the largest data, which
is 1024 x 1024, processing time of CPU is more than 3
times higher than GPU.
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Result  of this research is a little  bit different than other
related  research.  In  other  research  such  in  [2][3][4],
concluded that processing in GPU is  always faster  than
processing in CPU. It turns out that for complex case such
as  matrix  multiplication,  GPU  is  able  to  process  data
faster  that  CPU.  This  makes  the  overhead  of  data
transmission from RAM to GPU is less significant.  But
for simple computation using 1 dimensional data, like in
vector addition, CPU can perform faster data processing.
Because in simple computation, data transmission cost is
more significant than acceleration of parallel processing. 

CONCLUSION

We  have  evaluated  performance  of  GPU  compared  to
CPU  for  simple  mathematical  computation.  We
implemented  2  different  kind  of  computational  cases
using  different  data  dimension,  namely  1-dimensional
vector addition and 2-dimensional matrix multiplication.
From  experimental  result,  we  can  conclude  that  for  1-
dimensional vector addition, however much the data size,
it is better to use CPU than GPU. In this case, cost of data
transmission  is  more  significant  than  acceleration  of
computational  process.  For  2-dimensional  matrix
multiplication,  if  we  use  matrix  larger  than  96  x  96
floating point, it is better to use GPU than CPU.
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