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ABSTRACT
For square contingency tables with ordered categories, there would be some situations that one would like to analyze them by
using collapsed 3 × 3 tables combining some adjacent categories in the original table. This paper considers the marginal homo-
geneity for collapsed tables and proposes a measure which represents the degree of departure from the marginal homogeneity.
The proposed measure lies between 0 and 1, and it takes zero when the marginal homogeneity holds. Examples are given.
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1. INTRODUCTION

Consider an r × r square contingency table with the same row and column ordinal classifications. Let pij denote the probability that an
observation will fall in the ith row and jth column of the table (i = 1, … , r; j = 1, … , r), and letX and Y denote the row and column variables,
respectively. The marginal homogeneity (MH) model is defined by

Pr(X = i) = Pr(Y = i) (i = 1, … , r),

namely

pi⋅ = p⋅i (i = 1, … , r),

where pi⋅ = ∑r
t=1 pit and p⋅i = ∑r

t=1 pti ([1], [2, p. 282]). This model is also expressed as

Pr(X = i|X ≠ Y) = Pr(Y = i|X ≠ Y) (i = 1, … , r),

namely

pci⋅ = pc⋅i (i = 1, … , r),

where

pci⋅ = (pi⋅ − pii)/𝛿, pc⋅i = (p⋅i − pii)/𝛿 and 𝛿 = ∑∑
i≠j

pij.

This indicates that the conditional row marginal distribution is identical to the conditional column marginal distribution under the condi-
tion that an observation will fall in one of the off-diagonal cells of the table.
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We consider the (r − 1)(r − 2)/2 (being
(

r−1
2

)
) ways of collapsing the r × r original table with ordered categories into a 3 × 3 table by

choosing cut points after the sth and tth rows and after the sth and tth columns for 1 ≤ s < t ≤ r − 1. We define each collapsed 3 × 3
table as the Tst table (1 ≤ s < t ≤ r − 1). This process means that r categories in the r × r original table get into 3 categories (for example,
A, B and C) by dividing at the cut points s and t and then a Tst table (1 ≤ s < t ≤ r − 1) has the new 3 categories. In a collapsed Tst table
(1 ≤ s < t ≤ r − 1), let G (s,t)

ij indicate the corresponding probability for row value i (i = 1, 2, 3) and column value j (j = 1, 2, 3); that is,

G (s,t)
11 =

s

∑
i=1

s

∑
j=1

pij, G (s,t)
12 =

s

∑
i=1

t

∑
j=s+1

pij, G (s,t)
13 =

s

∑
i=1

r

∑
j=t+1

pij,

G (s,t)
21 =

t

∑
i=s+1

s

∑
j=1

pij, G (s,t)
22 =

t

∑
i=s+1

t

∑
j=s+1

pij, G (s,t)
23 =

t

∑
i=s+1

r

∑
j=t+1

pij,

G (s,t)
31 =

r

∑
i=t+1

s

∑
j=1

pij, G (s,t)
32 =

r

∑
i=t+1

t

∑
j=s+1

pij, G (s,t)
33 =

r

∑
i=t+1

r

∑
j=t+1

pij.

Then, the MHmodel is expressed as

G (s,t)
i⋅ = G (s,t)

⋅i (i = 1, 2, 3),

where

G (s,t)
i⋅ =

3

∑
j=1

G (s,t)
ij , G (s,t)

⋅i =
3

∑
j=1

G (s,t)
ji ,

for all s and t (1 ≤ s < t ≤ r − 1); see [3].

When the MH model does not hold, we are interested in measuring the degree of departure from MH. For square contingency tables with
nominal categories, Tomizawa andMakii [4] proposed a measure which expresses the degree of departure fromMH. In addition, for square
contingency tables with ordered categories, Tomizawa, Miyamoto and Ashihara [5] proposed the measure Γ(𝜆), which represents the degree
of departure fromMH. See Appendix A for the measure Γ(𝜆).
Moreover, when the MH does not hold, we are interested in measuring the degree of departure from MH for every collapsed table Tst
(1 ≤ s < t ≤ r− 1). The purpose of this paper is to propose a new measure which expresses the degree of departure fromMH by adopting
collapsed 3 ×3 tables. Section 2 considers such a measure and Section 3 gives an approximate variance and a confidence interval for the
measure. Section 4 shows examples using the proposed measure. Section 5 gives the concluding remarks.

2. MEASURE OF DEPARTURE FROM MH FOR COLLAPSED 3 × 3 TABLES

Let for 1 ≤ s < t ≤ r − 1,

𝛿st =
3

∑
i=1

3

∑
j = 1
i ≠ j

G (s,t)
ij ,

and

G c(s,t)
i⋅ = 1

𝛿st

(
G (s,t)
i⋅ − G (s,t)

ii

)
, G c(s,t)

⋅i = 1
𝛿st

(
G (s,t)
⋅i − G (s,t)

ii

)
,

𝜋c∗
st(i) =

1
2

(
G c(s,t)
i⋅ + G c(s,t)

⋅i

)
(i = 1, 2, 3).

Assume that {G c(s,t)
i⋅ + G c(s,t)

⋅i } are all positive. The MHmodel is also represented as

G c(s,t)
i⋅ = G c(s,t)

⋅i
(
= 𝜋c∗

st(i)
)

(i = 1, 2, 3),

for 1 ≤ s < t ≤ r − 1.Pdf_Folio:213
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Consider a measure defined by

Ω(𝜆) = 1(
r−1
2

) ∑∑
1≤s<t≤r−1

Ω (𝜆)
st (𝜆 > −1),

where

Ω (𝜆)
st = 𝜆(𝜆 + 1)

2(2𝜆 − 1)
I (𝜆)st

(
{G c(s,t)

i⋅ ,G c(s,t)
⋅i }; {𝜋c∗

st(i), 𝜋c∗
st(i)}

)
,

I (𝜆)st (⋅; ⋅) = 1
𝜆(𝜆 + 1)

3

∑
i=1

[G c(s,t)
i⋅ {

(
G c(s,t)
i⋅
𝜋c∗
st(i)

)𝜆

− 1} + G c(s,t)
⋅i {

(
G c(s,t)
⋅i
𝜋c∗
st(i)

)𝜆

− 1}] ,

and the value at 𝜆 = 0 is taken to be continuous limit as 𝜆 → 0. Namely

Ω(0) = lim
𝜆→0

Ω(𝜆)

= 1(
r−1
2

) ∑∑
1≤s<t≤r−1

Ω(0)
st ,

where

Ω (0)
st = 1

2 log 2
I (0)st

(
{G c(s,t)

i⋅ ,G c(s,t)
⋅i }; {𝜋c∗

st(i), 𝜋c∗
st(i)}

)
,

I (0)st (⋅; ⋅) =
3

∑
i=1

[G c(s,t)
i⋅ log

(
G c(s,t)
i⋅
𝜋c∗
st(i)

)
+ G c(s,t)

⋅i log

(
G c(s,t)
⋅i
𝜋c∗
st(i)

)
] .

The submeasure Ω (𝜆)
st (1 ≤ s < t ≤ r − 1) describes the degree of departure from the MH model for the collapsed Tst table. Note that

I (𝜆)st

(
{G c(s,t)

i⋅ ,G c(s,t)
⋅i } ; {𝜋c∗

st(i), 𝜋c∗
st(i)}

)
is the power-divergence between {G c(s,t)

i⋅ ,G c(s,t)
⋅i } and {𝜋c∗

st(i), 𝜋c∗
st(i)}, and especially, I (0)st (⋅) is the Kullback–

Leibler information. Also, note that a real value 𝜆 (> −1) is chosen by users. See [6] for the power-divergence.

Let for 1 ≤ s < t ≤ r − 1,

G c(s,t)
1(i) =

G c(s,t)
i⋅

G c(s,t)
i⋅ + G c(s,t)

⋅i
, G c(s,t)

2(i) =
G c(s,t)
⋅i

G c(s,t)
i⋅ + G c(s,t)

⋅i
(i = 1, 2, 3).

Note that {G c(s,t)
1(i) + G c(s,t)

2(i) = 1}. The MHmodel may be expressed as

G c(s,t)
1(i) = G c(s,t)

2(i)

(
= 1

2

)
(i = 1, 2, 3),

for 1 ≤ s < t ≤ r − 1.

Then,Ω (𝜆)
st (1 ≤ s < t ≤ r − 1) may also be defined by

Ω (𝜆)
st = 𝜆(𝜆 + 1)

2𝜆 − 1

3

∑
i=1

𝜋c∗
st(i)I

(𝜆)
st(i)

(
{G c(s,t)

k(i) } ; {
1
2 }
)

(𝜆 > −1),

where

I (𝜆)st(i)(⋅; ⋅) =
1

𝜆(𝜆 + 1)
⎡
⎢
⎢
⎣
G c(s,t)
1(i)

⎧
⎨
⎩

⎛⎜⎜⎝
G c(s,t)
1(i)

1/2

⎞⎟⎟⎠
𝜆

− 1
⎫
⎬
⎭
+ G c(s,t)

2(i)

⎧
⎨
⎩

⎛⎜⎜⎝
G c(s,t)
2(i)

1/2

⎞⎟⎟⎠
𝜆

− 1
⎫
⎬
⎭

⎤
⎥
⎥
⎦
,

and the value at 𝜆 = 0 is taken to be continuous limit as 𝜆 → 0. Namely,

Ω (0)
st = 1

log 2

3

∑
i=1

𝜋c∗
st(i)I

(0)
st(i)

(
{G c(s,t)

k(i) } ; {
1
2 }
)
,
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I (0)st(i)(⋅; ⋅) = G c(s,t)
1(i) log

⎛⎜⎜⎝
G c(s,t)
1(i)

1/2

⎞⎟⎟⎠ + G c(s,t)
2(i) log

⎛⎜⎜⎝
G c(s,t)
2(i)

1/2

⎞⎟⎟⎠ .
Therefore,Ω (𝜆)

st represents the weighted sum of the power-divergence I (𝜆)st(i)

(
{G c(s,t)

k(i) } ; {
1
2
}
)
. Moreover,Ω (𝜆)

st can be expressed as

Ω (𝜆)
st =

3

∑
i=1
𝜋c∗
st(i) [1 −

𝜆2𝜆
2𝜆 − 1

H (𝜆)
st(i)

(
{G c(s,t)

k(i) }
)
] (𝜆 > −1),

where

H (𝜆)
st(i)

(
{G c(s,t)

k(i) }
)
= 1
𝜆

(
1 −

(
G c(s,t)
1(i)

)𝜆+1
−
(
G c(s,t)
2(i)

)𝜆+1)
,

and the value at 𝜆 = 0 is taken to be continuous limit as 𝜆 → 0. Namely

Ω (0)
st =

3

∑
i=1
𝜋c∗
st(i) [1 −

1
log 2

H (0)
st(i)

(
{G c(s,t)

k(i) }
)
] ,

where

H (0)
st(i)(⋅) = −G c(s,t)

1(i) logG c(s,t)
1(i) − G c(s,t)

2(i) logG c(s,t)
2(i) .

Note that H (𝜆)
st(i)

(
{G (s,t)

k(i) }
)
is Patil and Taillie’s [7] diversity index of degree 𝜆 for {G c(s,t)

1(i) ,G
c(s,t)
2(i) }, which includes the Shannon entropy (when

𝜆 = 0). Therefore,Ω (𝜆)
st represents the weighted sum of the diversity index H(𝜆)

st(i)

(
{Gc(s,t)

k(i) }
)
. Note that for each 𝜆 > −1,

a. 0 ≤ H (𝜆)
st(i)(⋅) ≤ (2𝜆 − 1)/(𝜆2𝜆),

b. H (𝜆)
st(i)(⋅) = 0 if and only if G c(s,t)

1(i) = 1 (then G c(s,t)
2(i) = 0) or G c(s,t)

2(i) = 1 (then G c(s,t)
1(i) = 0),

c. H (𝜆)
st(i)(⋅) = (2𝜆 − 1)/(𝜆2𝜆) if and only if G c(s,t)

1(i) = G c(s,t)
2(i)

(
= 1

2

)
, that is G c(s,t)

i⋅ = G c(s,t)
⋅i .

Thus, we conclude that the measureΩ(𝜆) lies between 0 and 1, and the submeasureΩ (𝜆)
st also lies between 0 and 1. For each 𝜆 > −1,

d. there is a structure of MH in the r × r table if and only ifΩ(𝜆) = 0,

e. the degree of departure from MH in the r × r table is the largest, in the sense that G c(s,t)
1(i) = 1 (then G c(s,t)

2(i) = 0) or G c(s,t)
2(i) = 1 (then

G c(s,t)
1(i) = 0) for i = 1, 2, 3 and 1 ≤ s < t ≤ r − 1 if and only ifΩ(𝜆) = 1,

and for fixed s and t (1 ≤ s < t ≤ r − 1),

f. there is a structure of MH in a collapsed 3 × 3 table Tst if and only ifΩ (𝜆)
st = 0,

g. the degree of departure fromMH in a collapsed 3 × 3 table Tst is the largest, in the sense that G c(s,t)
1(i) = 1 (then G c(s,t)

2(i) = 0) or G c(s,t)
2(i) = 1

(then G c(s,t)
1(i) = 0) for i = 1, 2, 3 if and only ifΩ (𝜆)

st = 1.

3. APPROXIMATE CONFIDENCE INTERVAL FOR MEASURE

Let nij denote the observed frequency in the ith row and jth column of the r× r table (i = 1, … , r; j = 1, … , r). Assuming that a multinomial
distribution applies to the table, we shall consider an approximate standard error and a large sample confidence interval for the measure
Ω(𝜆), using the delta method. The sample version of Ω(𝜆), that is, Ω̂(𝜆), is given by Ω(𝜆) with {pij} replaced by {p̂ij}, where p̂ij = nij/n and
n = ∑∑ nij. Using the delta method, √n(Ω̂(𝜆) − Ω(𝜆)) has asymptotically (as n → ∞) a normal distribution with mean 0 and variance
𝜎2[Ω(𝜆)]. See Appendix B for the details of 𝜎2[Ω(𝜆)] and Appendix C for the details of the submeasureΩ (𝜆)

st .

Let ̂𝜎2[Ω(𝜆)] denote 𝜎2[Ω(𝜆)] with {pij} replaced by {p̂ij}. Then ̂𝜎[Ω(𝜆)]/√n is an estimated approximate standard error for Ω̂(𝜆), and Ω̂(𝜆) ±
zp/2 ̂𝜎[Ω(𝜆)]/√n is an appriximate 100(1 − p) percent confidence interval for Ω(𝜆), where zp/2 is the percentage point from the standard
normal distribution corresponding to a two-tail probability equal to p.Pdf_Folio:215
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4. EXAMPLES

Consider the data in Table 1. These data describe the cross-classification of father’s and son’s occupational status categories in Japan and
British.

Since the confidence intervals forΩ(𝜆) applied to the data in Tables 1a and 1b do not include zero for all 𝜆 (see Table 2), these would indicate
that there is not the structure of MH in both tables.

When the degrees of departure from MH in Tables 1a and 1b are compared using the confidence intervals forΩ(𝜆), it is greater in Table 1a
than in Table 1b. Then, we can see that the degree of departure fromMH is greater for Table 1a than for Table 1b. Therefore, the difference
between the father’s classification distribution and his son’s distribution is greater in Japan than in British.

We shall further analyze the data in Tables 1a and 1b using the submeasure Ω (𝜆)
st (1 ≤ s < t ≤ r − 1). We see from Table 3 that for

Table 1a, (i) the degree of departure fromMH in the collapsed table T12 is the smallest and (ii) those in the other collapsed tables are greater
than that in the T12 table. Thus, it is seen that (i) when we combine the categories (3) to (5) in Table 1a, the degree of departure from MH
for the collapsed table is slightest, and (ii) when we combine the categories in the other patterns in Table 1a, those for the collapsed tables
are greater than that for case (i).

However, there is no possibility to decide in which collapsed table the degree of departure from MH is largest, because the values in the
confidence intervals for them overlap each other except for Ω (𝜆)

12 . So, we can get a conclusion, for Table 1a, that even if we get the original
5 categories into the 3 categories in any pattern to make us interpret the original table more easily, the marginal distributions for each

Table 1 Cross-classification of father’s and his son’s social class in (a) Japan in 1975 [8, p. 151] and
(b) British [2, p. 100].

Son’s Status

Father’s Status (1) (2) (3) (4) (5) Total

(a) Japan (1) 29 43 25 31 4 132
(2) 23 159 89 38 14 323
(3) 11 69 184 34 10 308
(4) 42 147 148 184 17 538
(5) 42 176 377 114 298 1007

Total 147 594 823 401 343 2308

(b) British (1) 50 45 8 18 8 129
(2) 28 174 84 154 55 495
(3) 11 78 110 223 96 518
(4) 14 150 185 714 447 1510
(5) 3 42 72 320 411 848

Total 106 489 459 1429 1017 3500

Table 2 Estimates of measureΩ(𝜆), approximate standard errors for Ω̂(𝜆) and approximate 95% confidence
intervals forΩ(𝜆), applied to Tables 1a and 1b.

Values of 𝜆 Ω̂(𝜆) Standard Error Confidence Interval

(a) For Table 1a
−0.5 0.2332 0.0135 (0.2067, 0.2596)
0.0 0.3463 0.0176 (0.3119, 0.3807)
1.0 0.4226 0.0190 (0.3854, 0.4598)
1.5 0.4277 0.0190 (0.3904, 0.4649)
2.0 0.4226 0.0190 (0.3854, 0.4598)

(b) For Table 1b
−0.5 0.0045 0.0016 (0.0013, 0.0076)
0.0 0.0075 0.0027 (0.0022, 0.0128)
1.0 0.0104 0.0037 (0.0031, 0.0176)
1.5 0.0106 0.0038 (0.0032, 0.0181)
2.0 0.0104 0.0037 (0.0031, 0.0176)
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collapsed table are different between father and his son’s social classes. Moreover, if we consider the original categories (1) as the high class,
(2) as the middle class and (3) to (5) as the low class, social mobility between father and his son’s social classes is less than that for the other
classification patterns. We also see from Table 3 that for Table 1b, the confidence intervals for the submeasuresΩ (𝜆)

12 ,Ω (𝜆)
13 andΩ (𝜆)

23 include
zero, on the other hand, those for the other submeasures do not include zero. These results mean that when we combine the categories (3)
to (5) in Table 1b, the marginal distribution for father’s social class is equal to that for his son’s one. Note that we can also obtain similar
interpretations when we combine the categories (2) to (3) and (4) to (5), and (1) to (2) and (4) to (5) in Table 1b. Thus, if we consider the
original categories (1) as the high class, (2) as the middle class and (3) to (5) as the low class, we could not see that social mobility between
father’s social class and his son’s one happened. Also note that we are able to get a similar interpretations when we consider combining the
categories (2) to (3) and (4) to (5), and (1) to (2) and (4) to (5) in Table 1b. As a result, for Table 1b, if we regard only the category (5) as the
low class, when we consider the same specified category between father and his son, the probability that fathers whose son’s social class is
lower than him is different from the probability that sons whose father’s social class is higher than him.

We can also see from Table 4 that the degree of departure from MH is greater for Table 1a than for Table 1b by using the measure Γ(𝜆)
proposed by Tomizawa et al. [5]. However, when we would like to analyze these data in more detail, for example, by using collapsed tables
as described above, it is impossible to do it by using the measure Γ(𝜆). So, in such a situation, the proposed measureΩ(𝜆) would be useful.

Furthermore, we can know more about the degree of departure from MH in Tables 1a and 1b. From Ω̂(𝜆), for example, with 𝜆 = 1, (i) for
Table 1a, the degree of departure from MH is estimated to be 42.26 percent of the maximum degree of departure from MH, and (ii) for
Table 1b, the degree of departure fromMH is estimated to be 1.04 percent of the maximum degree of departure fromMH.

Table 3 Estimates of submeasureΩ (𝜆)
st applied to Tables 1a and 1b.

Estimated Values of For Confidence For Confidence
Submeasures 𝜆 Table 1a Interval Table 1b Interval

Ω̂ (𝜆)
12 −0.5 0.0731 (0.0491, 0.0971) 0.0016 (−0.0014, 0.0047)

0.0 0.1200 (0.0818, 0.1581) 0.0028 (−0.0024, 0.0079)
1.0 0.1608 (0.1113, 0.2103) 0.0038 (−0.0033, 0.0109)
1.5 0.1643 (0.1139, 0.2146) 0.0039 (−0.0034, 0.0112)
2.0 0.1608 (0.1113, 0.2103) 0.0038 (−0.0033, 0.0109)

Ω̂ (𝜆)
13 −0.5 0.2763 (0.2395, 0.3131) 0.0030 (−0.0008, 0.0067)

0.0 0.4166 (0.3679, 0.4654) 0.0050 (−0.0013, 0.0114)
1.0 0.5130 (0.4608, 0.5652) 0.0070 (−0.0018, 0.0157)
1.5 0.5193 (0.4672, 0.5714) 0.0071 (−0.0019, 0.0161)
2.0 0.5130 (0.4608, 0.5652) 0.0070 (−0.0018, 0.0157)

Ω̂ (𝜆)
14 −0.5 0.3327 (0.2893, 0.3762) 0.0092 (0.0025, 0.0159)

0.0 0.4809 (0.4284, 0.5335) 0.0154 (0.0042, 0.0267)
1.0 0.5720 (0.5194, 0.6246) 0.0213 (0.0058, 0.0368)
1.5 0.5775 (0.5251, 0.6298) 0.0218 (0.0060, 0.0377)
2.0 0.5720 (0.5194, 0.6246) 0.0213 (0.0058, 0.0368)

Ω̂ (𝜆)
23 −0.5 0.2211 (0.1915, 0.2507) 0.0024 (−0.0010, 0.0058)

0.0 0.3394 (0.2985, 0.3803) 0.0041 (−0.0016, 0.0098)
1.0 0.4256 (0.3796, 0.4717) 0.0056 (−0.0023, 0.0135)
1.5 0.4317 (0.3855, 0.4779) 0.0058 (−0.0023, 0.0139)
2.0 0.4256 (0.3796, 0.4717) 0.0056 (−0.0023, 0.0135)

Ω̂ (𝜆)
24 −0.5 0.2008 (0.1743, 0.2273) 0.0058 (0.0014, 0.0103)

0.0 0.2925 (0.2596, 0.3255) 0.0098 (0.0023, 0.0173)
1.0 0.3528 (0.3177, 0.3879) 0.0135 (0.0033, 0.0238)
1.5 0.3569 (0.3217, 0.3920) 0.0139 (0.0033, 0.0244)
2.0 0.3528 (0.3177, 0.3879) 0.0135 (0.0033, 0.0238)

Ω̂ (𝜆)
34 −0.5 0.2949 (0.2598, 0.3300) 0.0047 (0.0013, 0.0082)

0.0 0.4282 (0.3848, 0.4716) 0.0080 (0.0022, 0.0137)
1.0 0.5114 (0.4666, 0.5562) 0.0110 (0.0031, 0.0189)
1.5 0.5165 (0.4718, 0.5612) 0.0113 (0.0031, 0.0194)
2.0 0.5114 (0.4666, 0.5562) 0.0110 (0.0031, 0.0189)

Pdf_Folio:217



218 K. Yamamoto et al. / Journal of Statistical Theory and Applications 19(2) 212–222

5. CONCLUDING REMARKS

The measure Ω(𝜆) always ranges from 0 to 1 independent of the dimension r and sample size n. Thus, it may be useful for comparing the
degrees of departure fromMH in several tables.

When the MH model does not hold, we are interested in (i) seeing what degree the departure from MH is for the original r × r table, (ii)
seeing what degree the departure from MH is for Tst tables (1 ≤ s < t ≤ r − 1) and (iii) seeing in which Tst table (1 ≤ s < t ≤ r − 1) the
degree of departure from MH is the largest. We recommend to use the proposed measure Ω(𝜆) for (i) and the proposed submeasure Ω (𝜆)

st
for (ii) and (iii). The submeasure may also be used in the case that you would like to just analyze one collapsed table. Note that the measure
Ω(𝜆) is not invarianrt under the arbitrary permutations of row and column categories except the reverse order, so this measure should be
applied only for ordinal data.

Consider the artificial data in Table 5. LetG2 indicate the likelihood ratio statistic for goodness-of-fit ofMHmodel. Table 6a gives the values
of G2 applied to these data. We shall compare the values of G2 for Tables 5a and 5b. We see that the value of G2 for Table 5a is greater than
that for Table 5b. In contrast, for any fixed 𝜆(> −1), the value of Ω̂(𝜆) is greater for Table 5b than for Table 5a (see Table 6b). In terms of
Ĝ c(s,t)
i⋅ / Ĝ c(s,t)

⋅i , (i = 1, 2, 3, 1 ≤ s < t ≤ r − 1) (see Table 5), it seems natural to conclude that the degree of departure from MH is less for
Table 5a than for Table 5b. Therefore we recommend using Ω̂(𝜆) for comparing the degrees of departure from MH among several tables.
To many readers, it might seem that G2/n is also a reasonable measure for representing the degree of departure from MH. However, G2/n
is not such a measure for us. For instance, consider the artificial data in Tables 5b and 5c. The values of G2/n are 0.0261 for Table 5b and
0.1284 for Table 5c. Therefore, the value of G2/n is less for Table 5b than for Table 5c. On the other hand, for any fixed 𝜆(> −1), the value of
Ω̂(𝜆) for Table 5b is equal to that for Table 5c (see Table 6b). Moreover, Ĝ c

i⋅/ Ĝ c
⋅i , i = 1, 2, 3 for Table 5b is identical to that for Table 5c (see

Table 5). Therefore, it seems natural to get a conclusion that there are no differences between Tables 5b and 5c for the degree of departure
fromMH. As a result, Ω̂(𝜆) may also be more desirable to measure the degree of departure fromMH than G2/n.
Finally, the readers may be interested in considering a measure based on unconditional marginal probabilities (say, Γ(𝜆)), instead of the
proposedmeasureΩ(𝜆) based on conditionalmarginal probabilities. ThemeasureΓ(𝜆) takes theminimumvalue 0,when there is the structure
of MH in the original table. On the other hand, we cannot define the maximum value, because it is impossible to define the structure of

Table 4 Estimates of measure Γ(𝜆) applied to Tables 1a and 1b.

Values of 𝜆 For Table 1a For Table 1b

−0.5 0.2730 0.0061
0.0 0.3990 0.0103
1.0 0.4799 0.0143
1.5 0.4850 0.0146
2.0 0.4799 0.0143

Table 5 Artificial data (n is sample size).

(a) n = 2814

(1) (2) (3) (4) Total

(1) 251 266 37 42 596
(2) 140 329 271 98 838
(3) 72 76 224 189 561
(4) 32 20 310 457 819
Total 495 691 842 786 2814

Note:
Ĝ c(1,2)
1⋅

Ĝ c(1,2)
⋅1

= 1.41,
Ĝ c(1,2)
2⋅

Ĝ c(1,2)
⋅2

= 1.41,
Ĝ c(1,2)
3⋅

Ĝ c(1,2)
⋅3

= 0.45

Ĝ c(1,3)
1⋅

Ĝ c(1,3)
⋅1

= 1.41,
Ĝ c(1,3)
2⋅

Ĝ c(1,3)
⋅2

= 0.79,
Ĝ c(1,3)
3⋅

Ĝ c(1,3)
⋅3

= 1.10

Ĝ c(2,3)
1⋅

Ĝ c(2,3)
⋅1

= 2.24,
Ĝ c(2,3)
2⋅

Ĝ c(2,3)
⋅2

= 0.55,
Ĝ c(2,3)
3⋅

Ĝ c(2,3)
⋅3

= 1.10

(continued)
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Table 5 Artificial data (n is sample size). (Continued)

(b) n = 2906

(1) 687 14 20 10 731
(2) 95 278 9 31 413
(3) 45 35 898 11 989
(4) 24 13 30 706 773
Total 851 340 957 758 2906

Note:

 

Ĝ c(1,2)
1⋅

Ĝ c(1,2)
⋅1

= 0.27,
Ĝ c(1,2)
2⋅

Ĝ c(1,2)
⋅2

= 2.18,
Ĝ c(1,2)
3⋅

Ĝ c(1,2)
⋅3

= 1.67

Ĝ c(1,3)
1⋅

Ĝ c(1,3)
⋅1

= 0.27,
Ĝ c(1,3)
2⋅

Ĝ c(1,3)
⋅2

= 2.36,
Ĝ c(1,3)
3⋅

Ĝ c(1,3)
⋅3

= 1.29

Ĝ c(2,3)
1⋅

Ĝ c(2,3)
⋅1

= 0.60,
Ĝ c(2,3)
2⋅

Ĝ c(2,3)
⋅2

= 1.54,
Ĝ c(2,3)
3⋅

Ĝ c(2,3)
⋅3

= 1.29

(c) n = 591

(1) 68 14 20 10 112
(2) 95 27 9 31 162
(3) 45 35 89 11 180
(4) 24 13 30 70 137
Total 232 89 148 122 591

Note:
Ĝ c(1,2)
1⋅

Ĝ c(1,2)
⋅1

= 0.27,
Ĝ c(1,2)
2⋅

Ĝ c(1,2)
⋅2

= 2.18,
Ĝ c(1,2)
3⋅

Ĝ c(1,2)
⋅3

= 1.67

Ĝ c(1,3)
1⋅

Ĝ c(1,3)
⋅1

= 0.27,
Ĝ c(1,3)
2⋅

Ĝ c(1,3)
⋅2

= 2.36,
Ĝ c(1,3)
3⋅

Ĝ c(1,3)
⋅3

= 1.29

Ĝ c(2,3)
1⋅

Ĝ c(2,3)
⋅1

= 0.60,
Ĝ c(2,3)
2⋅

Ĝ c(2,3)
⋅2

= 1.54,
Ĝ c(2,3)
3⋅

Ĝ c(2,3)
⋅3

= 1.29

Table 6 Values of G2 andΩ(𝜆) applied to Tables 5a, 5b and 5c.

For Table 5a For Table 5b For Table 5c

(a) G2

114.778 75.94 75.94
(b) Ω̂(𝜆)

−0.5 0.0232 0.0653 0.0653
0.0 0.0386 0.1060 0.1060

𝜆 1.0 0.0525 0.1405 0.1405
1.5 0.0537 0.1434 0.1434
2.0 0.0525 0.1405 0.1405

the furthest departure from MH. Thus, when the readers wants to consider the degree of departure from MH in addition to define the
maximum departure fromMH, we recommend using the measureΩ(𝜆). If not, each measure, Γ(𝜆) andΩ(𝜆), is enough to use.
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APPENDIX A

The measure to represent the degree of departure fromMH proposed by Tomizawa et al. [5], is given as follows: assuming that
{G1(i) + G2(i) ≠ 0},

Γ(𝜆) = 𝜆(𝜆 + 1)
2𝜆 − 1

I(𝜆)
(
{G∗

1(i),G∗
2(i)} ; {Q∗

i ,Q∗
i }
)

(𝜆 > −1),

where

I(𝜆)(⋅; ⋅) = 1
𝜆(𝜆 + 1)

r−1

∑
i=1

[G∗
1(i) {

(
G∗
1(i)

Q∗
i

)𝜆

− 1} + G∗
2(i) {

(
G∗
2(i)

Q∗
i

)𝜆

− 1}] ,

with

G1(i) =
i

∑
s=1

r

∑
t=i+1

pst, G2(i) =
r

∑
s=i+1

i

∑
t=1

pst, Δ =
r−1

∑
i=1

(G1(i) + G2(i)),

and

G∗
1(i) =

G1(i)

Δ , G∗
2(i) =

G2(i)

Δ , Q∗
i =

1
2

(
G∗
1(i) + G∗

2(i)

)
(i = 1, … , r − 1),

and the value at 𝜆 = 0 is taken to be continuous limit as 𝜆 → 0.

APPENDIX B

Using the delta method,√n(Ω̂(𝜆) −Ω(𝜆)) has aymptotically variance 𝜎2[Ω(𝜆)] as follows:

𝜎2 [Ω(𝜆)] =
r

∑
k=1

r

∑
l=1

pkl
(
Δ (𝜆)
kl

)2
(𝜆 > −1),

where

Δ(𝜆)
kl =

1(
r−1
2

) r−2
∑
s=1

r−1
∑

t=s+1

1
𝛿st

(
A(𝜆)(s,t)
kl −Ω(𝜆)

st B(s,t)
kl

)
,

A(𝜆)(s,t)
kl =

⎧
⎪
⎨
⎪
⎩

3
∑
i=1

[Ckl(i) {1 −
𝜆2𝜆

2𝜆 − 1
H(𝜆)

st(i)

(
{G c(s,t)

k(i) }
)
} + 𝛿st𝜋c∗

st(i)D
(𝜆)
kl(i)] (𝜆 ≠ 0),

3
∑
i=1

[Ckl(i) {1 −
1

log 2
H(0)

st(i)

(
{G c(s,t)

k(i) }
)
} + 𝛿st𝜋c∗

st(i)D
(0)
kl(i)] (𝜆 = 0),

Bkl = 1 −
(

3
∑
i=1

E (s,t)
kl(i)

)
,

C (s,t)
kl(i) =

1
2

(
F (s,t)
kl(i) + J (s,t)kl(i) − 2E (s,t)

kl(i)

)
,
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D(𝜆)(s,t)
kl(i) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

2𝜆(𝜆 + 1)
2(2𝜆 − 1)

1
𝛿st𝜋c∗

st(i)
[
(
G c(s,t)
1(i)

)𝜆
{
(
F (s,t)
kl(i) − E (s,t)

kl(i)

)
− 2C (s,t)

kl(i)G
c(s,t)
1(i) }

+
(
G c(s,t)
2(i)

)𝜆
{
(
J (s,t)kl(i) − E (s,t)

kl(i)

)
− 2C (s,t)

kl(i)G
c(s,t)
2(i) }] (𝜆 ≠ 0),

1
2 log 2

1
𝛿st𝜋c∗

st(i)
[{log

(
G c(s,t)
1(i)

)
+ 1} {

(
F (s,t)
kl(i) − E (s,t)

kl(i)

)
− 2C (s,t)

kl(i)G
c(s,t)
1(i) }

+ {log
(
G c(s,t)
2(i)

)
+ 1} {

(
J (s,t)kl(i) − E (s,t)

kl(i)

)
− 2C (s,t)

kl(i)G
c(s,t)
2(i) }] (𝜆 = 0),

E (s,t)
kl(i) =

⎧⎪
⎨⎪
⎩

I(1 ≤ k ≤ s, 1 ≤ l ≤ s) (i = 1),
I(s + 1 ≤ k ≤ t, s + 1 ≤ l ≤ t) (i = 2),
I(t + 1 ≤ k ≤ r, t + 1 ≤ l ≤ r) (i = 3),

F (s,t)
kl(i) =

⎧⎪
⎨⎪
⎩

I(1 ≤ k ≤ s) (i = 1),
I(s + 1 ≤ k ≤ t) (i = 2),
I(t + 1 ≤ k ≤ r) (i = 3),

J (s,t)kl(i) =
⎧⎪
⎨⎪
⎩

I(1 ≤ l ≤ s) (i = 1),
I(s + 1 ≤ l ≤ t) (i = 2),
I(t + 1 ≤ l ≤ r) (i = 3),

where I(⋅) is the indicator function.

APPENDIX C

Using the delta method,√n
(
Ω̂ (𝜆)

st −Ω (𝜆)
st

)
(1 ≤ s < t ≤ r − 1) has aymptotically variance 𝜎2 [Ω (𝜆)

st ] as follows:

𝜎2 [Ω (𝜆)
st ] = 1

𝛿2st

⎡
⎢
⎢
⎢
⎢
⎣

3

∑
i=1

3

∑
j = 1
i ≠ j

G (s,t)
ij

(
𝜂(𝜆)(s,t)ij

)2
− 𝛿st

(
Ω (𝜆)

st

)2
⎤
⎥
⎥
⎥
⎥
⎦

(𝜆 > −1),

where

𝜂(𝜆)(s,t)ij =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

1
2(2𝜆 − 1)

[2𝜆 {
(
G c(s,t)
1(i)

)𝜆
+ 𝜆

(
G c(s,t)
2(i)

)𝜆 ((
G c(s,t)
1(i)

)𝜆
−
(
G c(s,t)
2(i)

)𝜆)
+
(
G c(s,t)
2(j)

)𝜆
− 𝜆

(
G c(s,t)
1(j)

)𝜆 ((
G c(s,t)
1(j)

)𝜆
−
(
G c(s,t)
2(j)

)𝜆)
} − 2] (𝜆 ≠ 0),

1 − 1
2 log 2

[− log
(
G c(s,t)
1(i)

)
− log

(
G c(s,t)
2(j)

)
] (𝜆 = 0).
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