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ABSTRACT
In this paper some generalized exponential-type chain estimators have been proposed for the finite population mean in the
presence of nonresponse under stratified two-phase sampling when mean of another auxiliary variable is readily available. The
expressions for the bias and mean square error of proposed estimators have been derived. The comparisons for proposed esti-
mators have been made in theory with Hansen-Hurwitz’s, J. Am. Stat. Assoc. 41 (1946), 517–529, and Tabasum and Khan’s,
J. Indian Soc. Agric. Stat. 58 (2004), 300–306, two-phase ratio and product estimators modified to the stratified sampling. An
empirical study has also been carried out to demonstrate the performances of the estimators.

© 2020 The Authors. Published by Atlantis Press SARL.
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1. INTRODUCTION

In a survey it is aimed to get hold of information on the subject of a target population. In prior of the survey the demarcation of the target
population should be apparently affirmed. In an ideal world, all the selected units take part and make available, the requested information.
On the other hand, the reality is not the same, notwithstanding how carefully the survey is planned and conducted, to acquire information
on some of the units will not be possible, due to the variety of reasons even after callbacks, which is known as nonresponse.

In the presence of nonresponse, obtaining high response rates in the presence of nonresponse has been main aim of the survey statisticians.
This growing interest is due to the significance of nonresponse bias in survey sampling. Madow et al. [1] discussed weighting adjustment
and imputationmethods to deal with 11 situations of nonresponse. Lessler and Kalsbeek [2] provided weighting adjustment and imputation
procedure for 15 different situations. Little andRubin [3] suggest to ignore the incomplete information. Thismay be usedwhere nonresponse
is very low otherwise by doing such a method there occur a serious bias. Reweighting does not guarantee the adjustment of nonresponse
bias. It may happen but most often one only can assume if the auxiliary information correlates strongly both with response propensity and
study variable(s). If both of those conditions are satisfied the variance and mean square error (MSE) are reduced. A successful method of
adjusting nonresponse bias is to use strongly correlated auxiliary information. In result of this, nonresponse and variance both may reduce
Djerf [4,5], and Horngren [6]. Kalton ([7], p. 63) states “among the potential variables for use in forming weighting classes, the ones that
are most effective in reducing nonresponse bias are those that are highly correlated both with the survey variables and the (0, 1) response
variable.” Two types of auxiliary variables can be used if the auxiliary variables are known for all sampled units, then the adjustment is called
sample-based; if they are known for the entire population, the adjustment is population-based [8,9]. The population-based adjustment is
especially useful when the population totals are known. Sample-based adjustments need data for the full sample but do not require knowing
control totals for the entire population. Sample- and population-based adjustments are equally effective for dealing with nonresponse bias
[10,11]. Hansen andHurwitz [12]were the first to develop a procedure to elicit response from the subsample of nonresponse. They envisaged
an estimator for the estimation of population mean in the presence of nonresponse. Variance expression along with the optimum sampling
fraction among nonrespondents was also derived. The procedure presented by Hansen-Hurwitz, is the edition of two-phase sampling,
proposed byNeyman [13]. The techniquewas illustrated under simple random sampling design and it is also equally holds good for stratified
sampling design and for other sampling designs.
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FollowingHansen-Hurwitz [12], Cochran [14] proposed a ratio estimator in simple random sampling for dealing with nonresponse. Okafor
and Lee [15] advised a ratio estimator, which was first proposed by Khare and Srivastave [16] under two-phase sampling. Tabasum and
Khan [17,18] extended the work done by Okafor and Lee [15] and studied some properties of the estimator in the presence of nonresponse
under two-phase sampling. Singh et al. [19] developed some generalized exponential-type estimators under two-phase sampling to deal
with response. Ismail et al. [20], Gamrot [21] and Shabbir and Khan [22] have recommended some improvements for the estimation of
populationmean in the presence of nonresponse using single ormore auxiliary variables. Sanaullah et al. (2014b) proposed some generalized
exponential-type estimators under stratified sampling for estimating population mean in two different situations of nonresponse.

1.1. Notations and Stratified Two-Phase Sampling with Subsampling the Nonrespondents

Inmany situations of practical importance, the populationmean of either of the auxiliary variable, e.g.Xh is not available in prior of a survey,

in such a situation it is very usual to estimate it by the sample mean x′h based on a preliminary first-phase sample of size n′h

(
n′ =

L

∑
h=1

n′h

)
of which nh

(
n =

L

∑
h=1

nh

)
is a subsample, i.e.

(
nh ⊂ n′h

)
. At the most, we use only knowledge of the population mean of another auxiliary

variable, e.g. Zh, which is closely related to Xh but remotely correlated to the main variable. That is if Zh is known to us, then it is advisable

to estimate Xh by X̂h = x′h
Z
z′st
, where h = 1, 2, ⋯, L, which would provide a better estimate of Xh than x′h (Sanaullah et al., 2014a). Let

us assume that at the first phase, all the n′h units provide information on auxiliary characteristics. At the second phase from the sample nh, let
nh(1) units provide the response for the requested information and nh(2) units do not. Following Hansen-Hurwitz [12] sub-sampling, a sub-
sample of size rh fromnh(2) non-respondents is selected at randomand is approached for their direct interview such that rh = nh(2)/kh, kh > 1.
Here it is assumed that all the rh units provide the requested information.

When there occurs nonresponse on study variable as well as on the auxiliary variable, the usual two-phase ratio and product estimators for
population mean are defined in stratified sampling respectively as

t1 = y∗stx
′
st / x

∗
st, (Ratio estimator) (1)

t2 = y∗stx
∗
st / x

′
st, (Product estimator) (2)

where y∗st and x∗st are Hansen-Hurwitz estimators modified to the stratified sampling for population means X and Y respectively and these

are defined as y∗st =
L

∑
h=1

Ph
(
nh(1)yh(1) + nh(2)yh(2)r

)
/nh, and x∗st =

L

∑
h=1

Ph
(
nh(1)xh(1) + nh(2)xh(2)r

)
/nh with Ph = N/Nh,

(
yh(1), xh(1)

)
, and

(
yh(2)r, xh(2)r

)
are the sample means for hth stratum based on nh(1) and nh(2)r units respectively, and x

′
st =

L

∑
h=1

Phx
′
h is the sample mean based

on n′h =
L

∑
h=1

nh. It is to be pointed out that usual two-phase ratio estimator was Tabasum and Khan [17] in simple random sampling and t1 is

modified form of Tabasum and Khan [17] to two-phase the stratified sampling. TheMSEs for the ratio estimator t1 and product estimator
t2 are given respectively as

MSE(t1) =
L

∑
h=1

P 2
h

(
𝜆′hS2yh + 𝜆h

(
S2yh + R2

hS
2
xh − 2RhSxyh

)
+ 𝜆∗h

(
S2yh(2) + R2

hS
2
xh(2) − 2RhSxyh(2)

))
(3)

and

MSE(t2) =
L

∑
h=1

P 2
h

(
𝜆′hS2yh + 𝜆h

(
S2yh + R2

hS
2
xh + 2RhSxyh

)
+ 𝜆∗h

(
S2yh(2) + R2

hS
2
xh(2) + 2RhSxyh(2)

))
(4)

where
(
S2yh, S

2
xh

)
, and

(
S2yh(2), S

2
xh(2)

)
are the variances from respondents and nonrespondents respectively with Rh = Yh/Xh, 𝜆h =(

1
nh
− 1

Nh

)
, 𝜆′h =

(
1
n′
h

− 1
Nh

)
, 𝜆∗h =

(
kh−1
nh

)
Wh(2) andWh(2) = N2h/N.
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When population means of the two auxiliary variables are available, Sanaullah et al. [23] proposed some exponential-type ratio-cum-ratio
estimators for stratified two-phase sampling in the presence of nonresponse as

t3 =
l

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎝

l

∑
h=1

Ph
(
Xh − x′h

)
l

∑
h=1

Ph
(
Xh + (a − 1) x′h

)
⎞⎟⎟⎟⎟⎟⎠
exp

⎛⎜⎜⎜⎜⎜⎝

l

∑
h=1

Ph
(
Zh − z∗h

)
l

∑
h=1

Ph
(
Zh + (b − 1)z∗h

)
⎞⎟⎟⎟⎟⎟⎠
(
Exponential-type ratio-cum-ratio estimator

)
(5)

where (a, b) are suitably chosen constants to be determined such thatMSE of t3 is minimum.

The MSE of t3 is as

MSE (t3) ≈ Y
2 l

∑
h=1

P 2
h

⎡
⎢
⎢
⎢
⎢
⎣

1

Y
2

(
𝜆hS2yh + 𝜆∗hS2yh(2)

)
+ 1

a2X
2 𝜆

′
hS2xh +

1

b2Z
2

(
𝜆hS2zh + 𝜆∗hS2zh(2)

)
−2

(
1

aYX
𝜆′hSyxh +

1
bZY

(
𝜆hSyzh + 𝜆∗hSyzh2

)
−
𝜆′hSxzh
abXZ

)
⎤
⎥
⎥
⎥
⎥
⎦

(6)

Sanaullah et al. [24] envisaged an exponential-type chain ratio estimator under stratified two-phase sampling and population mean of an
auxiliary variable x in not known but population mean of another variable z is on hand.

t4 =
L

∑
h=1

Phyh exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

− xh

⎞⎟⎟⎟⎟⎟⎠
L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

+ xh

⎞⎟⎟⎟⎟⎟⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(
Exponential-type chain ratio

)
(7)

The MSE of t4 is as

MSE(t4) ≈ Y
2 L

∑
h=1

P 2
h

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

Y
2 𝜆hS

2
yh +

1
4

(
1

X
2

(
𝜆hS2xh − 𝜆′hS2xh

)
+ 1

Z
2 𝜆

′
hS2zh

)

−
(

1
YX

(
𝜆hSxyh − 𝜆′hSxyh

)
+ 1

YZ
𝜆′hSyzh

)
⎤
⎥
⎥
⎥
⎥
⎥
⎦

(8)

In this study, an attempt has been made for the development of generalized exponential-type chain ratio and product estimators using
two auxiliary variables under stratified two-phase random sampling. The estimators have been proposed for the case when there occurs
nonresponse on all the variables in second phase.

2. PROPOSED GENERALIZED EXPONENTIAL-TYPE CHAIN RATIO-CUM-RATIO AND
PRODUCT-CUM-PRODUCT ESTIMATORS

Now it is assumed that information on a secondary auxiliary variable z is to be had. Then taking motivation from Sanaullah et al. [23,24],
the inspiration of exponential-type chain ratio and exponential ratio-cum-ratio estimators have been combined together under stratified
two-phase sampling design when there are auxiliary variables x and z which are correlated with study variable y in case of nonresponse. By
following the same lines, another estimator (exponential-type chain product-cum-product estimator) has been proposed with its properties
in the presence of nonresponse.Pdf_Folio:187
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2.1. Generalized Exponential-Type Chain Ratio-Cum-Ratio Estimator

Motivated from Sanaullah et al. [23,24], we consider a form of an exponential-type chain ratio-cum-ratio estimator for stratified two-phase
sampling in the presence of non-response as

t1r(2.2) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
2

L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

+ x∗h

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝
1 −

2
L

∑
h=1

Phz
∗
h

L

∑
h=1

Ph
(
Zh + z∗h

)
⎞⎟⎟⎟⎟⎟⎠
, (9)

The estimator t1r(2.2) in (9) leads to the form of generalized exponential-type chain ratio-cum-ratio estimator for population mean under
stratified two-phase sampling in case of nonresponse as

t gr(a,b) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

a
L

∑
h=1

Phx
∗
h

L

∑
h=1

Phx
′
h

Z
L

∑
h=1

Phz
′
h

+ (a − 1)
L

∑
h=1

Phx
∗
h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp

⎛⎜⎜⎜⎜⎜⎝
1 −

b
L

∑
h=1

Phz
∗
h

L

∑
h=1

PhZh + (b − 1)
L

∑
h=1

Phz
∗
h

⎞⎟⎟⎟⎟⎟⎠
(10)

where a (≠ 0) and b (≠ 0) are assumed unknown constants to be determined in such way whose values make theMSE of t g
r(a,b) minimum.

It is observed that for various values of a and b in (10), we get various exponential-type chain ratio-cum-ratio estimators as deduced. From
this class some examples are presented in Table 1 as follows:

In order to obtain the bias and mean square of the estimators, let us define

y∗h = Yh(1 + e∗0h), x
′
h = Xh(1 + e′1h), x

∗
h = Xh(1 + e∗1h), z

′
h = Zh(1 + e′2h), z

∗
h = Zh(1 + e∗2h)

𝜗∗200 = V∗
200 − V′

200, 𝜗∗110 = V∗
110 − V′

110, S2yh =
Nh

∑
i=1

(
yi − Y

)2

Nh − 1 , S2yh(2) =
Nh(2)

∑
i=1

(
yi − Yh(2)

)2

Nh(2) − 1

⎫
⎪
⎬
⎪
⎭

, (11)

where e∗ih shows sampling error at second phase sampling in the presence of non-response, and e′ih shows sampling error at first phase
sampling without nonresponse and we consider that E

(
e∗ih

)
= E

(
e′ih

)
= 0 where i = 0, 1, 2.

Let Vr, s, t =
L

∑
h=1

Pr+s+t
h E

⎛⎜⎜⎝
(
xh − Xh

X

)r (yh − Yh

Y

)s (
zh − Zh

Z

)t⎞⎟⎟⎠ where (r, s, t) = 0, 1, 2, and using (11), expectations are defined as

E
(
e∗0
)2 = 1

Y
2

l
∑
h=1

P 2
h

(
𝜆hS2yh + 𝜆∗hS2yh2

)
= V∗

020 E
(
e′1
)2 = 1

X
2

l
∑
h=1

P 2
h𝜆

′
hS2xh = V′

200

E
(
e∗1
)2 = 1

X
2

l
∑
h=1

P 2
h

(
𝜆hS2xh + 𝜆∗hS2xh2

)
= V∗

200 E
(
e∗2
)2 = 1

Z
2

l
∑
h=1

P 2
h

(
𝜆hS2zh + 𝜆∗hS2zh2

)
= V∗

002

E
(
e∗0 .e∗2

)
= 1

YZ

l
∑
h=1

P 2
h

(
𝜆hSyzh + 𝜆∗hSyzh2

)
= V∗

011 E
(
e∗0 .e∗1

)
= 1

YX

l
∑
h=1

P 2
h

(
𝜆hSxyh + 𝜆∗hSxyh2

)
= V∗

110

E
(
e∗0 .e′1

)
= 1

YX

l
∑
h=1

P 2
h𝜆

′
hSyxh = V′

110 E
(
e′1.e∗2

)
= 1

ZX

l
∑
h=1

P 2
h𝜆

′
hSxzh = V′

101

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

, (12)
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Table 1 Some members of the class of the estimator t g
r(a,b).

Exponential-Type Chain Ratio-Cum-Ratio Estimators t gr(a,b) a b

t1r(2,2) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
2

L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

+ x∗h

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝
1−

2
L

∑
h=1

Phz
∗
h

L

∑
h=1

Ph
(
Zh + z∗h

)
⎞⎟⎟⎟⎟⎟⎠

2 2

t2r(2,1) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−
2

L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

+ x∗h

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝
1−

L

∑
h=1

Phz
∗
h

L

∑
h=1

PhZh

⎞⎟⎟⎟⎟⎟⎠

‵

2 1

t3r(1,2) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−

L

∑
h=1

Phx
∗
h

L

∑
h=1

Phx
′
h

Z
L

∑
h=1

Phz
′
h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp

⎛⎜⎜⎜⎜⎜⎝
1−

2
L

∑
h=1

Phz
∗
h

L

∑
h=1

Ph
(
Zh + z∗h

)
⎞⎟⎟⎟⎟⎟⎠

1 2

Using (11), the estimator in (10) can be expressed in the form of e’s as

t gr(a,b) =
L

∑
h=1

PhY (1 + e0h) exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
Xh

(
1+e′1h

)
L

∑
h=1

PhZh
(
1 + e′2h

)Z − Xh
(
1 + e∗1h

)⎞⎟⎟⎟⎟⎟⎠
L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
Xh

(
1+e′1h

)
L

∑
h=1

PhZh
(
1 + e′2h

)Z + (a − 1)Xh
(
1 + e∗1h

)⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝

L

∑
h=1

Ph
(
Zh − Zh

(
1 + e∗2h

))
L

∑
h=1

Ph
(
Zh + (b − 1)Zh

(
1 + e∗2h

))
⎞⎟⎟⎟⎟⎟⎠

(13)

We expand the right-hand side of (13) and neglect the terms in ei higher than two. After some simplification we will have,

t gr(a,b) − Y ≈ Y

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e∗0 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

e′1 − e∗1 − e′2
a −

e∗2
b
+
(
e′2

2

2a +
e∗21
a +

(b − 1)e∗22
b

)
− 2

a2
(
e∗21 + e′1

2 + e′2
2)

−
(
b − 1
b

)2

e∗22 + 2 (b − 1)
b2

e∗22 − 1
a
(
e∗1e

′
1 − e∗1e

′
2 + e′1e

′
2 − e∗0e

′
1 + e∗0e

∗
1 + e∗0e

′
2
)

+ 4
a2

(
e∗1e

′
1 − e∗1e

′
2 + e′1e

′
2
)
−

e∗0e
∗
2

b
− 1

ab
(
e∗0e

∗
1 − e∗0e

′
1 + e∗0e

′
2
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)
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Using (14), the expressions for the bias andMSE of t g
r(a,b) are obtained respectively as

Bias
(
t gr(a,b)

)
≈ Y

⎛⎜⎜⎜⎜⎝
1
a

(
𝜗∗200 +

V′
002
2 + 𝜗∗110 + V′

011

)
+ 3 (b − 1)

b2
V∗
002

− 2
a2

(
𝜗∗200 + V′

002
)
−

V∗
011

b
− 1

ab
(
𝜗∗110 + V′

011
)

⎞⎟⎟⎟⎟⎠
(15)

and

MSE
(
t gr(a,b)

)
≈ Y

2
(
V∗
020 +

1
a2

(
𝜗∗200 + V′

002
)
+

V∗
002

b2
− 2

a
(
𝜗∗110 + V′

011
)
− 2

V∗
011

b
+ 2

ab
(
𝜗∗101 + V′

002
))

(16)

The optimal values of a and b for which the MSE
(
t g
r(a,b)

)
is minimum, are obtained as

aopt =
(
BV∗

002 − A2)(
CV∗

002 − AV∗
011

) and bopt =
(
BV∗

002 − A2)(
BV∗

011 − AC
)

where
A = 𝜗∗101 + V′

002, B = 𝜗∗200 + V′
002 C = 𝜗∗110 + V′

011

⎫⎪
⎬⎪
⎭

(17)

The minimum value ofMSE
(
t g
r(a,b)

)
as

min .MSE
(
t gr(aopt,bopt)

)
≈ Y

2
(
V∗
020 −

(
BV∗2

011 + C2V∗
002 − 2ACV∗

011
)

BV∗
002 − A2

)
(18)

The bias and MSE expressions for the class of estimators presented in Table 1, can be obtained by putting different values of a and b into
(15) and (16) respectively, such as

For a = 2and b = 2, the bias andMSE of t1r(2,2) is obtained as

Bias
(
t1r(2,2)

)
≈ Y

2

(
𝜗∗002 +

V′
002
2 − V′

200 −
3
2
(
𝜗∗110 + V′

011
)
− V∗

011

)
(19)

and

MSE
(
t1r(2,2)

)
≈ Y

2 (
V∗
020 +

1
4
(
𝜗∗200 + V′

002
)
+ 1

4V
∗
002 −

(
𝜗∗110 + V′

011
)
− V∗

011 +
1
2
(
𝜗∗101 + V′

002
))

(20)

For a = 2and b = 1, the bias andMSE of t2r(2,1) is obtained as

Bias
(
t2r(2,1)

)
≈ −Y

(V′
002
4 + V∗

011

)
(21)

and

MSE
(
t2r(2,1)

)
≈ Y

2 (
V∗
020 +

1
4
(
𝜗∗200 + V′

002
)
+ V∗

002 −
(
𝜗∗110 + V′

011
)
− 2V∗

011 +
(
𝜗∗101 + V′

002
))

(22)

For a = 1and b = 2, the bias andMSE of t3r(1,2) is obtained as

Bias
(
t3r(1,2)

)
≈ Y

((
𝜗∗200 +

V′
002
2 + 𝜗∗110 + V′

011

)
+ 3

4V
∗
002 − 2

(
𝜗∗200 + V′

002
)
−

V∗
011
2 − 1

2
(
𝜗∗110 + V′

011
))

(23)

and

MSE
(
t3r(1,2)

)
≈ Y

2
(
V∗
020 +

(
𝜗∗200 + V′

002
)
+

V∗
002
4 − 2

(
𝜗∗110 + V′

011
)
− V∗

011 +
(
𝜗∗101 + V′

002
))

(24)
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2.2. Generalized Exponential-Type Chain Product-cum-Product Estimator

Motivated from Sanaullah et al. (2014a, 2014b), we consider a form of an exponential-type chain product-cum-product estimator for strat-
ified two-phase sampling in the presence of non-response as

t gp(c,d) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
L

∑
h=1

Phx
∗
h

L

∑
h=1

Phx
′
h

Z
L

∑
h=1

Phz
′
h

+ (c − 1)
L

∑
h=1

Phx
∗
h

− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
exp

⎛⎜⎜⎜⎜⎜⎝
d

L

∑
h=1

Phz
∗
h

L

∑
h=1

PhZh + (d − 1)
L

∑
h=1

Phz
∗
h

− 1

⎞⎟⎟⎟⎟⎟⎠
, (25)

where c (≠ 0) and d (≠ 0) are assumed unknown constants to be determined in such way whose values make theMSE of t g
p(c,d) minimum.

It is observed that for various values of c and d in (25), we get various exponential chain product-type estimators as deduced class of t g
p(c,d).

From this class some examples can be considered in Table 2 as follows:

Table 2 Some members of the class of the estimator t gp(c,d).

Exponential-Type Chain Product-Cum-Product Estimators t gp(c,d) c d

t1p(2,2) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x∗h − x′h

Z
L

∑
h=1

Phz
′
h

⎞⎟⎟⎟⎟⎟⎠

− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝

L

∑
h=1

Phz
∗
h

L

∑
h=1

Ph
(
z∗h − Zh

) − 1

⎞⎟⎟⎟⎟⎟⎠
2 2

t2p(2,1) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x∗h + x′h

Z
L

∑
h=1

Phz
′
h

⎞⎟⎟⎟⎟⎟⎠

− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝

L

∑
h=1

Phz
∗
h

L

∑
h=1

PhZh

− 1

⎞⎟⎟⎟⎟⎟⎠
2 1

t3p(1,2) =
L

∑
h=1

Phy
∗
h exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L

∑
h=1

Phx
∗
h

L

∑
h=1

Ph

⎛⎜⎜⎜⎜⎜⎝
x′h

Z
L

∑
h=1

Phz
′
h

⎞⎟⎟⎟⎟⎟⎠

− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

exp

⎛⎜⎜⎜⎜⎜⎝

L

∑
h=1

Phz
∗
h

L

∑
h=1

Ph
(
z∗h + Zh

) − 1

⎞⎟⎟⎟⎟⎟⎠
1 2
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We adapt the procedure (11)–(18), expressions for the bias and MSE of t gp(c,d) are obtained respectively as follows:

Bias
(
t gp(c,d)

)
= −Y

⎛⎜⎜⎜⎜⎜⎝

1
c

(
𝜗∗200 +

V′
002
2 + 𝜗∗110 + V′

011

)
+ d − 1

d

(
1 − d − 1

d
+ 2

d

)
V∗
002

− 2
c2

(
𝜗∗200 + V′

002
)
−

V∗
011

d
− 1

cd
(
𝜗∗110 + V′

011
)

⎞⎟⎟⎟⎟⎟⎠
(26)

and

MSE
(
t gp(c,d)

)
≈ Y

2
(
V∗
020 +

1
c2

(
𝜗∗200 + 𝜗′002

)
+

V∗
002

d2
+ 2

c
(
𝜗∗110 + 𝜗′011

)
+ 2

V∗
011

d
+ 2

cd
(
𝜗∗101 + 𝜗′002

))
(27)

The optimum values of c and d are obtained as

copt = −
(
BV∗

002 − A2)(
CV∗

002 − AV∗
011

) and dopt = −
(
BV∗

002 − A2)(
BV∗

011 − AC
) (28)

The minimum value ofMSE(t gp(c,d)) is obtained as

min .MSE
(
t gp(copt,dopt)

)
≈ Y

2
(
V∗
020 −

(
BV∗2

011 + C2V∗
002 − 2ACV∗

011
)

BCV∗
002 − A2

)
(29)

The bias and MSE expressions for the estimators presented in Table 2 can be obtained directly from (26) and (27) respectively by putting
different values of cand d.

3. EFFICIENCY COMPARISONS

Now we compare the proposed generalized exponential-type chain estimators with usual Hansen and Hurwitz’s [12] unbiased estimator y∗st
and Tabasum and Khan [17] estimators t1 as

i. Exponential-Type Chain Ratio-Cum-Ratio Estimators

⟨

min .MSE
(
t g
r(aopt,bopt)

)
< MSE

(
y∗st
)

if
2V′

101V∗
011V

′
110

4
(
V′2

110V∗
002 + V′

200V
∗2
011

) < 1
⟩ and ⟨

min .MSE
(
t g
r(aopt,bopt)

)
< MSE(t1)

if
(𝜗∗200 − 2𝜗∗110)

(
V

′2
101 − V′

200V∗
002

)
(
V∗
002V

′2
110 + V′

200V
∗2
011 − 2V′

101V
′
110V

∗
011

) < 1
⟩ (30)

ii. Exponential-Type Chain Product-Cum-Product Estimators

⟨
MSE

(
t gp(copt,dopt)

)
< MSE

(
y∗st
)

if
2V′

101V∗
011V

′
110

4
(
V′2

110V∗
002 + V′

200V
∗2
011

) < 1 ⟩ and ⟨

MSE
(
t gp(copt,dopt)

)
< MSE(t2)

if
(𝜗∗200 + 2𝜗∗110)

(
V

′2
101 − V′

200V∗
002

)
(
V∗
002V

′2
110 + V′

200V
∗2
011 − 2V′

101V
′
110V

∗
011

) < 1
⟩ (31)

The proposed estimator will perform better if the above conditions hold.

4. EMPIRICAL RESULTS AND DISCUSSION

In order to examine the performance of proposed estimators under stratified two-phase sampling, we have taken two different stratified
populations as,

Population-I: (Source: Koyuncu and Kadilar [25])

We consider number of teachers as study variable (Y), number of students as auxiliary variable (X) and number of classes in primary and
secondary schools as another auxiliary variable (Z) for 923 districts at six 6 regions (1: Marmara, 2: Agean, 3: Mediterranean, 4: Central
Anatolia, 5: Black Sea, and 6: East and Southeast Anatolia) in Turkey in 2007.Pdf_Folio:192
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Population-II: [Source: Detailed livelihood assessment of flood affected districts of Pakistan September 2011, Food Security Cluster,
Pakistan]

We consider food expenditure as study variable (Y), household earn as auxiliary variable (X) and total expenditure inMay (2011) as another
auxiliary variable (Z) for (6940) male and (1678) female households in flood affected districts of Pakistan September 2011.

The summery statistics for two populations are given in Appendix Table A.3. Form Table A.3 it is clear that correlations between study
variable (Y) and auxiliary variables (X) and (Z) respectively 𝜌xyh and 𝜌yzh are positive in each stratum for population-I and these correlations
are negative for population-II. It is therefore in order to examine the efficiency of chain ratio-cum-ratio estimators, population-I will be used
and population-II is suitable for chain product-cum-product estimators to test empirically for their efficiency. We used stratified sampling
for the selection of sample and Neyman allocation was used for allocating the sample size to different strata.

The comparison of proposed generalized exponential-type chain ratio-cum-ratio and exponential-type chain product-cum-product esti-
mators with respect to Hansen and Hurwitz’s [12] have been made with Tabasum and Khan [17] modified to the stratified two-phase ratio
and stratified two-phase product estimators respectively.

Table A.2 indicatesMSE values of each estimator at three different nonresponse ratesWh2(10%, 20% and 30%), taking for each nonresponse
rate four different inverse sampling rates kh(2.0, 2.5, 3.0 and 3.50). The percent relative efficiency (PRE) values for each estimator are
computed with respect to the modified form of Hansen-Hurwitz [12] estimator y∗st in Table A.2 as,

PRE =
Var

(
y∗st
)

MSE
(
t gi(a,b)

) × 100

where g = 1, 2, 3 i = 1, r, p and (a, b) = {(2, 2), (2, 1), (1, 2) (aopt,bopt)}.

From Table A.1 it is noticed that PRE values for the proposed exponential-type chain ratio-cum-ratio estimators t1r(2,2), t
2
r(2,1), t

3
r(1,2) and

t gr(aopt,bopt) increase as the non-response rate increases from 10% to 30%. Similarly at each nonresponse rate, these PRE values increase for each
estimator as the inverse sampling rate increases. Further it is observed that the PRE values of the proposed exponential-type chain ratio-
cum-ratio estimators remain higher than the PRE values of Tabasum andKhan [17] ratio estimator (t1) modified to the two-phase sampling.
This shows the proposed exponential-type chain ratio-cum-ratio estimators perform more efficiently. Furthermore it is scrutinized that
t gr(aopt,bopt) is the most efficient estimator and from its class of exponential-type chain ratio-cum-ratio estimators t1r(2,2), and t

2
r(2,1) are the more

efficient estimators.

From Table A.1 it is observed that the empirical results can be expressed same for the proposed exponential-type chain product-cum-
product estimators t1p(2,2), t

2
p(2,1), and t gp(copt,dopt). The only estimator t3p(1,2) losses its PRE values if the nonresponse rate increases from 10% to

30% and due to the reason t3p(1,2) remain no more efficient.

5. CONCLUSION

From the empirical results and discussion, finally it is concluded that the performance of generalized exponential-type chain ratio-cum-ratio
(t gr(aopt,bopt) t

1
r(2,2), & t2r(2,1)) and chain product-cum-product estimators (t gp(copt,dopt), t

1
p(2,2), & t2p(2,1)) is better for these populations on the basis of

PRE values, and therefore, the class of generalized exponential-type chain estimators should be preferred for their practical applications in
case of nonresponse.
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APPENDIX

Table A.1 Percent relative efficiencies (PREs) of estimators with respect to y∗st for different values of kheach at different rate of nonresponse under case-I
using two different populations.

Wh2 kh Population
No

y∗st t1 t1r(2,2) t2r(2,1) t3r(1,2) t gr(aopt ,bopt) t2 t1p(2,2) t2p(2,1) t3p(1,2) t gp(copt ,dopt)

10%

2.0 1 100 316.5725 1628.54 1033.76 573.39 2702.14 —- —- —- —- —-
2 100 —- —- —- —- —- 64.9538 143.48 104.93 50.25 187.61

2.5 1 100 343.7379 1639.70 1092.53 596.35 2808.62 —- —- —- —- —-
2 100 —- —- —- —- —- 61.8850 137.57 100.24 47.75 183.39

3.0 1 100 369.9346 1649.63 1146.42 616.82 2910.62 —- —- —- —- —-
2 100 —- —- —- —- —- 59.3792 132.68 96.39 45.72 179.94

3.5 1 100 395.2162 1657.12 1195.26 634.99 3002.54 —- —- —- —- —-
2 100 —- —- —- —- —- 57.2944 128.58 93.18 44.04 177.11

20%

2.0 1 100 364.5528 1782.12 1049.51 555.31 2938.03 —- —- —- —- —-
2 100 —- —- —- —- —- 65.6052 146.53 106.00 50.27 194.31

2.5 1 100 412.3668 1842.74 1102.43 567.12 3121.84 —- —- —- —- —-
2 100 —- —- —- —- —- 62.9599 141.99 101.99 47.99 192.63

3.0 1 100 457.3057 1890.61 1145.43 576.28 3278.03 —- —- —- —- —-
2 100 —- —- —- —- —- 60.8689 138.33 98.81 46.19 191.34

3.5 1 100 499.6209 1929.9 1181.44 583.63 3415.24 —- —- —- —- —-
2 100 —- —- —- —- —- 59.17469 135.32 96.22 44.76 190.32

30%

2.0 1 100 382.2853 1799.28 1053.66 562.84 2958.40 —- —- —- —- —-
2 100 —- —- —- —- —- 76.5228 155.81 117.11 58.95 195.27

2.5 1 100 436.9706 1860.79 1103.44 576.17 3135.01 —- —- —- —- —-
2 100 —- —- —- —- —- 77.3685 154.62 116.79 59.39 194.52

3.0 1 100 487.7213 1908.43 1142.93 586.26 3283.78 —- —- —- —- —-
2 100 —- —- —- —- —- 78.0201 153.72 116.54 59.73 194.17

3.5 1 100 534.9462 1946.26 1174.94 594.19 3409.55 —- —- —- —- —-
2 100 —- —- —- —- —- 78.5378 153.03 116.35 59.99 194.09

(—-) shows data is not applicable.

Table A.2 MSEs of the estimators for different values of kh each at different rate of nonresponse under case-I using two different populations.

Wh2 kh Population
No

y∗st t1 t1r(2,2) t2r(2,1) t3r(1,2) t gr(aopt ,bopt) t2 t1p(2,2) t2p(2,1) t3p(1,2) t gp(copt ,dopt)

10%

2.0 1 2144.00 677.254 131.65 207.39 373.91 79.34 —- —- —- —- —-
2 5.09881 —- —- —- —- —- 7.8499 3.5536 4.8592 10.1473 2.7177

2.5 1 2370.93 689.749 144.59 217.01 397.57 84.41 —- —- —- —- —-
2 5.40353 —- —- —- —- —- 8.7316 3.9278 5.3903 11.3159 2.9464

3.0 1 2597.86 702.248 157.47 226.60 421.16 89.25 —- —- —- —- —-
2 5.70825 —- —- —- —- —- 9.6132 4.3023 5.9219 12.4855 3.1722

3.5 1 2824.79 714.745 170.46 236.33 444.85 94.07 —- —- —- —- —-
2 6.01298 —- —- —- —- —- 10.4949 4.6763 6.4527 13.6534 3.3949

20%

2.0 1 2540.35 696.839 142.54 242.05 457.45 86.46 —- —- —- —- —-
2 5.43362 —- —- —- —- —- 8.2823 3.7081 5.1259 10.8084 2.7964

2.5 1 2965.45 719.129 160.92 268.99 522.89 94.99 —- —- —- —- —-
2 5.90575 —- —- —- —- —- 9.3802 4.1593 5.7902 12.3072 3.0658

3.0 1 3390.55 741.419 179.33 296.01 588.35 103.43 —- —- —- —- —-
2 6.37788 —- —- —- —- —- 10.4781 4.6106 6.4545 13.8060 3.3331

3.5 1 3815.66 763.711 197.71 322.96 653.77 111.724 —- —- —- —- —-
2 6.85001 —- —- —- —- —- 11.5759 5.0621 7.1191 15.3055 3.5992

30%

2.0 1 2703.11 707.092 150.23 256.54 480.26 91.37 —- —- —- —- —-
2 6.62876 —- —- —- —- —- 8.6625 4.2542 5.6600 11.2445 3.3946

2.5 1 3209.59 734.510 172.48 290.87 557.05 102.37 —- —- —- —- —-
2 7.69847 —- —- —- —- —- 9.9504 4.9788 6.5917 12.9614 3.9575

3.0 1 3716.08 761.927 194.719 325.13 633.85 113.16 —- —- —- —- —-
2 8.76816 —- —- —- —- —- 11.2383 5.7040 7.5240 14.6804 4.5158

3.5 1 4222.56 789.343 216.95 359.38 710.64 123.84 —- —- —- —- —-
2 9.83786 —- —- —- —- —- 12.5263 6.4287 8.4558 16.3981 5.0687

(—-) shows data is not applicable.
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Table A.3 Data statistics.

Population-I Population-II

Stratum (h) 1 2 3 4 5 6 1 2

Nh 127 117 103 170 205 201 6940 1678
nh 31 21 29 38 22 39 750 181
n′h 70 50 75 95 70 90 1874 453
Syh 883.84 644.92 1033.4 810.58 403.65 711.72 21.4256 22.1319
Sxh 30486.7 15180.77 27549.69 18218.93 8497.77 23094.14 16625.33 12861.40

Stratified Mean, SDs and Szh 555.58 365.46 612.95 458.03 260.85 397.05 19394.09 16143.74
Correlation Coefficients Yh 703.74 413 573.17 424.66 267.03 393.84 47.9805 48.0556

Xh 20804.59 9211.79 14309..30 9478.85 5569.95 12997.59 18746.55 14303.98
Zh 498.28 318.33 431.36 311.32 227.20 313.71 19124.75 14742.47
𝜌xyh 0.9360 0.996 0.994 0.983 0.989 0.965 −0.4777 −0.4406
𝜌xzh 0.9396 0.9696 0.9770 0.9640 0.9670 0.9960 0.9138 0.8035
𝜌yzh 0.9790 0.976 0.984 0.983 0.964 0.983 −0.4422 −0.3547

Wh = 10% Nonresponse

Syh2 510.57 386.77 1872.88 1603.3 264.19 497.84 20.4752 21.7407
Sxh2 9446.93 9198.29 52429.99 34794.9 4972.56 12485.10 18121.44 15492.72
Szh2 303.92 278.51 960.71 821.29 190.85 287.99 22010.50 20204.85
𝜌xy2 0.9961 0.9975 0.9998 0.9741 0.995 0.9284 −0.4826 −0.5422
𝜌xz2 0.9901 0.9895 0.9964 0.9609 0.9865 0.9752 0.8566 0.7691
𝜌yz2 0.9931 0.9871 0.99716 0.9942 0.985 0.9647 −0.3922 −0.3181

Wh = 20% Nonresponse

Syh2 396.77 406.15 1654.4 1333.35 335.83 903.91 20.7359 22.6272
Sxh2 7439.16 8880.46 45784.78 29219.3 6540.43 28411.44 16155.37 13887.44
Szh2 244.56 274.42 965.42 680.28 214.49 469.86 19251.39 17323.10
𝜌xy2 0.9954 0.9931 0.996 0.9761 0.9966 0.9869 −0.4870 −0.4880
𝜌xz2 0.9897 0.9884 0.9789 0.9629 0.982 0.9825 0.8845 0.8399
𝜌yz2 0.9898 0.9798 0.9846 0.994 0.9818 0.9874 −0.4293 −0.3304

Wh = 30% Nonresponse

Syh2 500.26 356.95 1383.7 1193.47 289.41 825.24 21.4660 22.4381
Sxh2 14017.994 7812.00 38379.77 26090.6 5611.32 24571.95 16877.33 12852.95
Szh2 284.4409 247.6279 811.21 631.28 188.30 437.90 19985.52 16007.36
𝜌xy2 0.9639 0.9919 0.9955 0.9801 0.9961 0.9746 −0.4808 −0.4395
𝜌xz2 0.9107 0.9848 0.9771 0.9650 0.9794 0.9642 0.8939 0.8298
𝜌yz2 0.9739 0.9793 0.9839 0.9904 0.9799 0.9829 −0.4347 −0.2823
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