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ABSTRACT
The output of an engineering process is the result of several inputs, which may be homogeneous or heterogeneous and to study
them, we need a model which should be flexible enough to summarize efficiently the nature of such processes. As compared
to simple models, mixture models of underlying lifetime distributions are intuitively more appropriate and appealing to model
the heterogeneous nature of a process in survival analysis and reliability studies. Moreover, due to time and cost constraints,
in the most lifetime testing experiments, censoring is an unavoidable feature. This article focuses on studying a mixture of
exponential distributions, and we considered this particular distribution for three reasons. The first reason is its application in
reliability modeling of electronic components and the second important reason is its skewed behavior. Similarly, the third and
themost important reason is that exponential distribution has thememory-less property. In particular, we deal with the problem
of estimating the parameters of a 3-component mixture of exponential distributions using type-II doubly censoring sampling
scheme. The elegant closed-form expressions for the Bayes estimators and their posterior risks are derived under squared error
loss function, precautionary loss function and DeGroot loss function assuming the noninformative (uniform and Jeffreys’) and
the informative priors. A detailedMonte Carlo simulation and real data studies are carried out to investigate the performance (in
terms of posterior risks) of the Bayes estimators. From results, it is observed that the Bayes estimates assuming the informative
prior perform better than the noninformative priors.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Exponential distribution has been successfully used to model lifetimes of industrial objects. It is a very flexible distribution that can express
a wide range of distribution shapes and can be fitted to a wide range of empirical data. Because of its memory-less property, it is commonly
used in testing of the objects whose lifetimes do not depend on their age.

Mixture models play a significant role in many real-life applications since the last few decades. Finite mixtures of lifetime distributions
have been proved to be of considerable interest both in terms of their methodological development and practical applications. As defined
in Mendenhall and Hader [1], for practical purposes, an engineer may divide causes of failure of a system, or a device, into two or more
different types of causes. For example, to know the proportion of failure due to a certain cause and to improve the manufacturing process,
Acheson andMcElwee [2] divided causes of electronic tube failures into gaseous defects, mechanical defects and normal deterioration of the
cathode. Similarly, an engineering system may be composed of different homogeneous and/or heterogeneous subsystems. Instead of single
probability models, heterogeneity in the nature of such systems can be captured through mixture models. Another important feature of
mixture models is that when a population is supposed to comprise a number of subpopulations mixed in an unknown proportion, common
available distributions do not exhibit the situation at hand. Some applications of mixture of exponential distributions include McCullagh
[3], Hebert and Scariano [4], Raqab and Ahsanullah [5], Ali et al. [6] and Abu-Taleb et al. [7]. Direct applications of mixture models can be
seen mostly in industrial engineering (Ali et al. [8]), medicine (Chivers [9] and Burekhardt [10]), biology (Bhattacharya [11] and Gregor
[12]), social sciences (Harris [13]), economics (Jedidi et al. [14]), life testing (Shawky and Bakoban [15]) and reliability analysis (Sultan
et al. [16]).
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In many applications, data can be considered as coming from a mixture of two or more distributions. This motivates the researchers to
mix common statistical distributions to get a new distribution. Several authors have extensively applied 2-component mixture modeling
in different practical problems using the Bayesian approach. For instance, we refer to Liu [17], Saleem and Irfan [18], Saleem et al. [19],
Santos [20], Al-Hussaini and Hussein [21], Mohammadi and Salehi-Rad [22], Kazmi et al. [23], Ahmad and Al-Zaydi [24], Ali et al. [25],
Mohammadi et al. [26], Ali [27], Ateya [28], Feroze and Aslam [29], Mohamed et al. [30] and Zhang and Huang [31] for the Bayesian
estimation of mixture models. However, limited work is available in the literature on the Bayesian analysis of the 3-component mixture
distribution.

Due to time and cost limitations, it is impossible to continue the testing until the last observation. Therefore, the values which are greater
than pre-fixed life-test termination time are taken as censored observations. It is worth mentioning that censoring is a property of data sets
and not of parameters and commonly used in lifetime experiments. A valuable account on censoring is given in Romeu [32], Gijbels [33]
and Kalbfleisch and Prentice [34] and the referenced cited therein.

Motivated by the applications of the exponential distribution andmixturemodels, the focus of the present article is to develop a 3-component
mixture of exponential distributions (3-CMEDs) from Bayesian perspective. We assume that all the parameters of a 3-CMED are unknown
and estimate them by considering different priors and loss functions. In addition to this, a type-II doubly censoring sampling scheme is also
considered in this article.

The rest of the article is arranged as follows: Development of a 3-CMEDs is given in Section 2. Sampling scheme and likelihood function of
the mixture model are defined in Section 3. The joint posterior distributions assuming the non-informative and the informative priors are
derived in Sections 4 and 5, respectively. Themarginal posterior distributions are derived in Sections 6. In Section 7, the Bayesian estimation
under squared error loss function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) are presented. The posterior
predictive distribution and the Bayesian predictive intervals are described in Section 8. The elicitation of hyperparameters is discussed in
Section 9. The simulation study and the real-life data application are explained in Sections 10 and 11, respectively. Finally, some concluding
remarks are given in Section 12.

2. A 3-COMPONENT MIXTURE OF THE EXPONENTIAL DISTRIBUTIONS

As defined by Barger [35] and Střelec and Stehlík [36], the probability density function of a finite 3-CMED with mixing proportions p1 and
p2, is given by

f
(
y; Φ

)
= p1f1

(
y; Φ1

)
+ p2f2

(
y; Φ2

)
+
(
1 − p1 − p2

)
f3
(
y; Φ3

)
, p1, p2 ≥ 0, p1 + p2 ≤ 1, (1)

where Φ =
(
𝜃1, 𝜃2, 𝜃3, p1, p2

)
, Φm = 𝜃m,m = 1, 2, 3 and fm

(
y; Φm

)
is the pdf of themth component defined as

fm
(
y; Φm

)
= 𝜃m exp

(
−𝜃my

)
, 0 < y < ∞, 𝜃m > 0,m = 1, 2, 3.

The cdf of a 3-component mixture of the exponential distributions is defined as

F
(
y; Φ

)
= p1F1

(
y; Φ1

)
+ p2F2

(
y; Φ2

)
+
(
1 − p1 − p2

)
F3

(
y; Φ3

)
, (2)

where Fm
(
y; Φm

)
, the cdf of themth component, is

Fm
(
y; Φm

)
= 1 − exp

(
𝜃my

)
, 0 < y < ∞, 𝜃m > 0,m = 1, 2, 3.

Following two theorems give the characterizations of von Mises distribution by truncated first moment.

Theorem 1 Suppose that the random variable Y satisfies the conditions given in Assumption𝒜, with pdf f
(
y; Φ

)
, cdf F

(
y; Φ

)
with 𝛼 = 0 and

𝛽 = ∞. Then E
(
Y|Y < y

)
= g

(
y; Φ

)
𝜏
(
y; Φ

)
, where 𝜏

(
y; Φ

)
=

f
(
y; Φ

)
F
(
y; Φ

) and g
(
y; Φ

)
=

p1
𝜃1
Γ𝜃1y(2)+

p2
𝜃2
Γ𝜃2y(2)+

(1−p1−p2)
𝜃3

Γ𝜃3y(2)

p1𝜃1 exp(−𝜃1y)+p2𝜃2 exp(−𝜃2y)+(1−p1−p2)𝜃3 exp(−𝜃3y)

if and only if f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
.

Proof:We have f
(
y; Φ

)
g
(
y; Φ

)
=

y

∫
0

u f (u; Φ) du.

If f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
,

then f
(
y; Φ

)
g
(
y; Φ

)
=

y

∫
0

u
(
p1𝜃1 exp(−𝜃1u) + p2𝜃2 exp(−𝜃2u) + (1 − p1 − p2)𝜃3 exp(−𝜃3u)

)
du

= p1
𝜃1
Γ𝜃1y (2) +

p2
𝜃2
Γ𝜃2y (2) +

(
1 − p1 − p2

)
𝜃3

Γ𝜃3y (2) ,
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where Γy (2) =
y

∫
0

u exp (−u) du.

Thus g
(
y; Φ

)
=

p1
𝜃1
Γ𝜃1y(2)+

p2
𝜃2
Γ𝜃2y(2)+

(1−p1−p2)
𝜃3

Γ𝜃3y(2)

p1𝜃1 exp(−𝜃1y)+p2𝜃2 exp(−𝜃2y)+(1−p1−p2)𝜃3 exp(−𝜃3y)

then

g′
(
y; Φ

)
= y −

p1
𝜃1
Γ𝜃1y (2) +

p2
𝜃2
Γ𝜃2y (2) +

(1−p1−p2)
𝜃3

Γ𝜃3y (2)

p1𝜃1 exp
(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)p (y; Φ) ,
where

p
(
y; Φ

)
= −

p1𝜃21 exp
(
−𝜃1y

)
+ p2𝜃22 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃23 exp

(
−𝜃3y

)
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
Thus g′

(
y; Φ

)
= y − g

(
y; Φ

)
p
(
y; Φ

)
and

y − g′
(
y; Φ

)
g
(
y; Φ

) = −
p1𝜃21 exp

(
−𝜃1y

)
+ p2𝜃22 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃23 exp

(
−𝜃3y

)
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
By Lemma 1, we obtain

f ′
(
y; Φ

)
f
(
y; Φ

) = −
p1𝜃21 exp

(
−𝜃1y

)
+ p2𝜃22 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃23 exp

(
−𝜃3y

)
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
Integrating both sides of the equation, we obtain

f
(
y; Φ

)
= c

(
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

))
, where c is a constant.

Using the boundary conditions F (0) = 0 and F (∞) = 1, we obtain

f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
.

Theorem 2 Suppose that the random variable Y satisfies the conditions given in Assumption𝒜, with pdf f
(
y; Φ

)
, cdf F

(
y; Φ

)
with 𝛼 = 0 and

𝛽 = ∞. Then E
(
Y|Y > y

)
= h

(
y; Φ

)
r
(
y; Φ

)
, where r

(
y; Φ

)
=

f
(
y; Φ

)
1 − F

(
y; Φ

) and h
(
y; Φ

)
=

E(Y)−
(
p1
𝜃1
Γ𝜃1y(2)+

p2
𝜃2
Γ𝜃2y(2)+

(1−p1−p2)
𝜃3

Γ𝜃3y(2)
)

p1𝜃1 exp(−𝜃1y)+p2𝜃2 exp(−𝜃2y)+(1−p1−p2)𝜃3 exp(−𝜃3y)

if and only if f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
.

Proof:We have f
(
y; Φ

)
h
(
y; Φ

)
=

∞

∫
y

u f (u; Φ) du = E (Y) −
y

∫
0

u f (u; Φ) du

If f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
,

then f
(
y; Φ

)
h
(
y; Φ

)
= E (Y) −

y

∫
0

u
(
p1𝜃1 exp(−𝜃1u) + p2𝜃2 exp(−𝜃2u) + (1 − p1 − p2)𝜃3 exp(−𝜃3u)

)
du

= E (Y) −
(
p1
𝜃1
Γ𝜃1y (2) +

p2
𝜃2
Γ𝜃2y (2) +

(
1 − p1 − p2

)
𝜃3

Γ𝜃3y (2)
)
.

Thus

h
(
y; Φ

)
=

E (Y) −
(

p1
𝜃1
Γ𝜃1y (2) +

p2
𝜃2
Γ𝜃2y (2) +

(1−p1−p2)
𝜃3

Γ𝜃3y (2)
)

p1𝜃1 exp
(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
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Now

h′
(
y; Φ

)
= −y −

E (Y) −
(

p1
𝜃1
Γ𝜃1y (2) +

p2
𝜃2
Γ𝜃2y (2) +

(1−p1−p2)
𝜃3

Γ𝜃3y (2)
)

p1𝜃1 exp
(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)p (y) ,
h′
(
y; Φ

)
= −y − h

(
y; Φ

)
p
(
y; Φ

)
and

y + h′
(
y; Φ

)
h
(
y; Φ

) = −p
(
y; Φ

)
where p

(
y; Φ

)
= −

p1𝜃21 exp
(
−𝜃1y

)
+ p2𝜃22 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃23 exp

(
−𝜃3y

)
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
By Lemma 2, we obtain

f ′
(
y; Φ

)
f
(
y; Φ

) = −p
(
y
)
= −

p1𝜃21 exp
(
−𝜃1y

)
+ p2𝜃22 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃23 exp

(
−𝜃3y

)
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

) .
Integrating both sides of the equation, we obtain

f
(
y; Φ

)
= c

(
p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

))
, where c is a constant.

Using the boundary conditions F (0) = 0 and F (∞) = 1, we obtain

f
(
y; Φ

)
= p1𝜃1 exp

(
−𝜃1y

)
+ p2𝜃2 exp

(
−𝜃2y

)
+
(
1 − p1 − p2

)
𝜃3 exp

(
−𝜃3y

)
.

3. LIKELIHOOD FUNCTION FOR A 3-CMED UNDER DOUBLY CENSORED DATA

To explain the construction of likelihood function, suppose n units are placed in a life testing experiment. Let yr, yr+1, … , yw be the ordered
observations that can only be observed. The remaining r − 1 smallest observations and the n − w largest observations are censored
from the study. So, y1r1 , … , y1w1

, y2r2 , … , y2w2
and y3r3 , … , y3w3

are failed observations belonging to subpopulation-I, subpopulation-II and
subpopulation-III, respectively. Therefore, the rest of the observations which are either less than yr or greater than yw assumed to be cen-
sored from each component, such that yr = min

(
y1r1 , y2r2 , y3r3

)
and yw = max

(
y1w1

, y2w2
, y3w3

)
, whereas the numbers s1 = w1 − r1 + 1,

s2 = w2− r2+1 and s3 = w3− r3+1 of failed observations can be obtained from subpopulation-I, subpopulation-II and subpopulation-III,
respectively. The remaining n− (w − r + 3) observations are assumed to be censored observations where r = r1+ r2+ r3,w = w1+w2+w3

and s = s1 + s2 + s3. The likelihood function of type-II doubly censored sample, y = {
(
y1r1 , … , y1w1

)
,
(
y2r2 , … , y2w2

)
,
(
y3r3 , … , y3w3

)
}, from

a 3-component mixture distribution is

L
(
Φ|y

)
∝ {

w1

∏
i=r1

p1 f1
(
y1i

)
} {

w2

∏
i=r2

p2 f2
(
y2i

)
} {

w3

∏
i=r3

(
1 − p1 − p2

)
f3
(
y3i

)
}

× {F1
(
y1r1

)
}r1−1 {F2

(
y2r2

)
}r2−1 {F3

(
y3r3

)
}
r3−1

{1 − F
(
yw
)
}n−w .

On simplification, the likelihood function of the 3-CMED becomes

L
(
Φ|y

)
∝

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
exp [−𝜃1 {

w1

∑
i=r1

y1i + v1y1r1 + (n − w − v4) yw}]

exp [−𝜃2 {
w2

∑
i=r2

y2i + v2y2r2 + (v4 − v5) yw}] exp [−𝜃3 {
w3

∑
i=r3

y3i + v3y3r3 + v5yw}]

𝜃s11 𝜃
s2
2 𝜃

s3
3 p

s1+n−w−v4
1 ps2+v4−v5

2
(
1 − p1 − p2

)s3+v5 . (3)

In the next section, we discuss the joint posterior distribution for Bayesian analysis.Pdf_Folio:200
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4. THE JOINT POSTERIOR DISTRIBUTIONS ASSUMING THE NIPS

There are some situations where no prior information about the parameter(s) of interest is available or a researcher is uncomfortable with
the subjective knowledge. Thus, in such situations, one can use the noninformative priors (NIPs). Box and Taio [37] argued that NIP as
a prior which gives little information relative to the experiment. Similarly, Bernardo [38] also argued that NIP should be regarded as a
reference prior, that is, a prior convenient to use as a standard when analyzing statistical data. Later, Bernardo and Smith [39] defined NIP
as the priors having the minimal effect relative to data.

In the existing literature, the most commonly used NIPs are the uniform prior (UP) and the Jeffreys’ prior (JP). Both priors are used only
when no formal prior information is available. To obtain JP, Jeffreys [40,41] suggested a method based on the square-root of the Fisher
information. Later on, Geisser [42] also proposed some techniques to determine NIP.

In this section, the joint posterior distributions of parameters given data y are derived assuming the UP and the JP.

4.1. The Joint Posterior Distribution Assuming the UP

To derive the joint posterior distribution, we assume the improper UP for the unknown component parameter 𝜃m, that is, 𝜃m ∼
Uniform (0,∞), m = 1, 2, 3 and the UP over the interval (0, 1) for the unknown proportion parameter pu, that is, pu ∼ Uniform (0, 1),
u = 1, 2. Assuming independence of parameters, the joint prior distribution of the parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 is given by 𝜋1 (Φ) ∝ 1.
Therefore, the joint posterior distribution of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 given data y is given by

g1
(
Φ|y

)
=

L
(
Φ|y

)
𝜋1 (Φ)

∫Φ L
(
Φ|y

)
𝜋1 (Φ) dΦ

g1
(
Φ|y

)
= 1
Ω1

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
𝜃A11−1
1 𝜃A21−1

2 𝜃A31−1
3

exp (−B11𝜃1) exp (−B21𝜃2) exp (−B31𝜃3) p
A01−1
1 pB01−1

2
(
1 − p1 − p2

)C01−1

⎫⎪
⎬⎪
⎭

, (4)

where

A11 = s1 + 1,A21 = s2 + 1,A31 = s3 + 1,A01 = s1 + n − w − v4 + 1,B01 = s2 + v4 − v5 + 1,C01 = s3 + v5 + 1,

B11 =
w1

∑
i=r1

y1i + v1y1r1 + (n − w − v4) yw,B21 =
w2

∑
i=r2

y2i + v2y2r2 + (v4 − v5) yw,B31 =
w3

∑
i=r3

y3i + v3y3r3 + v5yw,

Ω1 =
r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
l=1

(−1)vl
(
rl − 1
vl

)(
n − w
v4

)(
v4
v5

)
Γ (A11)Γ (A21)Γ (A31)B

−A11
11 B−A21

21 B−A31
31 B (A01,B01,C01) .

4.2. The Joint Posterior Distribution Assuming the JP

The JP is defined as p (𝜃m) ∝ √|I (𝜃m) |, m = 1, 2, 3, where I (𝜃m) = −E [
𝜕2f

(
y; 𝜃m

)
𝜕𝜃2m

] is the Fisher’s information. The prior distributions

of the proportion parameters p1 and p2 are again assumed as pu ∼ Uniform (0, 1), u = 1, 2. Assuming independence of parameters, the

joint prior distribution of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 is 𝜋2 (Φ) ∝
1

𝜃1𝜃2𝜃3
. By combining the likelihood function and the joint prior

distribution, we obtain the joint posterior distribution of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 given data y as

g2
(
Φ|y

)
=

L
(
Φ|y

)
𝜋2 (Φ)

∫Φ L
(
Φ|y

)
𝜋2 (Φ) dΦ

g2
(
Φ|y

)
= 1
Ω2

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
𝜃A12−1
1 𝜃A22−1

2 𝜃A32−1
3

exp (−B12𝜃1) exp (−B22𝜃2) exp (−B32𝜃3) p
A02−1
1 pB02−1

2
(
1 − p1 − p2

)C02−1

⎫⎪
⎬⎪
⎭

, (5)
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where

A12 = s1,A22 = s2,A32 = s3,A02 = s1 + n − w − v4 + 1,B02 = s2 + v4 − v5 + 1,C02 = s3 + v5 + 1,

B12 =
w1

∑
i=r1

y1i + v1y1r1 + (n − w − v4) yw,B22 =
w2

∑
i=r2

y2i + v2y2r2 + (v4 − v5) yw,B32 =
w3

∑
i=r3

y3i + v3y3r3 + v5yw,

Ω2 =
r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ (A12)Γ (A22)Γ (A32)B

−A12
12 B−A22

22 B−A32
32 B (A02,B02,C02) .

5. THE JOINT POSTERIOR DISTRIBUTION ASSUMING THE INFORMATIVE PRIOR

The information available on the parameter(s) of interest is quantified as an informative prior. In this article, we consider the gamma distri-
butions as the prior distributions for component parameters 𝜃m, that is, 𝜃m ∼ Gamma (am, bm), m = 1, 2, 3 and bivariate beta distribution
is assumed as the prior distribution for the proportion parameters p1 and p2, that is, p1, p2 ∼ BivariateBeta (a, b, c). So, the joint prior dis-
tribution of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 is written as

𝜋3 (Φ) =
ba11
Γ (a1)

𝜃a1−1
1 exp (−b1𝜃1)

ba22
Γ (a2)

𝜃a2−1
2 exp (−b2𝜃2)

ba33
Γ (a3)

𝜃a3−1
3 exp (−b3𝜃3)

pa−1
1 pb−1

2
(
1 − p1 − p2

)c−1

B (a, b, c) .

Thus, the joint posterior distribution of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 given data y is

g3
(
Φ|y

)
=

L
(
Φ|y

)
𝜋3 (Φ)

∫Φ L
(
Φ|y

)
𝜋3 (Φ) dΦ

g3
(
Φ|y

)
= 1
Ω3

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
𝜃A13−1
1 𝜃A23−1

2 𝜃A33−1
3

exp (−B13𝜃1) exp (−B23𝜃2) exp (−B33𝜃3) p
A03−1
1 pB03−1

2
(
1 − p1 − p2

)C03−1

⎫⎪
⎬⎪
⎭

, (6)

where

A13 = s1 + a1, A23 = s2 + a2, A33 = s3 + a3, B13 =
w1

∑
i=r1

y1i + v1y1r1 + (n − w − v4) yw + b1, B23 =
w2

∑
i=r2

y2i + v2y2r2 + (v4 − v5) yw + b2,

B33 =
w3

∑
i=r3

y3i + v3y3r3 + v5yw + b3,

A03 = s1 + n − w − v4 + a, B03 = s2 + v4 − v5 + b, C03 = s3 + v5 + c,

Ω3 =
r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ (A13)Γ (A23)Γ (A33)B

−A13
13 B−A23

23 B−A33
33 B (A03,B03,C03).

6. BAYESIAN ESTIMATION UNDER LOSS FUNCTIONS

In this section, we derived the algebraic expressions of Bayes estimators and their associated posterior risks using the UP, the JP and the
IP under three different loss functions, namely SELF, PLF and DLF. If L (𝜃, �̂�) is a loss function, the expected value of the loss function for
a given decision with respect to the posterior distribution is known as the posterior risk function. The Bayes estimator �̂� is obtained by
minimizing the posterior expectation with respect to parameter, that is, defined as �̂� = E𝜃|y {L (𝜃, �̂�)}, where L (𝜃, �̂�) is the loss incurred
estimating 𝜃 by �̂�. The SELF, is defined as L (𝜃, �̂�) = (𝜃 − �̂�)2, was introduced by Legendre [43] to develop the least square theory. Later,
Norstrom [44] discussed an asymmetric PLF and also introduced a special case of general class of PLFs defined as L (𝜃, �̂�) = (�̂�)−1 (𝜃 − �̂�)2.
TheDLF is presented byDeGroot [45] and is defined as L (𝜃, �̂�) = (�̂�)−2 (𝜃 − �̂�)2. For a given prior, the general form of the Bayes estimators
and their posterior risks under SELF, PLF and DLF are given in Table 1.Pdf_Folio:202
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Table 1 Bayes estimators and posterior risks under SELF, PLF and DLF.

Loss Function Bayes Estimators Posterior Risks

SELF = L
(
𝜃, �̂�

)
=

(
𝜃 − �̂�

)2 �̂� = E𝜃|y
(
𝜃
)

𝜌 (�̂�) = E𝜃|y
(
𝜃2)− {E𝜃|y

(
𝜃
)
}2

PLF = L
(
𝜃, �̂�

)
= (�̂�)−1

(
𝜃 − �̂�

)2 �̂� = √E𝜃|y
(
𝜃2

)
𝜌 (�̂�) = 2√E𝜃|y

(
𝜃2

)
− 2E𝜃|y

(
𝜃
)

DLF = L
(
𝜃, �̂�

)
= (�̂�)−2

(
𝜃 − �̂�

)2 �̂� = E𝜃|y
(
𝜃2) {E𝜃|y (𝜃)}−1 𝜌 (�̂�) = 1− {E𝜃|y

(
𝜃
)
}2 {E𝜃|y

(
𝜃2)}−1

SELF, squared error loss function; PLF, precautionary loss function; DLF, DeGroot loss function.

6.1. Expressions of the Bayes Estimators and Posterior Risks Under SELF

The algebraic expressions for Bayes estimators and posterior risks assuming the UP, the JP and the IP of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2
under SELF are obtained with respective marginal distribution as

̂𝜃𝜛(SELF) =
1
Ω𝜉

⎧
⎪
⎨
⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 1

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+1

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

(7)

p̂𝛼(SELF) =
1
Ω𝜉

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A1𝜉

)
Γ
(
A2𝜉

)
Γ
(
A3𝜉

)
B
−A1𝜉

1𝜉 B
−A2𝜉

2𝜉 B
−A3𝜉

3𝜉 B
(
Γ0𝜉 ,C0𝜉

)
B
(
Δ0𝜉 + 1, Γ0𝜉 + C0𝜉

)
⎫⎪
⎬⎪
⎭

(8)

𝜌
( ̂𝜃𝜛(SELF)

)
= 1
Ω𝜉

⎧
⎪
⎨
⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 2

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+2

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

− { ̂𝜃𝜛(SELF)}
2

(9)

𝜌
(
p̂𝛼(SELF)

)
= 1
Ω𝜉

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A1𝜉

)
Γ
(
A2𝜉

)
Γ
(
A3𝜉

)
B
−A1𝜉

1𝜉 B
−A2𝜉

2𝜉 B
−A3𝜉

3𝜉 B
(
𝛾0𝜉 ,C0𝜉

)
B
(
Δ0𝜉 + 2, 𝛾0𝜉 + C0𝜉

)
⎫⎪
⎬⎪
⎭

− {p̂𝛼(SELF)}
2 , (10)

where 𝛼, 𝛽, 𝛾 and Δ take the values as (i) 𝛼 = 1, 𝛽 = 2, 𝛾 = B, Δ = A and (ii) 𝛼 = 2, 𝛽 = 1, 𝛼 = 2, 𝛽 = 1, 𝛾 = A, Δ = B. Also, 𝜉 = 1 for
the UP, 𝜉 = 2 for the JP and 𝜉 = 3 for the IP.

6.2. Expressions of the Bayes Estimators and Posterior Risks Under PLF

The respective marginal distribution yields the algebraic expressions for Bayes estimators and posterior risks assuming the UP, the JP and
the IP of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 under PLF as

̂𝜃𝜛(PLF) =

√√√√√√√√√
√

1
Ω𝜉

⎧
⎪
⎨
⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 2

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+2

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

. (11)

p̂𝛼(PLF) =

√√√√√√√√
√

1
Ω𝜉

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A1𝜉

)
Γ
(
A2𝜉

)
Γ
(
A3𝜉

)
B
−A1𝜉

1𝜉 B
−A2𝜉

2𝜉 B
−A3𝜉

3𝜉 B
(
Γ0𝜉 ,C0𝜉

)
B
(
Δ0𝜉 + 2, Γ0𝜉 + C0𝜉

)
⎫⎪
⎬⎪
⎭

. (12)
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𝜌
( ̂𝜃𝜛(PLF)

)
= 2

√√√√√√√√√
√

1
Ω𝜉

⎧
⎪
⎨
⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 2

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+2

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

− 2
Ω𝜉

⎧
⎪
⎨
⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 1

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+1

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

. (13)

𝜌
(
p̂𝛼(PLF)

)
= 2

√√√√√√√√
√

1
Ω𝜉

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A1𝜉

)
Γ
(
A2𝜉

)
Γ
(
A3𝜉

)
B
−A1𝜉

1𝜉 B
−A2𝜉

2𝜉 B
−A3𝜉

3𝜉 B
(
𝛾0𝜉 ,C0𝜉

)
B
(
Δ0𝜉 + 2, 𝛾0𝜉 + C0𝜉

)
⎫⎪
⎬⎪
⎭

− 2
Ω𝜉

⎧⎪
⎨⎪
⎩

r1−1
∑
v1=0

r2−1
∑
v2=0

r3−1
∑
v3=0

n−w
∑
v4=0

v4
∑
v5=0

3
∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A1𝜉

)
Γ
(
A2𝜉

)
Γ
(
A3𝜉

)
B
−A1𝜉

1𝜉 B
−A2𝜉

2𝜉 B
−A3𝜉

3𝜉 B
(
𝛾0𝜉 ,C0𝜉

)
B
(
Δ0𝜉 + 1, 𝛾0𝜉 + C0𝜉

)
⎫⎪
⎬⎪
⎭

. (14)

6.3. Expressions of the Bayes Estimators and Posterior Risks Under DLF

The algebraic expressions for Bayes estimators and posterior risks assuming the UP, the JP and the IP of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2
under DLF are derived with respective marginal distribution as

̂𝜃𝜛(DLF) =

⎧
⎪
⎨
⎪
⎩

r1−1

∑
v1=0

r2−1

∑
v2=0

r3−1

∑
v3=0

n−w

∑
v4=0

v4
∑
v5=0

3

∏
k=1

(−1)vk
(
rk − 1
vk

)(
n − w
v4

)(
v4
v5

)
Γ
(
A𝜛𝜉 + 2

)
Γ
(
A𝜋𝜉

)
Γ
(
A𝜂𝜉

)
B
−
(
A𝜛𝜉+2

)
𝜛𝜉 B

−A𝜋𝜉
𝜋𝜉 B

−A𝜂𝜉
𝜂𝜉 B

(
A0𝜉 ,C0𝜉

)
B
(
B0𝜉 ,A0𝜉 + C0𝜉

)
⎫
⎪
⎬
⎪
⎭

⎧
⎪
⎨
⎪
⎩

r1−1

∑
v1=0

r2−1

∑
v2=0

r3−1

∑
v3=0

n−w

∑
v4=0

v4
∑
v5=0

3

∏
k=1

(−1)vk
(
rk − 1
vk

)(
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. (16)
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𝜌
( ̂𝜃𝜛(DLF)
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= 1 −
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7. THE POSTERIOR PREDICTIVE DISTRIBUTION AND BAYESIAN PREDICTIVE INTERVAL

A significant feature of the Bayesian methodology is the predictive distribution used to predict the future observation X = Yn+1 of a
random variable given the data y, already observed. Al-Hussaini et al. [46], Bolstad [47] and Bansal [48] have given a detailed discussion on
prediction and predictive distribution in the Bayesian paradigm. We, now, present the derivation of posterior predictive distribution and
Bayesian predictive interval.

The posterior predictive distribution of a future observation X = Yn+1 given data y assuming the UP, the JP and the IP is defined as

f
(
x|y

)
= ∫Φ p

(
x|Φ

)
g𝜉

(
Φ|y

)
dΦ. (19)

So, the posterior predictive distribution given in (19) after substituting and simplifying is
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⎨
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In order to construct a Bayesian predictive interval, suppose L and U be the two endpoints of the Bayesian predictive interval. These two
endpoints can be obtained using the posterior predictive distribution defined in (20). A 100(1−𝛾)% Bayesian predictive interval (L, U) canPdf_Folio:205
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be obtained by solving the following equations:

L

∫
0

f
(
x|y

)
dx = 𝛾

2 =
∞

∫
U

f
(
x|y

)
dx.

On simplifying the above equations, the Bayesian predictive interval (L, U) can be written as
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8. ELICITATION OF HYPERPARAMETERS

Elicitation is a tool used to quantify a person’s belief and knowledge about the parameter(s) of interest and in the Bayesian perspective,
elicitation,most often, arises as amethod for specifying the hyperparameter of the prior distribution for the randomparameter(s). Elicitation
has remained a challenging problem for the Bayesian statistician.However, in this study,we adopt amethod based onpredictive probabilities,
given by Aslam [49].

For eliciting the hyperparameters, we use the prior predictive distribution (PPD). The PPD for a random variable Y is

p
(
y
)
= ∫Φ p

(
y|Φ

)
𝜋3 (Φ) dΦ

p
(
y
)
= 1

(a + b + c) {
aa1b

a1
1(

b1 + y
)a1+1 +

ba2b
a2
2(

b2 + y
)a2+1 +

ca3b
a3
3(

b3 + y
)a3+1 } . (21)

To elicit the nine hyperparameters involved in the PPD in (21), we considered the following nine intervals (0, 1), (1, 2), (2, 3), (3, 4), (4, 5),
(5, 6), (6, 7), (7, 8) and (8, 9) and assumed the following probabilities 0.57, 0.20, 0.10, 0.05, 0.02, 0.015, 0.01, 0.005 and 0.003, respectively. It isPdf_Folio:206
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worth mentioning that these probabilities might have been obtained from the expert(s) as their opinion about the likelihood of these inter-
vals. Moreover, different intervals could also be considered. Then, nine equations are solved simultaneously by usingMathematica software
for eliciting the hyperparameters a1, b1, a2, b2, a3, b3, a, b and c. Using the above defined procedure, we obtain the following hyperparameter
values: 3.8330, 3.7310, 3.3570, 3.1360, 2.9030, 2.7330, 3.0280, 0.6995 and 2.7350.

9. MONTE CARLO SIMULATION STUDY

From Equations (7–8), (11–12) and (15–16), it is clear that comparing Bayes estimators (under different priors and loss functions) analyti-
cally is almost impossible. Therefore, a Monte Carlo simulation study is conducted to assess the performance of the Bayes estimators under
different priors, loss functions, parametric values, sample sizes and left and right test termination times. For different values of each of the
five parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 of a 3-CMED, we calculate the Bayes estimates and their posterior risks by using the following steps:

1. A sample from the mixtures may be generated through the Mathematica package as follows:

i. Generate p1n observations randomly from first component density f1
(
y; Φ1

)
.

ii. Generate p2n observations randomly from second component density f2
(
y; Φ2

)
.

iii. Generate remaining
(
1 − p1 − p2

)
n observations randomly from third component density f3

(
y; Φ3

)
.

2. Select a sample censored at fixed test termination times on left and right, that is, yr and yw.

3. Take observations which are less than yr and greater than yw as censored ones.

4. Using the Steps 1–3 for the fixed values of parameters, test termination time and sample size, generate 1000 samples.

5. Calculate the Bayes estimates and posterior risks of parameters 𝜃1, 𝜃2, 𝜃3, p1 and p2 based on 1000 repetitions by solving (7)–(18).

The above steps 1–5 are used for each of the sample sizes n = 40, 80, and 140. The choice of the vector of the parameters is(
𝜃1, 𝜃2, 𝜃3, p1, p2

)
∈ (2, 3, 4, 0.2, 0.4) by taking the following left and right test termination times

(
yr, yw

)
∈ (0.01, 0.8). It is worth mention-

ing that the choices of left and right test termination times are made in such a way that the censoring rate in the resulting sample remains
in between 7% to 20%. The resulting simulated results have been presented in Tables 2–4. The simulated results for

(
𝜃1, 𝜃2, 𝜃3, p1, p2

)
∈

(2, 3, 4, 0.2, 0.4) with
(
yr, yw

)
∈ (0.005, 1.2) are available with the first author and can be obtained on demand.

From the Tables 2–4, it was observed that the degree of over-estimation (and/or under-estimation) of Bayes estimate of component and
proportion parameters using the NIP (UP and JP) and the IP under SELF, PLF and DLF was greater for smaller sample size as compared to a
larger sample size for the fixed left and right test termination times

(
yr, yw

)
. Also, the degree of under-estimation (and/or over-estimation) of

Table 2 Bayes estimates (BE) and posterior risks (PR) of 3-CMED using the UP, the JP and the IP under SELF with parameters
𝜃1 = 2, 𝜃2 = 3, 𝜃3 = 4, p1 = 0.2, p2 = 0.4.

yr, yw n Prior Distribution �̂�1(SELF) �̂�2(SELF) �̂�3(SELF) p̂1(SELF) p̂2(SELF)

0.01, 0.8

40

UP
BE 3.395080 3.605950 4.564170 0.206830 0.394006
PR 3.189950 1.380540 1.915510 0.004616 0.006416

JP
BE 2.784800 3.430350 4.284070 0.205418 0.395564
PR 2.936520 1.313790 1.790290 0.004524 0.006386

IP
BE 1.556880 2.355800 2.722950 0.238333 0.351486
PR 0.278267 0.386267 0.506775 0.004511 0.005442

80

UP
BE 2.719220 3.291960 4.265730 0.204338 0.397148
PR 1.146740 0.636585 0.911545 0.002552 0.003508

JP
BE 2.456510 3.253020 4.144790 0.203833 0.397956
PR 0.986246 0.621705 0.870667 0.002469 0.003467

IP
BE 1.723430 2.612290 3.163760 0.220376 0.373973
PR 0.240709 0.293481 0.410092 0.002441 0.003127

140

UP
BE 2.452820 3.176990 4.153470 0.203616 0.398351
PR 0.620311 0.380634 0.520377 0.001613 0.001898

JP
BE 2.284210 3.164150 4.066220 0.203075 0.398527
PR 0.569558 0.315852 0.434408 0.001586 0.001858

IP
BE 1.831800 2.747620 3.432180 0.213538 0.381421
PR 0.196568 0.227209 0.331019 0.001510 0.001718

SELF, squared error loss function; UP, uniform prior; JP, Jeffreys’ prior; CMED, component mixture of exponential distribution.
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Table 3 Bayes estimates (BE) and posterior risks (PR) of 3-CMED using the UP, the JP and the IP under PLF with parameters
𝜃1 = 2, 𝜃2 = 3, 𝜃3 = 4, p1 = 0.2, p2 = 0.4.

yr, yw n Prior Distribution �̂�1(PLF) �̂�2(PLF) �̂�3(PLF) p̂1(PLF) p̂2(PLF)

0.01, 0.8

40

UP
BE 3.699000 3.849730 4.767100 0.217908 0.405841
PR 0.717074 0.356772 0.394466 0.022028 0.016086

JP
BE 3.053300 3.664720 4.384080 0.216180 0.404422
PR 0.693655 0.352933 0.380654 0.022006 0.016010

IP
BE 1.634710 2.431220 2.795510 0.245329 0.360427
PR 0.173252 0.154085 0.178664 0.018648 0.015317

80

UP
BE 2.888690 3.446400 4.376220 0.210699 0.403334
PR 0.369371 0.186865 0.206311 0.012482 0.008699

JP
BE 2.638560 3.326240 4.190550 0.210432 0.403134
PR 0.361023 0.184805 0.204036 0.012440 0.008668

IP
BE 1.781800 2.667790 3.237220 0.226288 0.378155
PR 0.134257 0.108032 0.126989 0.010931 0.008318

140

UP
BE 2.623740 3.268870 4.229650 0.205550 0.402903
PR 0.242676 0.125873 0.129712 0.008339 0.005497

JP
BE 2.476790 3.165040 4.142140 0.205369 0.402307
PR 0.225903 0.121273 0.125100 0.008282 0.005367

IP
BE 1.875440 2.777690 3.451640 0.217994 0.384240
PR 0.107602 0.088266 0.096329 0.007372 0.005126

PLF, precautionary loss function; UP, uniform prior; JP, Jeffreys’ prior; CMED, component mixture of exponential distribution.

Table 4 Bayes estimates (BE) and posterior risks (PR) of 3-CMED using the UP, the JP and the IP under DLF with parameters
𝜃1 = 2, 𝜃2 = 3, 𝜃3 = 4, p1 = 0.2, p2 = 0.4.

yr, yw n Prior Distribution �̂�1(DLF) �̂�2(DLF) �̂�3(DLF) p̂1(DLF) p̂2(DLF)

0.01, 0.8

40

UP
BE 4.159730 4.017760 4.978260 0.227945 0.412073
PR 0.191222 0.092280 0.083481 0.100028 0.039774

JP
BE 3.488430 3.779970 4.726180 0.221350 0.411067
PR 0.215770 0.095264 0.085669 0.102242 0.039905

IP
BE 1.724710 2.487160 2.887600 0.256362 0.367605
PR 0.104512 0.062960 0.063214 0.074873 0.038481

80

UP
BE 3.082070 3.515470 4.415310 0.217892 0.407875
PR 0.129499 0.055152 0.048539 0.060574 0.021708

JP
BE 2.818450 3.420770 4.355840 0.214324 0.406578
PR 0.134775 0.055252 0.048982 0.060620 0.021766

IP
BE 1.870780 2.735790 3.306760 0.231815 0.381260
PR 0.075300 0.039535 0.038694 0.048479 0.021646

140

UP
BE 2.694600 3.341800 4.324170 0.209112 0.405395
PR 0.104543 0.021811 0.024297 0.042675 0.019338

JP
BE 2.511670 3.303690 4.193300 0.207597 0.404229
PR 0.110332 0.023206 0.028588 0.043811 0.020176

IP
BE 1.928560 2.760290 3.556690 0.221630 0.386456
PR 0.053041 0.019671 0.023283 0.032184 0.017784

DLF, DeGroot loss function; UP, uniform prior; JP, Jeffreys’ prior; CMED, component mixture of exponential distribution.

component and proportion parameters was observed lower for a smaller left test termination time yr and larger for the right test termination
time yw as compared to a larger left test termination time yr and a smaller right test termination time yw for a fixed sample size. It has also
been observed that the bias in the Bayes estimates reduced to zero as the sample size was increased at varying left and right test termination
times. Moreover, we also observed from the simulation study that the Bayes estimates tend to converge to the true parameter values with
a smaller left test termination time yr and a larger right test termination time yw as compared to a larger left test termination time yr and a
smaller right test termination time yw for different sample sizes.

The posterior risk of the Bayes estimates is a suitable criterion for comparing the performance of the different loss functions. From our
study, we observed that the posterior risk was directly proportional to true parametric values and was inversely proportional to the sample
size. It was seen that the posterior risks of the component and the proportion parameters using the NIP (UP and JP) and the IP under SELF,Pdf_Folio:208
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PLF and DLF were inversely proportional to sample size for fixed left and right test termination times. The same observation was made for
smaller left and larger right test termination times as compared to larger left and smaller right test termination times at varying sample sizes.

As far as the problem of selecting a suitable prior is concerned, it can be seen that, having the least associated amount of posterior risk of
the Bayes estimates for a given loss function, the IP is more efficient prior amongst the different considered priors in this study. Also, it can
be seen that the UP (JP) emerges as the best prior than the JP (UP) under DLF (SELF and PLF) due to smaller associated posterior risk. On
the other hand, for estimating the component parameters, the DLF performs better than PLF and SELF, whereas the performance of SELF
is superior to PLF and DLF for estimating the proportion parameters. It was also observed that the selection of the best prior or suitable loss
function is independent on left and right test termination times and sample sizes. It is worth mentioning that the selection of the best prior
(loss function) for a given loss function (prior) is made on the basis of the minimum posterior risks.

10. REAL DATA APPLICATION

In this section, we present the analysis of a real-life data to illustrate the methodology discussed in the previous sections. The main idea
of the present section is to determine whether the results and properties of the Bayes estimators explored by a simulation study, have the
same behavior under a real-life situation. Therefore, for this purpose, we use the data set reported in Gómez et al. [50] about the fatigue life
fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level until all had failed, that is, we have a complete data
with the exact times of failure. To illustrate the proposed methodology, the data are randomly grouped into three sets of observations with
26 observations belonging to subpopulation-I, 25 observations belonging to subpopulation-II and remaining 25 observations belonging
to subpopulation-III. To implement doubly censored samplings, we consider y1r1 , … , y1w1

, y2r2 , … , y2w2
and y3r3 , … , y3w3

failed observations
belong to subpopulation-I, subpopulation-II and subpopulation-III, respectively. The rest of the observations which are less than 0.05 and
greater than 0.34 assumed to be censored observations from each component, such that yr = min

(
y1r1 , y2r2 , y3r3

)
= 0.05 and yw =

max
(
y1w1

, y2w2
, y3w3

)
= 0.34. Notice that the numbers of failed observations, s1 = w1 − r1 + 1 = 19, s2 = w2 − r2 + 1 = 20 and

s3 = w3 − r3 + 1 = 19, can be observed from subpopulation-I, subpopulation-II and subpopulation-III, respectively. The remaining
n− (w − r + 3) = 18 observations are assumed to be censored observations and w− r+ 3 = 58 are the uncensored observations, such that
r = r1 + r2 + r3, w = w1 + w2 + w3 and s = s1 + s2 + s3. The data are summarized as below:

n1 = 26, r1 = 4, w1 = 22, n2 = 25, r2 = 3, w2 = 22, n3 = 25, r3 = 3, w3 = 21, n = 76, r = 10, w = 65, s = 58,
w1

∑
i=r1

y1i = 3.05256,

w2

∑
i=r2

y2i = 3.19514,
w3

∑
i=r3

y3i = 2.97166.

Since n − (w − r + 3) = 18, we have almost 23.68% doubly censored data. Bayes estimates and posterior risks using the NIP (UP and JP)
and the IP under SELF, PLF and DLF are showcased in Table 5.

It is observed that results obtained through real data are compatible with the simulation results, as discussed in the previous section. Table 5
also reveals that the performance of the IP is the best as compared to the NIP (UP and JP), that is, in terms of the minimum posterior risks.
Moreover, it is noticed that results are relatively more precise with the UP (JP) than the JP (UP) under DLF (SELF and PLF). In addition, it
can be seen that SELF (DLF) performs better than PLF and DLF (PLF and SELF) for estimating proportion (component) parameters.

Table 5 Bayes estimates (BE) and posterior risks (PR) of 3-CMED using the UP, the JP and the IP under SELF, PLF
and DLF with a real-life mixture data.

Loss Function Prior �̂�1 �̂�2 �̂�3 p̂1 p̂1

SELF

UP
BE 5.565440 5.131310 5.357700 0.324222 0.347934
PR 2.304870 1.980750 2.285350 0.003952 0.004180

JP
BE 5.313890 4.913600 5.101590 0.324376 0.347532
PR 2.136780 1.840220 2.106690 0.003924 0.004138

IP
BE 3.163980 3.375500 3.465220 0.344839 0.320345
PR 0.450884 0.527196 0.601823 0.003577 0.003425

PLF

UP
BE 5.768790 5.320820 5.566900 0.330260 0.353890
PR 0.406710 0.379013 0.418386 0.012076 0.011912

JP
BE 5.511280 5.097420 5.304050 0.330369 0.353435
PR 0.394780 0.367639 0.404913 0.011986 0.011807

IP
BE 3.234450 3.452710 3.551000 0.349986 0.325647
PR 0.140936 0.154417 0.171552 0.010295 0.010605

(continued)
Pdf_Folio:209
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Table 5 Bayes estimates (BE) and posterior risks (PR) of 3-CMED using the UP, the JP and the IP under SELF, PLF
and DLF with a real-life mixture data. (Continued)

Loss Function Prior �̂�1 �̂�2 �̂�3 p̂1 p̂1

DLF

UP
BE 5.979580 5.517320 5.784260 0.336411 0.359948
PR 0.069259 0.069964 0.073744 0.036231 0.033378

JP
BE 5.716000 5.288110 5.514540 0.336472 0.359438
PR 0.070348 0.070822 0.074883 0.035950 0.033126

IP
BE 3.306490 3.531680 3.638900 0.355210 0.331037
PR 0.043099 0.044223 0.047727 0.029200 0.032300

SELF, squared error loss function; PLF, precautionary loss function; DLF, DeGroot loss function; CMED, component
mixture of exponential distribution; UP, uniform prior; JP, Jeffreys’ prior.

Table 6 Bayesian predictive interval (L, U) of 3-CMED using the UP, the JP and the IP with real-life mixture data.

UP JP IP

L U L U L U

0.009775 1.102830 0.010232 1.183630 0.015505 1.026150

CMED, component mixture of exponential distribution; UP, uniform prior; JP, Jeffreys’ prior.

The 90% Bayesian predictive intervals (L, U) using the NIP (UP and JP) and the IP are presented in Table 6. It can be seen that the 90%
Bayesian predictive intervals using the IP are narrower than the Bayesian predictive intervals using the NIP (UP and JP).

11. CONCLUSION

In this article, a 3-CMED under doubly censoring sampling scheme is considered for modeling lifetime data. Assuming different NIP and
IP, expressions of the Bayes estimators and their posterior risks under different loss functions are derived. To judge the relative perfor-
mance of the Bayes estimators and also to deal with the problems of selecting a suitable priors and loss functions by assuming different
sample sizes and various left and right test termination times, a comprehensive simulation and real-life study have been conducted in this
article. The simulation study revealed some important and interesting properties of the Bayes estimators. From numerical results given in
Tables 2–4, we observed that an increase in sample size or decrease in left and increase in right test termination times provides improved
Bayes estimates. We also observed that the effect of left and right test termination times, sample size and different parameter values on the
Bayes estimates is in the form of over-estimation and/or under-estimation. To be more specific, a larger (smaller) sample size results in a
smaller (larger) degree of under-estimation and/or over-estimation of parameters at the fixed left and right test termination times. How-
ever, the extent of over-estimation and/or under-estimation of parameters is quite smaller (larger) with a relatively smaller left and larger
right (larger left and smaller right) test termination times for a fixed sample size. It is also observed that as the sample size (left and right
test termination time) increases (increases and decreases) the posterior risks of Bayes estimates of parameters decrease (increase) for a fixed
left and right test termination times (sample size). Finally, we conclude that for a Bayesian analysis of mixture data under doubly censoring
sampling scheme, the IP performance is good for the DLF (SELF) for estimating component (proportion) parameters. However, if only the
NIPs are considered, the JP (UP) are suitable with SELF (DLF) for estimating proportion (component) parameters. Moreover, the results
of real data coincide with the simulated results that confirm the correctness of our simulation scheme.

In future, this work can be extended by comparing the Bayesian estimates with themaximum likelihood estimates by assuming record values
and other different types of censoring schemes. Moreover, the performance of the Bayes estimators under other different loss functions can
also be assessed.
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