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ABSTRACT
The available heteroscedastic hierarchical models perform well for a wide range of real-world data, but for the data sets which
exhibit heteroscedasticity mainly due to the lack of constant means rather than unequal variances, the existing models tend
to overestimate the variance of the second level model which in turn will cause substantial bias in the parameter estimates.
Therefore, in this study, we develop heteroscedastic hierarchical models, called double-heteroscedastic hierarchical models, that
take into account the heterogeneity in the means for the second level of the models, in addition to considering the heterogeneity
of variance for the first level of the models. In these models, we assume that the vector of means in the second level is sparse. We
derive Stein’s unbiased risk estimators (SURE) for the parameters in the model based on data decomposition and study their risk
properties both in theory and in numerical experiments under the squared loss. The comparison between our SURE estimator
and the classical estimators such as empirical Bayes maximum likelihood estimator (EBMLE) and empirical Bayes moment
estimator (EBMOM) is illustrated through a simulation study. Finally, we apply our model to a Baseball data set.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Hierarchical models have been extensively studied and widely used in many disciplines such as biology, climatology, ecology, medicine
and engineering. A hierarchical model is a multi-level model which integrates information from different sources to achieve coherent
inferences of unknowns (e.g., [1–3]). Among the many statisticians who have made significant contribution to theories and applications of
hierarchical models, James and Stein [4] and Stein [5] were pioneers by studying simultaneous statistical inferences for the mean of several
normal populations. The joint work of James and Stein has fundamentally increased the use of hierarchical models in recent decades. Stein’s
shrinkage estimators that had an interesting empirical Bayes interpretation were the basis for developing shrinkage estimation in multilevel
normal models. Later, Efron and Morris [6] showed further implications of Stein’s shrinkage estimator and proposed several competing
parametric empirical Bayes estimators.

To date, both parametric and nonparametric empirical Bayes properties of shrinkage estimators have been extensively studied under either
a homoscedastic (equal subpopulation variances) or heteroscedastic (unequal subpopulation variances) assumption. For more details, see
Berger and Strawderman [7] and Brown and Greenshtein [8]. The majority of these investigations have focused on the risk properties of
estimators with various loss functions. For example, the admissible minimax estimators for homoscedastic hierarchical normal models with
usual quadratic loss functions were considered by Baranchik [9], a class of proper Bayes minimax estimators was studied by Strawderman
[10], and a sufficient condition for admissibility of generalized Bayes estimators was investigated by Brown [11]. Comparisons between
those estimators under different loss functions are discussed in Brown [12], Berger [13] and Berger and Strawderman [7].

Recently, heteroscedastic hierarchical normal models have received more attention due to the demand for real applications. Xie et al. [14]
proposed a class of shrinkage estimators based on Stein’s unbiased risk estimate (SURE) and studied the asymptotic properties of various
common estimators as the number of means to be estimated increases. In particular, they established the asymptotic optimality property
for the SURE estimators. They further extended their estimators to a class of semi-parametric shrinkage estimators and established cor-
responding asymptotic optimality results. Ghoreishi and Meshkani [15] considered the estimation of a set of normal population means
by assuming heteroscedasticity in both levels of a two-level hierarchical model. They developed weighted shrinkage estimators of popu-
lation means based on weighted SURE. This is achieved by first estimating the nuisance parameters of variances and then using them in
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the derivation of the shrinkage estimators of means. Still in the context of heteroscedastic models, Xie et al. [16] discussed the simulta-
neous inference of mean parameters in a family of distributions with quadratic variance function. They studied the asymptotic optimality
properties of their semi-parametric/parametric shrinkage estimators that were defined for the location-scale family and the natural expo-
nential family. Ghoreishi [17] studied the Bayesian analysis of a fully heteroscedastic hierarchical model. He used a class of local-global
shrinkage priors, Dirichlet–Laplace priors and evaluated the optimal posterior concentration of their corresponding Bayes estimators.

Compared to nonparametric Bayes estimators, parametric empirical Bayes estimators are more commonly used in real data analysis [18].
The application of parametric empirical Bayes usually involves unknown hyper-parameters that need to be estimated. The empirical Bayes
maximum likelihood estimator (EBMLE), empirical Bayes moment estimator (EBMOM) and SURE are the common approaches for the
hyper-parameter estimation, see Brown [19] and references therein.

Although in general the available heteroscedastic hierarchical models perform well for a wide range of real-world data, they may fit poorly
for the data sets which exhibit heteroscedasticity mainly due to the lack of constant means rather than unequal variances. For such data,
implementation of the existing heteroscedastic hierarchical models tends to overestimate the variance of the second-level model which
will cause substantial bias in the parameter estimates. According to the above description, the present study is an attempt to consider the
following points

• We develop heteroscedastic hierarchical models that take into account the heterogeneity in the means for the second-level of the
model, in addition to considering the heterogeneity of variance for the first level of the models. We call these extended models as
“double-heteroscedastic hierarchical models.”

• Throughout the paper, we assume that the vector of the second level means is a sparse vector. So, we derive SURE for the parameters in
the model based on data decomposition and study their risk properties both in theory and in numerical experiments under the
squared loss. The comparison between our SURE estimator and the classical estimators such as EBMLE and EBMOM is illustrated
through a simulation study.

Practically, our sparse double-heteroscedastic hierarchical models can be widely used in signal detection and gene effect studies. For exam-
ple, when many gene families (a group of homologous genes which they share similar sequences and they may have identical functions) are
compared for the healthy and treated groups, only a few of these sequences are detected, which are known to cause the disease. Here, the
sparse double-heteroscedastic hierarchical models perform well for this comparison.

In the application section, we apply our model to the baseball data analyzed by Brown [19] and compare the batting average of two halves
for each player and, finally, detect the players who have had different performances in two halves of the baseball season.

The paper is structured as follows: In section 2, we first give preliminaries including notations and definitions, then introduce a two-level
sparse heteroscedastic hierarchical model. Section 3 derives estimators for all parameters in the hierarchical model, and Section 4 studies
their risk properties. Extensive stimulation studies for evaluation of our parameter estimates are given in Section 5 and a data example of
applying our model is presented in Section 6, followed by a brief discussion in Section 7. Technical proofs are given in the Appendix.

2. PRELIMINARIES

2.1. Notations and Definitions

Given a vector x ∈ n, define its lp-norm as ∥ x ∥pp = ∑i |xi|
p, and define ∥ x ∥0 = ∑i Ixi≠0. Given x ∈ , define x+ ∶= max(0, x). For

i ∈ {1, 2, … , n}, let 𝛼(i) stand for the i-th largest entry of 𝛼 = (𝛼1, 𝛼2, … , 𝛼n) in absolute value. In other words, one has |𝛼(1)| ≥ |𝛼(2)| ≥ … ≥
|𝛼(n)|. Also, [n] is short for the set {1, 2, … , n}, and |S| is the cardinality of set S.

2.2. Two-Level Sparse Heteroscedastic Hierarchical Normal Model

LetY1,Y2, … ,Yn be independent normal randomvariableswithmean𝜃1, 𝜃2, … , 𝜃n and varianceA1,A2, … ,An, respectively.Herewe assumes
Ai’s are possibly distinct points in. Then we assume 𝜃i’s are independent and normally distributed with mean 𝛼i’s and constant variance
𝜆. These assumptions form a two-level heteroscedastic hierarchical model as follows:

Yi|𝜃i ∼ N(𝜃i,Ai)

𝜃i ∼ N(𝛼i, 𝜆); i = 1, 2, … , n. (2.1)

We further assume that the vector 𝛼 = (𝛼1, 𝛼2, … , 𝛼n) is a sparse vector of order k0, that is, ∥ 𝜃 ∥0≤ k0, where k0 ≪ n. This sparsity
assumption intrinsically guarantees the identifiability of 𝜃i’s. Note that the sparsity of vector 𝛼 = (𝛼1, … , 𝛼n) also violates the condition that
the mean of 𝜃i’s are constant.
Pdf_Folio:149
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From model (2.1) and using Bayes’ theorem, we have the posterior distribution of 𝜃i as the following:

N
(

𝜆
𝜆 + Ai

Yi +
Ai

𝜆 + Ai
𝛼i,

𝜆Ai
𝜆 + Ai

)
.

We opt for the posterior mode to be a class of shrinkage estimators for 𝜃i. Then, given the sparsity condition, this class of estimators become

̂𝜃Si =
⎧⎪
⎨⎪
⎩

𝜆
𝜆 + Ai

Yi +
Ai

𝜆 + Ai
𝛼i if i ∈ S

𝜆
𝜆 + Ai

Yi if i ∈ Sc
. (2.2)

where S = {i| 𝛼i ≠ 0} and |S| = k0.
Since the usual heteroscedastic hierarchical models are derived based on model (2.1) but with conditions 𝛼1 = 𝛼2 = … = 𝛼n, our model
(2.1) is more flexible and thus will be applicable to a wider range of real data. Statistical inferences using Model (2.1) include the estimation
of the hyper-parameter 𝜆, as well as the estimation of the local hyper-parameters 𝛼1, 𝛼2, … , 𝛼n. Indeed, the latter task is the biggest challenge
in practice. Our primary goal is to develop amethodology for estimating the hyper-parameters inModel (2.1). In addition, we are interested
in the performance of the sparse shrinkage estimators ̂𝜃Si ’s in (2.2).

3. EMPIRICAL PARAMETER ESTIMATORS OF HYPER-PARAMETERS

We introduce empiricalmethods for estimating the hyper-parameters inmodel (2.1).Wewill start with the empiricalmethods for estimating
the hyper-parameter 𝜆, followed by the estimation of sparsity parameter k0 and nonzero set S. Then we discuss the empirical estimation of
𝛼1, 𝛼2, … , 𝛼n.

3.1. Empirical Estimators of 𝜆
Although empirical approaches such as EBMLE and EBMOM have been frequently used to estimate the model hyper-parameters, we aim
to use SURE to estimate the hyper-parameter 𝜆 (and other hyper-parameters), because the SURE estimators possess asymptotic optimality
properties within the class of heteroscedastic hierarchical normal models [14,15].

From (2.1), the marginal distribution of Yi is

N(𝛼i, 𝜆 + Ai). (3.1)

Let  be a collection of subsets of {1, 2, … , n} of size n/2. For simplicity, we assume n to be even. Define

XJn : = ∑
i∈Jn

Y 2
i

𝜆 + Ai
, ∀Jn ∈  .

It is easy to verify that XJn follows a chi-square distribution with n/2 degrees of freedom and noncentrality parameter∑i∈Jn
𝛼 2
i

𝜆+Ai
. Given 𝜆,

assume J ∗n is the subset such that

XJ ∗n = inf
Jn∈XJn .

By Lemma 1 in Carpentier and Verzelen [20], it is straightforward to see that for some constant c > 0,

P
(

1
16 < 1

|J ∗n |
XJ ∗n ≤ 2.2

)
≥ 1 − 2e−c|J ∗n |.

For more details on the proof and the c value see Boucheron et al. [21]. The above inequality follows by taking a union bound over all XJn
for Jn ∈  . Therefore, for a relatively large sample size, one approximately has

1
16 < 1

𝜆 + Amax

1
|J ∗n |

∑
i∈J ∗n

Y 2
i ≤

1
𝜆 + Amin

1
|J ∗n |

∑
i∈J ∗n

Y 2
i ≤ 2.2.
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Consequently, a range of the empirical estimate for 𝜆 is given by

[ 1
2.2|J ∗n |

∑
i∈J ∗n

Y 2
i − Amin]

+

< 𝜆 < [ 16
|J ∗n |

∑
i∈J ∗n

Y 2
i − Amax]

+

, (3.2)

where Amin = mini∈J ∗n Ai and Amax = maxi∈J ∗n Ai.
If we are interested in estimating 𝜆 by EBMOM approach, we adopt the following estimator:

̂𝜆 =
[∑i∈J ∗n

(Y 2
i − Ai)]

+
|J ∗n |

. (3.3)

Or, if we are interested in an EBMLE estimator of 𝜆, it will be obtained by maximizing the marginal density of YJn , j ∈ J ∗n with respect to 𝜆.
The EBMLE estimator satisfies the following equation whenever the root exists:

∑
i∈J ∗n

{ 1
𝜆 + Ai

−
Y 2
i

(𝜆 + Ai)2
} = 0. (3.4)

We however focus on estimating 𝜆 using the SURE approach. This approach is based on the following squared-loss function:

L1( ̂𝜃, 𝜃) = ∑
i∈J ∗n

( ̂𝜃i − 𝜃i)2. (3.5)

Under this loss function and using (2.2), the shrinkage estimator

̂𝜃Si =
𝜆

𝜆 + Ai
Yi

can be used for estimating 𝜃i over J∗n. Therefore, the corresponding SURE estimator of 𝜆 is obtained by minimizing the unbiased estimator
of risk function

R1( ̂𝜃S, 𝜃) = E
(
L1( ̂𝜃S, 𝜃)

)
= E

⎛⎜⎜⎝∑i∈J ∗n ( ̂𝜃Si − 𝜃i)2
⎞⎟⎟⎠

= E
⎛⎜⎜⎝∑i∈J ∗n

(
𝜆

𝜆 + Ai
Yi − 𝜃i

)2⎞⎟⎟⎠
= ∑

i∈J ∗n
E
(

𝜆
𝜆 + Ai

Yi − 𝜃i
)2

= ∑
i∈J ∗n

Ai
𝜆 + Ai

(Ai𝜃 2
i + 𝜆2). (3.6)

If we define

SURE1(𝜆) = ∑
i∈J ∗n

[
(

Ai
𝜆 + Ai

)2

Y 2
i +

Ai(𝜆 − Ai)
Ai + 𝜆 ] , (3.7)

then the SURE estimator of 𝜆 is obtained as the minimizer of SURE1(𝜆) which is also the solution of the following equation whenever the
root exists

∑
i∈J ∗n

[
A 2
i

(𝜆 + Ai)3
Y 2
i −

A 2
i

(Ai + 𝜆)2 ] = 0. (3.8)

For more details see Xie et al. [14] and Ghoreishi and Meshkani [15].Pdf_Folio:151
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3.2. Empirical Sparsity Estimation

The estimation of sparsity k0 =∥ 𝛼 ∥0 relies on the empirical characteristic function of {Yi; i ∈ J∗cn = [n] − J ∗n }. Define the function h :  →
[0, 1] as h(x) = 1 − 2 1−cos(x)

(x)2
. Conventionally, we define h(0) = 0 for x = 0. It is easy to see that h(x) ≥ 1 − 4/x2 for large |x| and

h(x) = x2/50 + o(x2) around 0. Therefore, given t > 0, we have

k0 =∥ 𝛼 ∥0 ≈ ∑
i∈J∗c

h

(
t𝛼i

√𝜆 + Ai

)
. (3.9)

We then employ the above approximation to estimate k0 =∥ 𝛼 ∥0 .
To derive the estimator, we first consider the empirical characteristic function of Yi’s that is defined as

𝜅t(x) ∶= ∫
1

−1
(1 − |u|)et2u2/2 cos(txu)du.

Then we define a statistic Z𝜆̂(t) by

Z𝜆̂(t) ∶= ∑
i∈J∗cn

⎛⎜⎜⎜⎝1 − 𝜅t
⎛⎜⎜⎜⎝

Yi

√ ̂𝜆 + Ai

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ . (3.10)

It is straightforward to see that

E
(
Z𝜆̂(t) | ̂𝜆

)
= ∑

i∈J∗cn

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 − 2

1 − cos

(
t𝛼i

√𝜆̂+Ai

)
(

t𝛼i

√𝜆̂+Ai

)2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= ∑
i∈J∗c

h
⎛⎜⎜⎜⎝

t𝛼i

√ ̂𝜆 + Ai

⎞⎟⎟⎟⎠ ,

which implies that Z𝜆̂(t) is an empirical estimator of k0 =∥ 𝛼 ∥0 .Hence, our empirical estimator for k0 is

k̂0 = [⌊Z𝜆̂(t)⌋ + 1]+ ,

where ⌊u⌋ stands for the integer part of u and u+= max (0, u). This estimator is a function of t which is usually determined using cross-
validation with the objective function as the mean squared prediction error (MSPE) of 𝜃 estimates. Section 5 gives more details on how to
numerically determine t.

In addition, we may be interested in constructing an 1 − 𝛿 empirical confidence interval for k0. For this purpose, we define

w(x1, x2, … , xk) = ∑
i∈k

(1 − 𝜅t(xi)) .

It is easy to verify that for a given t and i = 1, 2, … , k,

sup
x−i,x,y

|w(x1, x2, … , xi−1, x, xi+1, … , xk) − w(x1, x2, … , xi−1, y, xi+1, … , xk)| ≤ 2et
2/2,

where x−i = (x1, x2, … , xi−1, xi+1, … , xk). Therefore, using McDiarmid’s inequality, Boucheron et al. [21], we have an empirical 1 − 𝛿
confidence interval for k0 as

P
(
| Z𝜆̂(t) − E(Z𝜆̂(t))) | ≤ et

2/2√ln 𝛿−1.J∗c
)
≥ 1 − 𝛿,

or equivalently, the confidence interval can be expressed into

k0 : ∑
i∈J∗cn

⎛⎜⎜⎜⎝1 − 𝜅t
⎛⎜⎜⎜⎝

Yi

√ ̂𝜆 + Ai

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ± et

2/2√ln 𝛿−1.J∗c.
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Note that since |J∗| = n/2 and k0 ≪ n, the above confidence interval is practically more conservative. This is not surprising as confidence
intervals derived based on Chebyshev’s inequalities and its derivatives such as McDiarmid’s or Hoeffding’s inequalities are in general more
conservative compared to the confidence intervals constructed using the exact distributions. An alternative approach to computing confi-
dence interval is

k̂0 ± S.E.(k̂0), (3.11)

where

S.E.(k̂0) =

√√√√√√
√

∑
i∈J∗cn

⎡
⎢
⎢
⎣
1 − 𝜅t

⎛⎜⎜⎜⎝
Yi

√ ̂𝜆 + Ai

⎞⎟⎟⎟⎠ − h
⎛⎜⎜⎜⎝

tYi

√ ̂𝜆 + Ai

⎞⎟⎟⎟⎠
⎤
⎥
⎥
⎦

2

.

Given k̂0, the subset S can be estimated by

Ŝ = {R1,R2, … ,Rk̂0 }, (3.12)

where {R1,R2, … ,Rk̂0 } ⊂ {1, 2, … , n} are the samples corresponding to the largest |Yi|.However, this estimator can be biased without imple-

menting an iterative estimation procedure. This is because under our model (2.1), the quantity∑i∈Sc
Y 2
i

𝜆̂+Ai
in theory has a central chi-square

distribution over Sc. Whereas, this quantity often follows a noncentral chi-square distribution in practice due to the randomness of data. It
is well-known that a central chi-square distribution is stochastically smaller than any noncentral chi-square with the same degrees of free-
dom. Therefore, in order to estimate Sc (thus S) accurately, we need to increase the size of Ŝc via a few iterative steps so that∑i∈Ŝc

Y 2
i

𝜆̂+Ai
will

approximately have a central chi-square distribution. Indeed, Proposition 3.1 below provides intuitive ideas of increasing the size of Ŝc till
the central chi-square distribution is approximately reached for∑i∈Ŝc

Y 2
i

𝜆̂+Ai
.

We propose the following iterative procedure for practical purpose:

1. Randomly choose half of the sample as our initial estimate of Sc, i.e., |Ŝc| = n/2.

2. Randomly choose 5% of the observations in Ŝ and add them to Ŝc. If infŜc XŜc = infŜc 1
|Ŝc| ∑i∈Ŝc

Y 2
i

𝜆̂+Ai
≤ 1.1, we accept this new Ŝc.

Otherwise, we reject the new Ŝc and keep the previous Ŝc.
3. Repeat Step 1 until Ŝc contains at least 90% of the data. This guarantees k0/n ≤ 0.01 which empirically satisfies our assumption of

k0 ≪ n.

The justification of the proposed iterative estimation procedure is stated in the following proposition:

Proposition 3.1. Given ̂𝜆, Ŝc, and under marginal model (3.1) with sparsity assumption of ∥ 𝛼 ∥0 = k0, one has

P

(
1
|Ŝc|

∑
i∈Ŝc

Y 2
i

̂𝜆 + Ai
> 1.1 | ̂𝜆

)
< e−|Ŝ

c|/2.

The proof for this Proposition is deferred to the Appendix.

3.3. Empirical Estimation of 𝛼i’s

To estimate the hyper-parameters 𝛼i’s, we apply the squared-loss function

L2( ̂𝜃, 𝜃) = ∑
i∈S∗

( ̂𝜃i − 𝜃i)2, (3.13)
Pdf_Folio:153
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to samples in S∗. Under this loss function, one can compute the risk function of the shrinkage estimators in (2.2):

R2( ̂𝜃S, 𝜃) = E
(
L2( ̂𝜃S, 𝜃)

)
= E

(
∑
i∈Ŝ∗

( ̂𝜃Si − 𝜃i)2
)

= E

(
∑
i∈Ŝ∗

(
𝜆

𝜆 + Ai
Yi − 𝜃i

)2)

= ∑
i∈Ŝ∗

E
(

𝜆
𝜆 + Ai

Yi +
Ai

𝜆 + Ai
𝛼i − 𝜃i

)2

= ∑
i∈Ŝ∗

𝜆2Ai
(𝜆 + Ai)2

+ ∑
i∈Ŝ∗

A 2
i

(𝜆 + Ai)2
(𝛼i − 𝜃i)2. (3.14)

An unbiased estimator for the risk R2( ̂𝜃Si , 𝜃) is thus given by

SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) = ∑
i∈Ŝ∗

𝜆2Ai
(𝜆 + Ai)2

− ∑
i∈Ŝ∗

A3
i

(𝜆 + Ai)2
+ ∑

i∈Ŝ∗

A 2
i

(𝜆 + Ai)2
(Yi − 𝛼i)2.

Given empirical estimates ̂𝜆, k̂0, and Ŝ, it is straightforward to see that the SURE estimates of 𝛼i’s are

𝛼̂i = Yi, (3.15)

for i ∈ Ŝ,which are obtained byminimizing SURE2(𝛼1, 𝛼2, … , 𝛼k̂0 )with respect to 𝛼1, 𝛼2, … , and 𝛼k̂0 .Combining (3.8) and (3.15), the SURE
estimates of 𝜃i’s are

̂𝜃SUREi =
⎧
⎨
⎩

Yi if i ∈ Ŝ
̂𝜆

̂𝜆 + Ai
Yi if i ∈ Ŝc

, (3.16)

4. RISK PROPERTIES OF SURE ESTIMATOR

We establish properties of the SURE estimator in (3.16) under the following squared-loss function that is applied to the entire data:

L( ̂𝜃, 𝜃) = 1
n

n

∑
i=1

( ̂𝜃i − 𝜃i)2. (4.1)

For ease of notation, in the following we assume ̂𝜃 = ̂𝜃SURE.Hence, we have that

L( ̂𝜃, 𝜃) = 1
n

n

∑
i=1

( ̂𝜃i − 𝜃i)2 =
1
nL1(

̂𝜃, 𝜃) + 1
nL2(

̂𝜃, 𝜃).

This decomposition allows us to evaluate the performance of the SURE estimators using estimators derived based on partial data, that is,

SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) =
1
nSURE1(𝜆) +

1
nSURE2(𝛼1, 𝛼2, … , 𝛼k0 ).

The following theorem shows how well SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) approximates L( ̂𝜃, 𝜃).

Theorem 4.1. Under Conditions C1 and C2 in the Appendix, we have

sup
𝜆>0,𝛼1,𝛼2,…,𝛼k0

||SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) − L( ̂𝜃, 𝜃)|| → 0 in L2, as n →∞.

The proof of this theorem is deferred to the Appendix.Pdf_Folio:154
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5. NUMERICAL STUDIES

We carry out simulation studies to evaluate the performance of the SURE estimators for sparse heteroscedastic hierarchical normal models.
To measure the performance of the estimators, we compute the risk R( ̂𝜃, 𝜃) of the proposed shrinkage estimators. We have n = 5000
repetitions in our simulation for each model defined in the four scenarios below. All four scenarios have the two-level model

Yi ∼ N(𝜃i,Ai)
𝜃i ∼ N(𝛼i, 0.4),

with sparsity size k = 10 but with different settings for Ai and 𝜃i.

• Scenario I: Baseline model

Ai ∼ U(0, 1), i = 1, 2, … , 5000,

𝛼i = { 5 for i = 1, … , k0 = 10
0 for i = k + 1, … , 5000

• Scenario II: Assume a two-component mixture model for 𝛼i
Ai ∼ U(0, 1), i = 1, 2, … , 5000,

𝛼i = { 0.5N(3,Ai) + 0.5N(5,Ai) for i = 1, … , k0 = 10
0 for i = k + 1, … , 5000

Scenario II introduces a more complex mean structure than Scenario I.

• Scenario III: Assume a three-component mixture model for 𝛼i
Ai ∼ U(0, 1), i = 1, 2, … , 5000,

𝛼i = {
1
3N(2,Ai) +

1
3N(5,Ai) +

1
3N(10,Ai) for i = 1, … , k0 = 10

0 for i = k + 1, … , 5000

• Scenario IV: Assume three-component mixture models for both Ai and 𝛼i
Ai ∼ 0.3U(0, 1) + 0.7U(1, 2), i = 1, 2, … , 5000,

𝛼i = {
1
3N(2,Ai) +

1
3N(5,Ai) +

1
3N(10,Ai) for i = 1, … , k0 = 10

0 for i = k + 1, … , 5000

Scenario IV has a more complex variance structure than Scenarios I-III.

For each simulated data, we estimate the hyper-parameters 𝜆, k0 and 𝛼i, using Equations (3.8), (3.10), and (3.15), respectively. The 95%
confidence interval of k0 is also computed based on (3.11). Given k̂0, the nonzero set S will be estimated by (3.12) and we further compute
the misclassification rate (MCR) of S defined as the ratio of misclassified 𝛼i’s to n = 5000.We run simulation 200 times to obtain 200 sets of
hyper-parameters estimates and MCR, then compute the empirical coverage probability (ECP) defined as the rate of true k0 being covered
by its confidence interval over all simulation runs and the risk of parameter estimates, R( ̂𝜃, 𝜃), where R( ̂𝜃, 𝜃) is defined in (4.1). As is seen
the parameter estimates depend on t values. A general rule for determining t is through the cross-validation method, that is, one opts for t
that minimizes the MSPE defined as

MSPE(t) = 1
n

n

∑
j=1

(
Yj − ̂𝜃j(t)

)2 .
Using this criterion, we find t = 1 roughly gives the smallest MSPE with our simulation data, so we fix t = 1 to compare the performance
of different methods.

To evaluate the performance of our estimators, we consider the oracle estimator of 𝜆, i.e., ̃𝜆 = argmin𝜆≥0∑i∈J ∗n

(
𝜆

𝜆+Ai
Yi − 𝜃i

)2

and its

corresponding shrinkage estimator ̃𝜃i =
𝜆

𝜆+Ai
Yi, for i ∈ J ∗n . Here, the notation ̃𝜃i rather than ̂𝜃i is used for emphasizing that ̃𝜃i depends

on unknown 𝜃i and hence is not really an estimator. However, since ̃𝜃i has smaller loss or risk within the class of estimators in the form
̂𝜃i =

𝜆̂
𝜆̂+Ai

Yi, we simply treat it as a reference for evaluating the performance of our SURE estimators.
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In addition to the oracle estimator, we also compute the EBMOM and EBML estimates and their MCR, ECP and risk. The summary of
simulation results over 200 runs is reported in Table 1. In particular, we show the variability of ̂𝜆, k̂0, and MCR over 200 simulation runs
through boxplots in Figures 1, 2 and 3. The results show that under the sparse heteroscedastic hierarchical normal model with nonconstant
means we consider in this article, our proposed SURE estimator clearly outperforms EBMOM and EBMLE and performs similarly as the
oracle estimator in terms of both parameter estimation and identification of nonzero locations.

To examine whether the true sparsity of the data affects the sparsity parameter estimation, we rerun the simulation by setting k0 in the data
generation process to 15, 20, 30 and 50, respectively. Table 2 summarizes the k0 estimates together with the ECP and MCR at different k

Table 1 Simulation results under various scenarios. The columns of 𝜆̂, k̂0, MCR, and ECP are mean estimates and their
standard deviations inside the parentheses over 200 simulation runs.

Scenarios Method ̂𝜆 ̂k0 MCR ECP R( ̂𝜃, 𝜃)

Oracle 0.401 (0.023) 9.421 (3.09) 0.137 (0.083) 0.70 (0.173) 0.217
Scenario I SURE 0.404 (0.043) 9.381 (3.24) 0.191 (0.092) 0.63 (0.173) 0.249

EBMOM 0.513 (0.058) 3.299 (3.41) 0.671 (0.173) 0.21 (0.121) 0.734
EBMLE 0.627 (0.067) 0.632 (4.33) 0.819 (0.192) 0.08 (0.114) 1.117
Oracle 0.401 (0.022) 7.948 (3.19) 0.212 (0.108) 0.66 (0.165) 0.422

Scenario II SURE 0.401 (0.023) 7.700 (3.32) 0.241 (0.123) 0.61 (0.154) 0.437
EBMOM 0.592 (0.051) 1.890 (3.89) 0.757 (0.208) 0.14 (0.102) 0.801
EBMLE 0.693 (0.055) 0.860 (3.61) 0.901 (0.203) 0.02 (0.093) 1.115
Oracle 0.402 (0.027) 9.808 (3.27) 0.163 (0.099) 0.66 (0.163) 0.267

Scenario III SURE 0.403 (0.027) 9.592 (3.35) 0.182 (0.104) 0.64 (0.160) 0.298
EBMOM 0.601 (0.057) 3.978 (3.48) 0.610 (0.123) 0.22 (0.123) 0.721
EBMLE 0.617 (0.056) 1.154 (3.62) 0.857 (0.173) 0.07 (0.099) 1.112
Oracle 0.401 (0.023) 8.883 (3.11) 0.220(0.008) 0.65(0.176) 0.333

Scenario IV SURE 0.403 (0.026) 8.576 (3.23) 0.236(0.008) 0.61(0.142) 0.421
EBMOM 0.577 (0.054) 5.396 (3.88) 0.498(0.049) 0.42(0.133) 0.877
EBMLE 0.611 (0.051) 3.479 (4.64) 0.619(0.058) 0.24(0.114) 1.234

EBMLE, empirical Bayes maximum likelihood estimator; EBMOM, empirical Bayes maximum likelihood estimator; SURE,
Stein’s unbiased risk estimate; MCR, misclassification rate; ECP, empirical coverage probability.

Figure 1 Boxplots for 𝜆̂ with EBMLE, EBMOM, Oracle and SURE methods for four scenarios. The true value of 𝜆 is 4.

Figure 2 Boxplots for k̂0 with EBMLE, EBMOM, Oracle and SURE methods for four scenarios. The true value of k0 is 10.
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Figure 3 Boxplots for MCR with EBMLE, EBMOM, Oracle and SURE methods for four scenarios.

Table 2 Estimation of k̂0 ECP, and MCR with SURE method under various k and scenarios.

̂k0

10 15 20 30 50

k̂0 9.381 13.612 18.704 28.375 46.441
Scenario-I ECP 0.63 0.60 0.71 0.68 0.44

MCR 0.187 0.146 0.104 0.077 0.078
k̂ 7.700 11.890 15.658 24.276 40.442

Scenario-II ECP 0.61 0.50 0.44 0.31 0.19
MCR 0.282 0.243 0.228 0.194 0.191
k̂ 9.592 14.705 18.892 19.284 19.709

Scenario-III ECP 0.64 0.62 0.69 0.14 0.11
MCR 0.177 0.113 0.357 0.676 0.605
k̂ 8.576 13.632 17.482 17.574 17.681

Scenario-IV ECP 0.61 0.67 0.56 0.09 0.05
MCR 0.238 0.142 0.159 0.414 0.646

SURE, Stein’s unbiased risk estimate; MCR, misclassification rate; ECP, empirical coverage probability.

under the four scenarios. The results show that k0 estimates in Scenario I are consistently close to the true values across all k0, but when the
mean structure and the variance structure become more complex, as in Scenario II to IV but especially in Scenario III and IV, k̂0 tends to
underestimate the true k0 as k0 increases. As a consequence, the ECP of confidence intervals for k0 deteriorates and the MCR of S estimates
is elevated, whenever k0 is underestimated.

6. APPLICATION TO REAL DATA

We analyze the baseball data that was first introduced by Brown [19] and then later analyzed by Xie et al. [14]. This dataset contains batting
records for all Major League Baseball players in the season of 2005. We first divide the dataset into two half seasons, then our goal is to
compare the batting average of two halves for each player and detect the players who have had different performance in two halves of the
baseball season. Following Brown [19] and Xie et al. [14], we removed the players whose number of at-bats is less than 10 to improve the
accuracy of estimation. After this screening procedure, only 503 players out of 929 were selected.

Following the notations in Brown [19] and Xie et al. [14], we useN to denote the number of at-bats andH to denote the number of successful
battings. Then we have

Hij ∼ B(Nij, pij),

where i = 1, 2 stands for the season and j = 1, 2, … , n stands for the player. Again following Brown [19], we take a variance-stabilizing
transformation of the data to obtain X:

Xij = arcsin
√

Hij + 0.25
Nij + 0.4 ,
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which approximately follows the distribution of

Xij ∼ N
(
𝜃ij,

1
4Nij

)
,

where 𝜃ij = arcsin√pij. Finally, we apply our methodology to variables

Yj = X1j − X2j ∼ N
(
𝜃j,

1
4

(
1
N1j

+ 1
N2j

))
; j = 1, 2, … , 503,

where 𝜃j = 𝜃1j − 𝜃2j.
Our analysis assumes independency between the performance of each player in two half seasons. This assumption may seem unreasonable
at first glance. However, if we look at the performance of each player in two half-seasons, the Yule association measure, defined as

H1j

N1j
− H2j

N2j

H1j

N1j
+ H2j

N2j

,

will be a small number around zero, because for each player
H1j

N1j
≃

H2j

N2j
. Therefore, the independency assumption for each individual is not

unrealistic.

The cross-validation yields t = 0.973, and our SURE estimates for 𝜆 is 1.6e−4, and for k0 is 1 with a 95% confidence interval [0, 10]. We
conclude that at most 10 players perform differently in two half seasons. We also compute the SURE estimate of 𝜃i, and select 10 players
that correspond to the largest ̂𝜃i

SURE
in absolute value. The name of the 10 players (i.e., the estimate of S), their total number of at-bats and

total number of successful battings for two halves seasons, a two-sample Z statistic defined by

Z = X1 − X2

1
4

(
1
N2
+ 1

N1

) ,
and the SURE estimate of 𝜃i are presented in Table 3. These 10 players include 9 nonpitchers and 1 pitcher. According to ̂𝜃SURE, the most
different performance is related to the nonpitcher players. For example, Ordonez and Balanco are the two nonpitch players that perform
most differently over the two half seasons although their differences are in opposite directions.

7. DISCUSSION

We develop heteroscedastic hierarchical normal models with sparse and unequal mean as well as derive SURE for such models at demand
of the data sets which exhibit heteroscedasticity mainly due to the lack of constant means rather than unequal variances. Our model fills in
the gap that no existing literatures are devoted to the heteroscedastic hierarchical normal models with sparse and unequal mean structure.
Both theory and simulation study show that our SURE holds nice properties and outperforms the classic EBML and EBMOM estimator
for our proposed model. However, we also notice that the SURE estimates are sensitive to the mean and variance structures as the sparsity
decreases. We leave the investigation on improving parameter estimates for future research.

Table 3 Information of the 10 players and their 𝜃 estimates.

Full Name Pitchers
(1)/Nonpitchers (0)

N1 N2 H1 H2 Z-Stat. 𝜃̂SURE

Magglio Ordonez 0 10 208 0 92 2.716 0.4379
Brandon Webb 1 27 35 0 6 2.622 0.3375
Victor Martinez 0 252 442 61 106 2.864 0.1281
Todd Helton 0 269 414 71 92 2.769 0.1278
Rafael Furcal 0 304 507 71 104 2.625 0.1109
Aaron Hill 0 131 273 47 52 2.609 0.0258
Moises Alou 0 225 341 73 37 −3.257 −0.1632
Desi Relaford 0 175 210 45 2 −2.976 −0.2781
Tony Blanco 0 44 56 11 0 −2.921 −0.4202
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APPENDIX

To establish the asymptotic results, we assume two mild conditions following Ghoreishi and Meshkani [15] and Xie et al. [14],

C1) lim supn→∞
1
n
∑n

i=1 Ai < ∞.

C2) lim supn→∞
1
n
∑n

i=1 𝜃
2
i < ∞.

Moreover, without loss of generality, we assume that the sub-populations were re-indexed such that we have 0 < A1 ≤ A2 ≤ ⋯ ≤ An.

Proof of Proposition 3.1Define ui =
Y 2
i

̂𝜆 + Ai
, andX = ∑|Ŝc|

i=1 u(i). Let Ŝ
c is a set of size |Ŝc| that does not intersect with the support of 𝛼.Then

X =
|Ŝc|
∑
i=1

u(i) ∼ 𝜒 2
|Ŝc|

That is, X follows a 𝜒2 distribution with |Ŝc| degrees of freedom. By Cai and Guo [22], we know that

P
(
X > 1.1|Ŝc|

)
≤ e−C|Ŝc|,

and this completes the proof. Recall that |Ŝc| ≈ n.
Proof of Theorem 4.1 Consider the squared-loss function

L( ̂𝜃, 𝜃) = 1
n ∑i∈n

( ̂𝜃i − 𝜃i)2 =
1
nL1(

̂𝜃, 𝜃) + 1
nL2(

̂𝜃, 𝜃).

It is easy to see that the corresponding risk function of this loss function is given by

R( ̂𝜃, 𝜃) = 1
n ∑

i∈J ∗n

Ai
𝜆 + Ai

(Ai𝜃 2
i + 𝜆2) + 1

n ∑
i∈Ŝ∗

𝜆2Ai
(𝜆 + Ai)2

+ 1
n ∑

i∈Ŝ∗

A 2
i

(𝜆 + Ai)2
(𝛼i − 𝜃i)2.

The SURE unbiased estimator of R( ̂𝜃, 𝜃) is

SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) =
1
nSURE1(𝜆) +

1
nSURE2(𝛼1, 𝛼2, … , 𝛼k0 ).

For a given k0 ≪ n, one has the following decomposition

SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) − L( ̂𝜃, 𝜃)

= 1
n
(
SURE1(𝜆) − L1( ̂𝜃, 𝜃)

)
+ 1

n

(
SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) − L2( ̂𝜃, 𝜃)

)
.

Hence, by taking the absolute value on both sides of the above equation, one has

sup
𝜆>0,𝛼1,𝛼2,…,𝛼k0

||SURE(𝜆, 𝛼1, 𝛼2, … , 𝛼k0 ) − L( ̂𝜃, 𝜃)||

≤ 1
n sup𝜆>0

||SURE1(𝜆) − L1( ̂𝜃, 𝜃)|| + 1
n sup
𝛼1,𝛼2,…,𝛼k0

||SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) − L2( ̂𝜃, 𝜃)|| .

We consider the two terms of the right hand side separately. For the first term, we have

SURE1(𝜆) − L1( ̂𝜃, 𝜃) = ∑
i∈J ∗n

[Y 2
i − Ai − 𝜃 2

i − 2 𝜆
𝜆 + Ai

(Y 2
i − 𝜃iYi − Ai)] .
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It is known that for a decreasing sequence of positive numbers cj =
𝜆

𝜆+Ai

sup
𝜆>0

||SURE1(𝜆) − L1( ̂𝜃, 𝜃)||

≤ ∑
i∈S∗c

||Y 2
i − Ai − 𝜃 2

i || + sup
𝜆>0

||||
∑
i∈S∗c

2𝜆
𝜆 + Ai

(Y 2
i − 𝜃iYi − Ai)

||||

≤ ∑
i∈S∗c

||Y 2
i − Ai − 𝜃 2

i || + d sup
c1≥c2≥,…≥cn

|||∑i∈S∗c
2ci(Y 2

i − 𝜃iYi − Ai)
||| .

Applying Theorem 3.1 in Ghoreishi and Meshkani [15] together with Conditions C1) and C2), we have

sup
𝜆>0

1
n | SURE1(𝜆) − L1( ̂𝜃, 𝜃) | → 0 in L2, as |S∗c| or n →∞. (A.1)

For the second term, it is obvious that

SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) − L2( ̂𝜃, 𝜃)

= ∑
i∈S∗

[(Yi − 𝛼i)2 − Ai − (𝜃i − 𝛼i)2 −
2𝜆

𝜆 + Ai

(
(Yi − 𝛼i)2 − (𝜃i − 𝛼i)(Yi − 𝛼i) − Ai

)
] .

Now, by definition Xi = Yi − 𝛼i and 𝛽i = 𝜃i − 𝛼i, we see again that

sup
𝛼1,𝛼2,…,𝛼k0

||SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) − L2( ̂𝜃, 𝜃)||

≤ ∑
i∈S∗

||X 2
i − Ai − 𝛽 2

i || +
||||
∑
i∈S∗

2𝜆
𝜆 + Ai

(X 2
i − 𝛽iXi − Ai)

||||

≤ ∑
i∈S∗c

||X 2
i − Ai − 𝛽 2

i || + sup
𝜆>0

||||
∑
i∈S∗

2𝜆
𝜆 + Ai

(X 2
i − 𝛽iXi − Ai)

||||
.

In this case, our hierarchal model on S∗ is defined as

Xi ∼ N(𝛽i,Ai),
𝛽i ∼ N(0, 𝜆).

Obviously from Conditions C1) and C2), we have

sup
𝛼1,𝛼2,…,𝛼k0

1
n | SURE2(𝛼1, 𝛼2, … , 𝛼k0 ) − L2( ̂𝜃, 𝜃) | → 0 in L2, as n →∞. (A.2)

Equations (A.1) and (A.2) complete the proof.
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