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ABSTRACT
In the present paper, a two-sided test in a family of multivariate distribution according to the Mahalanobis distance with mean
vector and positive definite matrix is considered. First, a family of multivariate distribution is introduced, then using the like-
lihood ratio method a test statistic is computed. The distribution of the test statistic is proposed for different sample sizes and
fixed dimension. We study the distribution approximation computed using the likelihood ratio test and an efficient algorithm
to compute the density functions can be derived according to Witkovsk´y, J. Stat. Plan. Inference. 94 (2001), 1–13. Also, a sim-
ulation study is presented on the sample sizes and powers to compare the performance of tests and show that the proposed
distribution approximation is better than the classical distribution approximation.
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1. INTRODUCTION

In multivariate analysis, testing the asymptotically of elements is one topic of interest and important. We are interested in testing the asymp-
totically of its elements based on a random sample of sample size from this population. In classic multivariate analysis, the dimension is
fixed or relatively small compared with the sample size and the likelihood ratio test is an effective way to test the hypothesis of asymptot-
ically. Also, in multivariate distribution, testing the asymptotically of grouped elements is one topic of interest. Testing asymptotically of
vectors elements, such as financial data, the consumer data, the modern manufacturing data and the multimedia data, was always a mat-
ter of interest. The likelihood ratio test method can be used for testing asymptotic hypothesis. When the dimension remains fixed and the
sample sizes go to infinity, the classical theory states that the null distribution of the likelihood ratio test converge to chi-squared distri-
bution. Van der Laan and Bryan [1], show that the sample mean of p−dimensional data can consistently estimate the population mean
uniformly across p dimensions for bounded random variables. In a major generalization, Kosorok and Ma [2] consider uniform conver-
gence for a range of univariate statistics constructed for each data dimension which includes the marginal empirical distribution, sample
mean and sample median. Fan et al. [3] evaluated approximating the overall level of significance for testing of means. They demonstrate
that the bootstrap can accurately approximate the overall level of significance when the marginal tests are performed based on the normal
or the t−distributions. See also Fan et al. [4] and Huang et al. [5], for estimation and testing in semiparametric regression models.

Wang et al. [6], proposed a novel p−dimensional nonparametric test for the population mean vector for a general class of multivariate
distributions. They proved that the limiting null distribution of the proposed test is normal under mild conditions when the dimension is
substantially larger than n and studied the local power of the proposed test and compare its relative efficiency with a modified Hotelling T2

test for p−dimensional data. They further illustrate its application by an empirical analysis of a genomics data set. Li and Liu [7], considered
the problem of testing the complete independence of random variables when the dimension of observations can be much larger than the
sample size. They introduced the permutation test and simulation results showed that for finite dimension and sample size the proposed
test outperforms the existing methods in various cases.

Schott [8], developed a simpler test procedure specifically designed for p−dimensional data. The test is based on the sample correlation
matrix. Schott [9], proposed a simple statistic for testing the equality of the covariance matrices of several multivariate normal populations
when the dimension is large relative to the sample sizes. Huster and Li [10], investigated testing the existence of the dependence function
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under the null hypothesis of asymptotic independence and present two suitable test statistics. Small simulations are studied and the appli-
cation for a real data is shown. The asymptotic null distribution of this statistic, as both the sample sizes and the number of variables go to
infinity, shown to be normal. For more information for testing about covariance matrices in p−dimensional data one can see for example,
Ledoit et al. (2002), Bai et al. [11], Chen et al. [12], Jiang et al. [13] and Jiang and Yang [14]. Tsai et al. [15], showed that the existing tests
for asymptotic independence are sensitive to outliers. A robust test proposed. The new test was made stable under contamination through
a shrinkage scheme. Thus, many of these procedures will only be reliable when the sample sizes are substantially larger than dimension.
A better approach in this p−dimensional data setting would be to use a procedure which is based on asymptotic theory which has both p and
the sample sizes approaching infinity. Some examples of recent work on inference problems in this p−dimensional setting include in Birke
and Dette [16], Ledoit and Wolf [17], Fujikoshi [18], Schott [19] and Srivastava [20]. More results on the ordered hypothesis tests especially
in the multivariate normal distributions given in Bazyari and Pesarin [21], Bazyari [22], Bazyari [23] and Bazyari ans Afshari [24].

Testing in a dimensional p−variate normal vector components, has been studied by Jiang and Yang [14]. As extending the results of Jiang
and Yang ([14], Theorem 2) to the more than one population case, testing independence of k p−dimensional normal vectors components
are considered. We are interested in a two-sided test in a family of multivariate distribution. The same problem has been considered by Jiang
and Yang [14], and Jiang and Qi (2013) when the number of the partition is fixed. The aim of the project is to extend the test to an arbitrary
partitions and allow the number of the partition to change with the sample size.

The rest of the paper is organized as follows: In Section 2, we introduce a family of multivariate distribution consist of a p−dimensional
t−distribution with parameters 𝝁 (real location vector), 𝚺 (M×M real positive definite scale matrix) and 𝜐 (positive real degrees of freedom
parameter) according to the Mahalanobis distance between x and 𝝁, and derive an asymptotic test using the likelihood ratio test statistic.
In Section 3, the asymptotic distribution of test statistic for a two-sided test is given. In Section 4, a simulation study on the size and power
of tests is presented. Concluding remarks are given in Section 5. The complete source programs are written in R statistical software.

2. A FAMILY OF MULTIVARIATE DISTRIBUTION

As a multivariate version of Jones’ (2004) univariate construction defined in Anderson [25] and Castillo and Sarabia (2006) have proposed
multivariate distributions based on an enriching process using a representation of a p−dimensional random vector with a given distribu-
tion due to Rosenblatt [26]. Here a multivariate normal distribution is considered. Let the p−dimensional vector Xi, i = 1, 2, … , k, is dis-
tributed as the family of multivariate distribution given in Marshall and Olkin [27]. For example, researcher can consider a p−dimensional
t−distribution with parameters 𝝁 (real location vector), 𝚺 (M×M real positive definite scale matrix) and 𝜐 (positive real degrees of freedom
parameter) is given by

tM (x, 𝝁, 𝚺, 𝜐) = ∫
∞

0
NM (x, 𝝁, 𝚺/w)K (w, 𝜐/2, 𝜐/2) dw

= Γ ((𝜐 + M)/2)

|𝚺|
1
2 Γ (𝜐/2) (𝜋𝜐)

M
2

[1 + 𝛿 ((x, 𝝁, 𝚺) /2)]−(𝜐+M)/2 ,

where 𝛿 (x, 𝝁, 𝚺) = (x − 𝝁)′𝚺−1(x − 𝝁) is the Mahalanobis distance between x and 𝝁 and K(x, 𝛼, 𝛾) = x𝛼−1Γ(𝛼)−1 exp (−𝛾x) 𝛾𝛼, where Γ
denotes the Gamma function. A difficulty with the standard representation of the t−distribution is that when 𝚺 is diagonal this represen-
tation can be shown to have zero correlation but the marginal distributions are not statistically independent. Equivalently the product of
independent univariate t−distributions with the same degrees of freedom parameter is not a standard multivariate t−distribution with a
diagonal scale matrix. We will see that the multivariate generalization we propose has in contrast this property and contains the product of
independent t−distributions as a particular case. Also, as mentioned by Kotz and Nadarajah [28], the standard t−distributions belongs to
the class of elliptically contoured distributions (see for instance Fang et al. [29] for a definition of elliptical distributions). We will see in the
next section that our generalization allows for a greater variety of shapes and in particular contours that are not necessarily elliptic. Note
however that our proposal is different from the meta-elliptical distributions of Fang et al. [29].

Most of the work on multivariate scale mixture of Gaussians has focused on studying different choices for the weight distribution fw sur-
prisingly, little work to our knowledge has focused on the dimension of the weight variable W which in most cases has been considered as
univariate. The difficulty in considering multiple weights is the interpretation of such a multidimensional case. The extension we propose
consists then of introducing the parameterization of the scale matrix into 𝚺 = DAD′, where D is the matrix of eigenvectors of 𝚺. The matrix
D determines the orientation of the Gaussian and A its shape. Such a parameterization has the advantage to allow an intuitive incorporation
of the multiple weight parameters. The generalization we propose is therefore to define

p (x, 𝝁, 𝚺, θ) = ∫
∞

0
… ∫

∞

0
NM (x, 𝝁,DΔwAD′) fw (w1, … ,wM; θ) dw1, … , dwM, (1)

where fw is now a M−variate density function to be further specified. In the following developments, we will consider only independent
weights, i.e. with θ = (𝜃1, … ,wM) and

fw(w1, … ,wM; θ) = fw1
(w1, 𝜃1)… fwM

(wM, 𝜃M).
Pdf_Folio:163
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We can use then one of the equivalent expressions below

NM (x, 𝝁,DΔwAD′) =
M

∏
m=1

N1(D′(x − 𝝁)m; 0,Amw−1
m )

=
M

∏
m=1

A−1/2
m N1

(
D′(x − 𝝁)m

A−1/2
m

; 0,w−1
m

)

=
M

∏
m=1

N1(D′x)m; (D′x)mAmw−1
m ,

where D′(x−𝝁)m denotes the mth component of vector D′(x−𝝁) and Am the mth diagonal element of the diagonal matrixA (or equivalently
the mth eigenvalue of 𝚺). Then (1) follows that

p (x, 𝝁, 𝚺, θ) =
M

∏
m=1 ∫

∞

0
N1

(
D′(x − 𝝁)m; 0,Amw−1

m
)

fwm
(wm, 𝜃m) dwm. (2)

The terms in the product reduce then to standard univariate scale mixtures. Another generative way to see this construction which is useful
for simulation consists of simulating an M−dimensional Gaussian variable X = (X1,X2, … ,XM)′ with mean zero and covariance matrix
equal to the identity matrix and to consider M independent positive variables W1,W2, … ,WM with respective distributions fwm

(wm, 𝜃m).
Then the vector

Y = 𝝁 +DA
1
2

(
X1

√W1
, X1

√W2
, … , X1

√WM

)′

,

follows one of the distributions below depending on the choice of fwm
. For example, setting fwm

(wm, 𝜃m) to a Gamma distribution

T(wm, 𝛼m, 𝛾m) results in a multivariate generalization of a Pearson type VII distribution. Setting fwm
(wm, 𝜃m) to T

(
wm,

𝜐m
2 , 𝜐m

2

)
leads to a

generalization of the multivariate t−distribution. In Figure 1, we show some of the different shapes in a two-dimensional setting for different
values of 𝜐 and D, with A fixed to diag(4, 4) and 𝝁 to (1, 2)′ Additional examples are shown in Figure 1 of the Supplementary Materials).

2.1. An Asymptotic Test

We can write X̃ =
(

X1

√W1
, X1

√W2
, … , X1

√WM

)′

a vector of M independent variables X̃m whose distributions are given by

∞

∫
0

N
(

xm, 0,
1

wm

)
fwm

(wm) dwm.

In the t-distribution and Pearson VII distribution cases, X̃m follows respectively a standard one-dimensional (1D) t-distribution

S
(

xm, 0,
1

wm

)
and a standard 1D Pearson VII distribution p (xm, 0, 𝛼m, 𝛾m). In the t-distribution case, a 1D marginal is then a linear combi-

nation of standard 1D t−distributions for which in the general case no closed-form expression is available. However an efficient algorithm
to compute such pdfs can be derived according to Witkovsk´y [30]. The derivation in Witkovsk´y [30] is based on the inversion formula of
the characteristic function which in the univariate case is

fX(x) =
1

2𝜋

∞

∫
0

[
(

exp(itx)𝜑X(−t) + (exp(−itx))𝜑X(−t)
)
] dt

= 1
𝜋

∞

∫
0

Re
(
(exp(−itx))𝜑X(−t)

)
dt.

We use the tdist R package of V. Witkovsky available at http://aiolos.um.savba.sk/∼viktor/software.html to plot the pdf of some marginals
and compare it with 1D t−distributions. We also plot the histogram obtained by simulations to illustrate its consistency with the marginal
pdf formula. The fact that the marginals are not in general t−distributions is a notable difference with other multivariate t generalizations.
With paying attention to the family of multivariate distribution, we partition the random vector Xi into 1 ≤ ki ≤ p − 1 components asPdf_Folio:164



A. Bazyari et al. / Journal of Statistical Theory and Applications 19(2) 162–172 165

Figure 1 Contour plots of bivariate t−distributions with A = diag(4, 4) and 𝝁 = (1, 2)′.

X ′
i =

(
X (i)′

1 ,X (i)′
2 , … ,X (i)′

ki

)′
, where X (i)′

v ∈ Rp (i)
v ,

(
p (i)

1 , p (i)
2 , … , p (i)

ki

)
and p =

ki

∑
v=1

p (i)
v . Similarly, the mean vector 𝝁i and the covariance

matrix 𝚺i are partitioned as 𝝁 ′
i =

(
𝝁 (i)′

1 , 𝝁 (i)′
2 , … , 𝝁 (i)′

ki

)′
and 𝚺i =

(
𝚺 (i)

l×m

)
ki×ki

, where 𝚺 (i)
l×m = cov

(
X (i)

l ,X (i)
m

)
is the (l × m) th partition of

covariance matrix 𝚺i respectively.

Knowing these conventions, the preferred null hypothesis H0 in this paper is that the components X (i)
1 ,X (i)

2 , … ,X (i)
ki

are mutually indepen-
dently distribution, i.e. the density of Xi can be written as the product of the density functions of X (i)

1 ,X (i)
2 , … ,X (i)

ki
. When we fix the last

density, therefore, H0 can be expressed as

H0 ∶ fXi
(xi; 𝝁i, 𝚺i) =

ki−1

∏
v=1

fX (i)
v

(
x (i)

v ; 𝝁 (i)
v , 𝚺 (i)

vv

)
, i = 1, 2, … , k − 1. (3)

For the variable X̃ =
(

X1

√W1
, X1

√W2
, … , X1

√WM

)′

of a vector of M independent variables X̃m whose distributions are given by

∞

∫
0

N
(

xm, 0,
1

wm

)
fwm

(wm) dwm,

this condition is held.

In fact we can write the following hypothesis:

H′
0 ∶

∞

∫
0

N
(

xm, 0,
1

wm1

)
fwm1

(
wm1

)
dwm1

=
∞

∫
0

N
(

xm, 0,
1

wm2

)
fwm2

(
wm2

)
dwm2

, (4)
Pdf_Folio:165
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against

H′
1 ∶

∞

∫
0

N
(

xm, 0,
1

wm1

)
fwm1

(
wm1

)
dwm1

≠
∞

∫
0

N
(

xm, 0,
1

wm2

)
fwm2

(
wm2

)
dwm2

.

Testing H′
0 against H′

1 is a two-sided test. This test can be done using different methods when the mean vectors and covariance matrices are
unknown. To do this, let xi1, xi2, … , xini

be the observations on the vector Xi, i = 1, 2, … , k. Then, the likelihood function of the observed
data is given by

L (𝝁1, 𝝁2, … , 𝝁k; 𝚺1, 𝚺2, … , 𝚺k) =
k−1

∏
i=1

ni

∏
j=1

fXij

(
xij; 𝝁i, 𝚺i

)
.

It can be verified (Anderson [25], Theorem 3.2.1), that

Sup
𝝁i,𝚺i,i=1,2,…,k

L(𝝁1, 𝝁2, … , 𝝁k; 𝚺1, 𝚺2, … , 𝚺k) =
k−1

∏
i=1

(
2𝜋en−1

i
)− ni

2 |Si|
−

ni

2 ,

where Si =
ni

∑
j=1

(
xij − xi

)
(xij − x)′ =

(
S (i)

l×m

)
ki×ki

, i = 1, 2, … , k. It is easy to see that, under the hypothesis H′
0 given in (4), the covariance

matrix 𝚺i is equal to the diagonal matrix 𝚺H′
0

i with diagonal elements 𝚺 (i)
11 , 𝚺 (i)

22 , … , 𝚺 (i)
ki×ki

. Therefore, under the null hypothesis, we have

Sup
𝝁i,𝚺

H′
0

i ,i=1,2,…,k

L
(
𝝁1, 𝝁2, … , 𝝁k; 𝚺

H′
0

1 , 𝚺H′
0

2 , … , 𝚺H′
0

k

)
=

k−1

∏
i=1

ki

∏
v=1

(
2𝜋en−1

i
)− nip

(i)
r

2 |S (i)
vv |

−
ni

2 .

Hence, the likelihood ratio test statistic obtains as

Λ =

Sup
𝝁i,𝚺

H′
0

i ,i=1,2,…,k−1

L
(
𝝁1, 𝝁2, … , 𝝁k; 𝚺

H′
0

1 , 𝚺H′
0

2 , … , 𝚺H′
0

k

)
Sup

𝝁i,𝚺i,i=1,2,…,k−1
L (𝝁1, 𝝁2, … , 𝝁k; 𝚺1, 𝚺2, … , 𝚺k)

=
k−1

∏
i=1

⎛⎜⎜⎜⎜⎜⎝
|Si|

ki

∏
v=1

|S (i)
vv |

⎞⎟⎟⎟⎟⎟⎠

ni

2

. (5)

Note that, the statistic Λ in (5) only exists when the inequality min
1≤i≤k−1

ni > p holds. Here, we suppose that min
1≤i≤k−1

ni > p+ 1. By the general

theory ofΛ’s, it is demonstrated that the null distribution of−2 logΛ is a chi-squared distribution with df = 1
2

(
p2 −

k

∑
v=1

ki−1

∑
r=1

p(i)
2

v

)
degrees

of freedom as min
1≤i≤k−1

ni goes to infinity and the dimension is fixed.

3. ASYMPTOTIC DISTRIBUTION OF TEST STATISTIC

Theorem 2.1. Under the null hypothesis H′
0 given in (4),

H′
0 ∶

∞

∫
0

N
(

xm, 0,
1

wm1

)
fwm1

(
wm1

)
dwm1

=
∞

∫
0

N
(

xm, 0,
1

wm2

)
fwm2

(
wm2

)
dwm2

,

for the density function

p (x, 𝝁, 𝚺, θ) = ∫
∞

0
… ∫

∞

0
NM(x, 𝝁,DΔwAD′)fw(w1, … ,wM; θ) dw1, … , dwM,

according to all sample random variables, using the likelihood ratio test, Λ,Pdf_Folio:166
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a. The random variable
log Λ − 𝜃n

n√𝜎2n
converges in distribution to Standard normal distribution when the dimension goes to ∞, where

𝜃n =

k

∑
i=1

[
( ki

∑
v=1

d2
ni−1,p

(i)
r

(
p (i)

v − 2ni +
3
2

)
− d2

ni−1,p

(
p − 2ni +

3
2

))
ni]

4 ,

and 𝜎n =

√√√√√
√

k

∑
i=1

[
(

d2
ni−1,p

− 2
ki

∑
v=1

d2
n

i−1,p (i)v

)(
ni

2n

)2
]

4
,n =

k

∑
i=1

ni and d2
a,b = log

(
1 + b

2a

)
, if the conditions ni > p+ 1 = p (i)

1 + p (i)
2 +⋯+

p (i)
ki
+ 1 and the fraction

p (i)
v
ni

goes to b (i)
v , where 0 < b (i)

v < 1, as the dimension goes to ∞ for i = 1, 2, … , ki ∈ N, hold.

b. The part (a) holds for the term

NM (x, 𝝁,DΔwAD′) =
M

∏
m=1

N1 (D′x)m ; (D′x)m Amw−1
m ,

where Am the mth diagonal element of the diagonal matrix A.

Proof

a. First, from Hardy et al. [31], if real numbers l1, l2, … , lq are greater than −1, and are all positive or all negative, then we have

log

(
m

∏
i=1

(1 + li)

)
− log

(
−1 +

m

∑
i=1

li

)
> 0. For given i, i = 1, 2, … , k, and taking li = − p (i)

v
ni − 1 and m = ki, we see that

d2
ni−1,p

−
ki

∑
v=1

d2
n

i−1,p (i)v

= log

( ki

∏
v=1

(
1 − p (i)

v
2ni − 1

))
− log

(
1 −

ki

∑
v=1

p (i)
v

2ni − 1

)
> 0.

Therefore, 𝜎2
n > 0. Then when the dimension goes to infinity, the fraction

n
2p =

k

∑
i=1

( ki

∑
v=1

2p (i)
v

ni

)−1

,

converges to 1
2

k

∑
i=1

( ki

∑
v=1

b (i)
v

)−1

=
k

∑
i=1

1
bi
= 1

b
, where bi =

ki

∑
v=1

b (i)
v ∈ (0, 1) and b ∈ [0, 1

k ].

One can easily proof that all of these conditions hold for the following p−dimensional t−distribution:

tM(x, 𝝁, 𝚺, 𝜐) = Γ ((𝜐 + M)/2)

|𝚺|
1
2 Γ (𝜐/2) (𝜋𝜐)

M
2

[1 + 𝛿 ((x, 𝝁, 𝚺) /2)]−(𝜐+M)/2 .

For tM(x, 𝝁, 𝚺, 𝜐) the fraction
ni
n converges to the fraction b

bi
∈ (0, 1) as the dimension goes to infinity. In fact, for the second case,

b (i)
v ∈ (0, 1), the limit is obviously +∞ since lim

a→1−
log(1 − a) = −∞. Now fix the value s such that |s| < 𝜎

2b
and set t = tn =

s
n𝜎n

.

It is easy to see that the fraction − n𝜎n
2(p + 1) converges to the fraction − 𝜎

2b
< s as the dimension goes to ∞. Then with the fact that

max
1≤i≤k

{ 1
2ni

} < 1
p + 1 ,

or max
1≤i≤k

{ p
2ni

− 1} < − 1
p + 1 < − 1

2(p + 1) .

Pdf_Folio:167
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Putting t = tn = s
n𝜎n

> max
1≤i≤k

{ p
ni
− 1} as the dimension goes to infinity. Now, for fix i which bi < 1, we have

d2
ni−1,p

𝜎2n
converge to

− log (1 − bi)
𝜎2n

for max
1≤i≤k

bi < 1 and 0 for max
1≤i≤k

bi = 1. This results that,
dni−1,p

𝜎n
converge to √

− log (1 − bi)
𝜎2 for max

1≤i≤k
bi < 1 and 0 for

max
1≤i≤k

bi = 1.
Furthermore, when bi = 1, for p−dimensional t−distribution, we have that

2𝜎2
n ≥

(
d2

ni−1,p
−

ki

∑
v=1

d2
ni−1,p (i)

v

)(ni
n

)2
,

if and only if

dni−1,p

𝜎n
≤
√√√
√

2
(ni

n

)2
+ 𝜎−2n

ki

∑
v=1

d2
ni−1,p (i)

v
,

convergence to the fraction
√2
2b

< ∞ as the dimension goes to ∞. For the density function

p (x, 𝝁, 𝚺, θ) = ∫
∞

0
… ∫

∞

0
NM (x, 𝝁,DΔwAD′) fw (w1, … ,wM; θ) dw1, … , dwM,

which w1, … ,wM are real values, the inequality 2𝜎2
n ≥

(
d2

ni−1,p
−

ki

∑
v=1

d2
ni−1,p (i)

v

)(ni
n

)2
also holds. Therefore, from lim sup

p→∞

dni−1,p

2𝜎n
< ∞,

we have that 1
2𝜎n

= O

(
1

dni−1,p

)
or

tni
2 = s

2
ni
n

1
𝜎n

= O(1) 1
𝜎n

= O

(
1

dni−1,p

)
. Similarly, since for a < 1, the term − log(1 − a) is an

increasing function, then r2
ni−1,p (i)

v
< r2

ni−1,p. As a result, from lim sup
p→∞

dn
i−1,p (i)r

2𝜎n
< lim sup

p→∞

dni−1,p

2𝜎n
< ∞, we have that

1
2𝜎n

= O

(
1

dni−1,p
(i)
v

)
,

therefore
tni
2 = O

(
1

dni−1,p

)
. Using the theorem (11.2.3) from Muirhead [32], when the hypothesis H′

0 is true, the tth moment of

likelihood ratio test given in (4) is

E(Λt) =
k

∏
i=1

⎛⎜⎜⎜⎝
Γpi

(
2ni−1

4
+ 3nit

4

)
Γpi

(
3ni−1

4

) ×
ki

∏
v=1

Γp (i)
v

(
3ni−1

4

)
Γp (i)

v

(
3ni−1

4
+ 3nit

4

)⎞⎟⎟⎟⎠ ,
where for complex number z with Re(z) > 1

2 (p − 1), the multivariate gamma function (Muirhead [32], p. 62) Γp(z) =

𝜋
p(p−1)

2
p
∏
j=1

Γ
(

z − 1
2 (j − 1)

)
.

Obviously, the expectation (3) only exists when
(

3ni − 1
2 + nit

2

)
> p − 1

2 , i = 1, 2, … , k or t > max
1≤i≤k

{ p
ni
− 1}. Recalling t = tn =

s
n𝜎n

> max
1≤i≤k

{ p
ni
− 1}, tni

2 = O

(
1

dni−1,p

)
and

tni
2 = O

(
1

dni−1,p (i)
v

)
as the dimension goes to infinity, by Lemma 5.4 from Jiang and

Yang [14], we obtain

log
⎛⎜⎜⎜⎝
Γp

(
2ni−1

4
+ 3nit

2

)
Γp

(
3ni−1

4

) ⎞⎟⎟⎟⎠ =
tpni

2 log
(

3ni − 1
2e

)
+ d2

ni−1,p
n2

i t2

4 + o(1),

Pdf_Folio:168



A. Bazyari et al. / Journal of Statistical Theory and Applications 19(2) 162–172 169

and

log
⎛⎜⎜⎜⎝
Γp (i)

v

(
2ni−1

4
+ 3nit

4

)
Γp (i)

v

(
2ni−1

4

) ⎞⎟⎟⎟⎠ =
tp (i)

v ni
4 log

(
2ni − 1

4e

)
+ d2

ni−1,p (i)
v

3n2
i t2

4 + o(1).

Also

log E(Λt) =
k
∑
i=1

[ tpni
4 log

(
ni − 1

4e

)
+ d2

ni−1,p
n2

i t2

4 − r2
ni−1,p

(
p − ni +

3
2

) nit
2 + o(1)]

−
k
∑
i=1

ki

∑
v=1

[ tp(i)v ni
2 log

(
ni − 1

4e

)
+ d2

ni−1,p(i)v

3n2
i t2

4 − d2
ni−1,p(i)v

(
p − ni +

3
2

) nit
2 + o(1)]

= 1
2 n2𝜎2

n t2 + 𝜃nt + o(1),

as the dimension goes to infinity. Also, we get that

log E [exp { logΛ
n√𝜎2n

s}] = log e

⎛⎜⎜⎜⎝
3
2

s
2+

𝜃n

2n√𝜍2n
s+o(1)

⎞⎟⎟⎟⎠,

if and only if log E [exp { logΛ − 𝜃n

n√𝜎2n
s}] = e

1
2

s2+o(1)

as dimension goes to infinity. On the other hand, the random variable
log Λ − 𝜃n

n√𝜎2n
converges in distribution to standard normal distribution as the dimension goes to infinity and this completes the proof.

b. The proof of this part is similar to the part (a).

4. COMPARE THE PERFORMANCE OF TESTS

In this section, we compare the performance of the chi-square approximation and normal approximation through a finite sample simula-
tion study. We plot the histograms for the chi-square statistics which are used for the chi-square approximation and compare with their
corresponding limiting chi-square curves. In this simulation, the notation Kp stands for the p × p matrix whose entries are all equal to 1,
and Ip is equal to an p × p identity matrix. Also, without loss of generality, we suppose that all the population covariance matrices Σi’s are
equal to 𝜌Kp + (1 − 𝜌)Ip with 0 ≤ 𝜌 ≤ 1, mean vectors 𝜃i’s are all equal to zero, the nominal Type I error rate 𝛼 is 0.05 and k = 3. Further-
more, we consider the same partition of p for all k distributions. For each combination of 𝜌, n1, n2, n3 and p, using 20000 replications from
the multivariate normal distribution Np

(
0, 𝜌Kp + (1 − 𝜌)Ip

)
, with mean vector 0, the simulated values of size, H′

0, and power with 𝜌 > 0,
for chi-square and normal approximations are calculated and given in Tables 1 and 2. Also, in Figure 2, for different values of simulation

parameters, the histograms of 20000 simulated null values of
log Λ − 𝜃n

n√𝜎2n
and −2 logΛ with added standard normal and chi-square curves

are pictures, respectively. We choose k = 3, n1 = n2 = n3 = 150 and p = 5, 20, 40, 100, with same partition of p for each of the k distribu-
tion as (p1, p2, p3) = (1, 1, 3) for p = 5, (p1, p2, p3) = (8, 8, 4) for p = 20, (p1, p2, p3) = (10, 10, 20) for p = 40, and (p1, p2, p3) = (30, 30, 40)
for p = 100.

The plots in the top row of Figure 2 indicate that
logΛ − 𝜃n

n√𝜎2n
and standard normal curve match better as the dimension becomes larger and

the pictures in the bottom row show that the histogram of −2 logΛ move away gradually from chi-square curve as the dimension grows.

From Tables 1 and 2, we inference that our normal approximation and the classical chi-square approximation are comparable for the large
sample sizes and small values of dimension. Under the hypothesis H′

0, by increasing the dimension, the simulated size chi-square approxi-
mation tends to one, whereas the simulated size of the our proposed method is around 0.05.

From Table 2, we see that the power of normal approximation is greater than the power of chi-square approximation and also for any fixed
sample sizes, by increasing the dimension, the power of our normal approximation decreases.Pdf_Folio:169
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Figure 2 The histogram of simulated null values of
logΛ− 𝜃n

n√𝜍2n
and −2 logΛ.
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Table 1 The simulated values of size for two tests under H′
0.

𝜌 (n1, n2, n3) p Partition of p Size underH′
0

Chi-square
Approximation

Size underH′
0

Normal
Approximation

(25, 25, 25) 5 2, 1, 2 0.454 0.038
0 (25, 25, 25) 10 4, 3, 3 0.761 0.042

(25, 25, 25) 20 4, 5, 6, 5 0.923 0.052
(50, 50, 50) 5 2, 3 0.389 0.047

0 (50, 50, 50) 20 5, 7, 8 0.636 0.051
(50, 50, 50) 45 17, 15, 13 0.801 0.061

(100, 100, 100) 5 3, 2 0.266 0.046
0 (100, 100, 100) 50 15, 17, 18 0.745 0.050

(100, 100, 100) 95 15, 30 30, 20 0.922 0.055
(150, 150, 150) 5 1, 4 0.257 0.042

0 (150, 150, 150) 50 12, 24, 13, 21, 10 0.481 0.054
(150, 150, 150) 95 50, 70, 25 0.792 0.054

Table 2 The simulated values of power for two tests under H′
1.

𝜌 (n1, n2, n3) p Partition of p Power underH′
1

Chi-square
Approximation

Power underH′
1

Normal
Approximation

(25, 25, 25) 5 2,1, 2 0.750 0.895
0.05 (25, 25, 25) 10 4, 3, 3 0.739 0.812

(25, 25, 25) 20 4, 5, 6, 5 0.634 0.730
(50, 50, 50) 5 2, 3 0.743 0.927

0.05 (50, 50, 50) 20 5, 7, 8 0.694 0.804
(50, 50, 50) 45 17, 15, 13 0.605 0. 729

(100, 100, 100) 5 2, 3 0.811 0.965
0.05 (100, 100, 100) 20 15, 17, 18 0.669 0.914

(100, 100, 100) 45 15, 30, 30, 20 0.504 0.823
(150, 150, 150) 5 1, 4 0.693 0.874

0.05 (150, 150, 150) 20 12, 24, 13, 21, 10 0.610 0.751
(150, 150, 150) 45 50, 70, 25 0.592 0.714
(25, 25, 25) 5 2,1, 2 0.653 0.870

0.6 (25, 25, 25) 10 4, 3, 3 0.624 0.813
(25, 25, 25) 20 4, 5, 6, 5 0.548 0.685
(50, 50, 50) 5 2, 3 0.785 0.925

0.6 (50, 50, 50) 10 5, 7, 8 0.624 0.824
(50, 50, 50) 20 17, 15, 13 0.603 0.741

(100, 100, 100) 5 2, 3 0.764 0.873
0.6 (100, 100, 100) 10 15, 17, 18 0.525 0.745

(100, 100, 100) 20 15, 30, 30, 20 0.511 0.655
(150, 150, 150) 5 1, 4 0.745 0.843

0.6 (150, 150, 150) 80 12, 24, 13, 21, 10 0.603 0.771
(150, 150, 150) 145 50, 70, 25 0.590 0.723

5. CONCLUDING REMARKS

In this paper, an asymptotic two-sided test in a family of multivariate distribution components with mean vector and positive definite
matrix was considered. Using the likelihood ratio method a test statistic computed and the asymptotic distribution proposed. We studied
the distribution approximation computed using the likelihood ratio test and an efficient algorithm to compute the density functions can
be derived according to Witkovsk´y [30]. Also, a simulation study presented on the sample sizes and powers to show that the proposed
distribution approximation outperform the classical distribution approximation.Pdf_Folio:171
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