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ABSTRACT
In this paper we propose a new three-parameters lifetime distribution with increasing, decreasing and bathtub failure rate
depending on its parameters. The properties of the proposed distribution are discussed, including explicit algebraic formulae for
its reliability and failure rate functions, quantiles and moments. A simulation study is performed in order to verify the behavior
of the maximum likelihood estimates. The methodology is illustrated on a real data set.
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1. INTRODUCTION

The exponential distribution (ED) provides an elegant, simple and close form solution to many problems in lifetime testing and reliability
studies. However, the ED does not provide a reasonable parametric fit for some practical applications where the underlying failure rates
are nonconstant, presenting monotone shapes. In recent years, in order to overcome such problem, new classes of models were introduced
based on variations of the ED. For instance, Gupta and Kundu [1] proposed a generalized ED, which can accommodate data with increasing
and decreasing failure rate function. Kus [2] proposed another modification of the ED with decreasing failure rate function, while Barreto-
Souza and Cribari-Neto [3] generalizes the distribution proposed by [2] by including a power parameter in his distribution.

Recently, Cancho et al. [4] introduced the Poisson-Exponential (PE) distribution whose cumulative distribution function is given by

FPE(y; 𝜃, 𝜆) =
e−𝜃e

−𝜆y − e−𝜃

1 − e−𝜃
, y > 0, (1)

where 𝜃 > 0 and 𝜆 > 0. This distribution family based on the ED has increasing failure rate function.

As described by Marshall and Olkin [5], an exponentiated distribution can be easily constructed. It is based on the observation that by
raising any baseline cumulative distribution function (cdf) Fbaseline(y) to an arbitrary power 𝛼 > 0, a new cdf F(y) = [Fbaseline(y)]𝛼 > 0
is obtained, but now with the additional parameter 𝛼, which can be refereed as a resilience parameter and F(y) is a resilience parameter
family. Although it is not our case, the term resilience easily emerges if we let 𝜃 be an integer. In this case, F(y) can be seem as the cdf of a
parallel system with 𝛼 independent components, which is less likely to failure as the number of components increases, leading to a resilient
structure. Following this idea, several authors have considered extensions from usual survival distributions. For instance, Mudholkar et al.
[6] considered the exponentiatedWeibull distribution as a generalization of theWeibull distribution, [1] introduced the exponentiated ED as
a generalization of the usual ED,Nadarajah andKotz [7] proposed exponentiated type distributions extending the Fréchet, Gamma, Gumbel
and Weibull distributions and Ristic and Nadarajah [8] introduced the exponentiated exponential-Poisson distribution as a generalization
of the exponential-Poisson distribution due to [2].
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Hence, the cdf of the exponentiated PE (EPE) distribution is defined from (1) as

F (y; 𝜃, 𝜆, 𝛼) =
(
e−𝜃e

−𝜆y − e−𝜃

1 − e−𝜃

)𝛼

, y > 0, (2)

where 𝜃 > 0, 𝜆 > 0 and 𝛼 > 0.
The paper is organized as follows: In Section 2 we present the probability density function, survival function and hazard function of the
new distribution, the EPE distribution, and present graphics of such functions for some parameters values. Some properties of the EPE
distribution are also presented in Section 2. In Section 3 we present the inferential procedure for the model parameters. Section 4 contains
the results of a Monte Carlo simulation on the finite sample behavior of maximum likelihood estimates. In Section 5 the methodology is
illustrated on a real data set. Some final comments in Section 6 conclude the paper.

2. THE EPE DISTRIBUTION

The probability density function (pdf) of the EPE distribution corresponding to the cdf (2) is given by

f (y) =
𝛼𝜃𝜆e−𝜆y−𝜃e−𝜆y

(
e−𝜃e

−𝜆y − e−𝜃
)𝛼−1

(1 − e−𝜃)𝛼
, y > 0, (3)

where 𝜃 > 0, 𝜆 > 0 and 𝛼 > 0.When 𝛼 = 1 the model (3) reduces to the PE distribution proposed by [4], and when 𝛼 = 1 and letting
𝜃 → 0+ the model (3) reduces to the ED with parameter 𝜆.
If u and v are real numbers with |u| > |v| and 𝛾 > 0, we have the series representation

(u − v)𝛾−1 =
∞
∑
k=0

(−1)kΓ(𝛾)
Γ(𝛾 − k)k!v

ku𝛾−k−1. (4)

If 𝛾 is an integer, the sum in (4) stops at 𝛾 − 1. Hence now e−𝜃e
−𝜆y > e−𝜃 , we expand (e−𝜃e

−𝜆y − e−𝜃)𝛼−1 as in Eq. (4) and then the pdf in (3)
can be reduced to

f (y) = Γ(𝛼 + 1)
(1 − e−𝜃)𝛼

∞
∑
k=0

(−1)ke−𝜃(𝛼+k+1)e−𝜆y

Γ(𝛼 − k)(k + 1)! fPE(y; 𝜃(k + 1), 𝜆), (5)

where fPE(y; 𝜃(k+ 1), 𝜆) is the pdf of a random variable with PE distribution with parameters 𝜃(k+ 1) and 𝜆. We then have the EPE pdf can
be written as a linear combination of PE pdfs. Figure 1 (left panel) shows the pdf (3) for some values of parameters.

The EPE survival function is given by

S(y) = 1 −
(
e−𝜃e

−𝜆y − e−𝜃

1 − e−𝜃

)𝛼

, y > 0. (6)

Figure 1 (right panel) shows some survival function shapes for same fixed values of 𝜃 and 𝛼.

Figure 1 Left panel: probability density function of the exponentiated Poisson-Exponential
(EPE) distribution. Right panel: survival function of the EPE distribution. We fixed 𝜆 = 2.
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The quantile q (yq, 0 < q < 1) of the EPE distribution is obtained by inverting Eq. (2) to give

yq = 𝜆−1 [log(𝜃) − log(− log(q1/𝛼 − e−𝜃(q1/𝛼 − 1)))] .

In particular, the median is y0.5 = 𝜆−1 [log(𝜃) − log(− log(2−1/𝛼 − e−𝜃(2−1/𝛼 − 1)))].

2.1. Failure Rate

From (3) and (6) it is easy to verify that the failure rate function is given by

h(y) =
𝛼𝜃𝜆e−𝜆y−𝜃e−𝜆y

(
e−𝜃e

−𝜆y − e−𝜃
)𝛼−1

(1 − e−𝜃)𝛼 − (e−𝜃e−𝜆y − e−𝜃)𝛼
, y > 0.

TheEPEdistribution accommodates increasing, decreasing andbathtub failure rates depending on the parameter values.Define the function
𝜂(y) = −f ′(y)/f(y), where f ′(.) denotes the first derivative of f(.). Hence

𝜂(y) = 𝜆 − 𝜃𝜆e−𝜆y − (𝛼 − 1)𝜃𝜆e−𝜆y
(
1 − e−𝜃(1−e−𝜆y)

)−1

and

𝜂′(y) = 𝜃𝜆2e−𝜆y [1 + (𝛼 − 1)

(
1 − e−𝜃(1−e−𝜆y)(1 − 𝜃e−𝜆y)

(1 − e−𝜃(1−e−𝜆y))2

)
] .

Considering the inequality

1 − e−𝜃 < 1 − e−𝜃(1−e−𝜆y)(1 − 𝜃e−𝜆y) < 𝜃

in equation above implies that if 𝛼 ≥ 1 then 𝜂′(y) > 0, ∀y > 0. Thus, from Glaser’s theorem (see [9]), it follows that the failure rate function
is increasing.

If 𝜃 ≤ 1 and 𝛼 < 1 we have (𝛼−1)
(
1 − e−𝜃w(1 − 𝜃(1 − w))

(1 − e−𝜃w)2

)
< (1−𝛼)(1−e−𝜃)−1 < −1, wherew = 1−e−𝜆y, 0 < w < 1. It has 𝜂′(y) < 0.

Hence, from Glaser [9], we conclude that the failure rate function is decreasing. We also observed that the failure rate function may be

bathtub. The distinct types of failure rate shapes are illustrated in Figure 2 for some different parameter combinations of the EPE distribution.

2.2. Some Properties

Many of the most important features and characteristics of a distribution can be studied through its moments, such as mean, variance,
tending, dispersion, skewness and kurtosis.

Figure 2 Failure rate function of the exponentiated Poisson-Exponential (EPE)
distribution with 𝜆 = 2 (left panel) and 𝜆 = 5 (right panel) fixed.
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We shall now provide a general expression for the rth ordinary moment of the EPE distribution. Cancho et al. [4] showed that the rth
moment of the random variable Y with PE distribution with parameters 𝜃 and 𝜆 can be expressed as

𝔼[Yr] = 𝜃r!
𝜆r(1 − e−𝜃)

Fr+1,r+1([1, … , 1], [2, … , 2], −𝜃), (7)

where

Fp,q(a, b, 𝜃) =
∞
∑
j=0

𝜃j∏p
i=1 Γ(ai + j)Γ(ai)−1

Γ(j + 1)∏q
i=1 Γ(bi + j)Γ(bi)−1

is the generalized hypergeometric function, with a = [a1, … , ap], p is the number of operands of a, b = [b1, … , bq] and q is the number of
operands of b.

We then formulate the following result.

Proposition 2.1. Let Y be a random variable with EPE distribution and parameters 𝜃, 𝜆 and 𝛼. If 𝛼 > 0 non-integer, using (5) and (7) we
obtain the raw rth ordinary moment of Y can be written as

𝔼[Yr] = 𝜃r! Γ(𝛼 + 1)
𝜆r(1 − e−𝜃)𝛼+1

∞
∑
k=0

(−1)ke−𝜃(𝛼+k+1)e−𝜆y

Γ(𝛼 − k)(k + 1)! Fr+1,r+1([1, … , 1], [2, … , 2], −𝜃(k + 1)),

where Fp,q(a, b, 𝜃) is the generalized hypergeometric function.

Proof. The proof is obtained by direct integration and it is then omitted.

Order statistics are among themost important tools in nonparametric statistics and inference. Let Y1, … ,Yn be a random sample taken from
the EPE distribution and let Y1∶n, … ,Yn∶n denote the corresponding order statistics. The probability density function fi∶n(y) of the ith order
statistic Yi∶n is given by

fi∶n
(
y
)
= n!

(k − 1) ! (n − k) !F
(
y
)k−1 [1 − F

(
y
)
]n−k f

(
y
)
.

According to Barakat and Abdelkader [10], the rth moment of the ith order statistic Yi∶n can be represented as

E [Yr
i∶n] = r

n

∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

)
∫
∞

0
yr−1 [S

(
y
)
]p dy. (8)

Consider the binomial series expansion given by

(1 − x)−r =
∞
∑
k=0

(r)k
k! x

k, (9)

where (r)k = r(r − 1)...(r − k + 1) is a Pochhammer symbol. If |x| < 1 the series converges and

(−r)k = (−1)k (r − k + 1)k . (10)

We then state the following.

Proposition 2.2. For the random variable Y with EPE distribution, we have that the rth moment of the ith order statistic is given by

E [Yr
i∶n] =

r!
𝜆r

n

∑
p=n−i+1

∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)p−n+i+k(𝛼+1)+l+m
(
p − 1
n − i

)(
n
p

)

×
(
p − k + 1

)
k
(𝛼k − l + 1)l e

m ln(𝜃l)+𝜃(−𝛼k+l) (1 − e−𝜃
)−𝛼k

k! l!m!mr .
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Proof. From (6) and (8), and using (9), (10) and the Taylor series of the exponential function e−x
(
i.e e−x = ∑∞

i=0
xi
i! (−1)

i
)
, we have that

E [Yr
i∶n] = r

n

∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

)
∫
∞

0
yr−1 [S

(
y
)
]p dy

= r
n

∑
p=n−i+1

(−1)p−n+i−1
(
p − 1
n − i

)(
n
p

)
∫
∞

0
yr−1 [1 −

(
e−𝜃e

−𝜆y − e−𝜃

1 − e−𝜃

)𝛼

]
p

dy

= r
n

∑
p=n−i+1

∞
∑
k=0

(−1)p−n+i+k−1
(
p − 1
n − i

)(
n
p

)
(p − k + 1)k(1 − e−𝜃)−𝛼k

k!

× ∫
∞

0
yr−1 [e−𝜃e−𝜆y − e−𝜃]

𝛼k
dy

= r
n

∑
p=n−i+1

∞
∑
k=0

(−1)p−n+i+k−1
(
p − 1
n − i

)(
n
p

)
(p − k + 1)k(1 − e−𝜃)−𝛼ke−𝜃𝛼k

k!

× ∫
∞

0
yr−1 [e−𝜃

(
e−𝜆y−1

)
− 1]

𝛼k
dy

= r
n

∑
p=n−i+1

∞
∑
k=0

(−1)p−n+i+k(𝛼+1)−1
(
p − 1
n − i

)(
n
p

)
(p − k + 1)k(1 − e−𝜃)−𝛼ke−𝜃𝛼k

k!

× ∫
∞

0
yr−1 [1 − e−𝜃

(
e−𝜆y−1

)
]
𝛼k

dy

= r
n

∑
p=n−i+1

∞
∑
k=0

∞
∑
l=0

(−1)p−n+i+k(𝛼+1)+l−1
(
p − 1
n − i

)(
n
p

)

× (p − k + 1)k(𝛼k − l + 1)l(1 − e−𝜃)−𝛼ke−𝜃(𝛼k−l)

k! l! ∫
∞

0
yr−1e−𝜃le

−𝜆y
dy

= r
n

∑
p=n−i+1

∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)p−n+i+k(𝛼+1)+l+m−1
(
p − 1
n − i

)(
n
p

)

× (p − k + 1)k(𝛼k − l + 1)l(1 − e−𝜃)−𝛼ke−𝜃(𝛼k−l)em log(𝜃)+m log(l)Γ(r)
k! l!m! (m𝜆)r

= r!
𝜆r

n

∑
p=n−i+1

∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)p−n+i+k(𝛼+1)+l+m−1
(
p − 1
n − i

)(
n
p

)

× (p − k + 1)k(𝛼k − l + 1)lem log(𝜃l)+𝜃(−𝛼k+l)(1 − e−𝜃)−𝛼k

k! l!m!mr .

This completes the proof.

Given that a component survives up to time t ≥ 0, i.e., there was no failure prior to time t, the residual life is the period beyond t until the
time of failure and defined by the conditional random variable Y− t|Y > t. In reliability, it is well-known that the mean residual life function
and the ratio of two consecutive moments of residual life characterize the distribution uniquely (see [11]). Thus, we obtain the rth order
moment of the residual life via the general formula

𝜇r (t) = E [(Y − t)r |Y > t] = 1
S (t) ∫

∞

t
r
(
y − t

)r−1 S(y)dy. (11)
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Proposition 2.3. For the random variable Y with EPE distribution, we have that the rth order moment of the residual life is given by

𝜇r (t) =
r!

𝜆r [1 −
(
e−𝜃e

−𝜆t − e−𝜃

1 − e−𝜃

)𝛼

]

∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)k(𝛼+1)+l+m

× (2 − k)k(𝛼k − l + 1)lem[ log(𝜃l)−t𝜆]+𝜃(−𝛼k+l)(1 − e−𝜃)−𝛼k

k! l!m!mr , r ≥ 1.

Proof. From (11), using (6), (9), (10) and the Taylor series of the exponential function e−x, and proceeding a similar way in the proof of
Proposition 2.2 follow the result.

Then, we obtain the mean residual life of the EPE distribution as

𝜇1 (t) = 𝜇 (t) = 1

𝜆 [1 −
(
e−𝜃e

−𝜆t − e−𝜃

1 − e−𝜃

)𝛼

]

∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)k(𝛼+1)+l+m

×
(2 − k)k (𝛼k − l + 1)l e

m[log(𝜃l)−t𝜆]+𝜃(−𝛼k+l) (1 − e−𝜃
)−𝛼k

k! l!m!m .

On the other hand, we analogously consider the reversed residual life and some of its properties. The reversed residual life can be defined as
the conditional random variable t− Y|Y ≤ t, which indicates the time elapsed from the failure of a component given that its life is less than
or equal to t. This random variable may also be called the inactivity time or time since failure (for more details, you may see [12] and [13]).
Also, in reliability, the mean reversed residual life function and the ratio of two consecutive moments of reversed residual life determine the
distribution uniquely.

The rth order moment of the reversed residual life can be obtained via the well-known formula

mr (t) = E [(t − Y)r |Y ≤ t] = 1
F (t) ∫

t

0
r
(
t − y

)r−1 F(y)dy. (12)

Proposition 2.4. For the random variable Y with EPE distribution, we have that the rth order moment of the reversed residual life is given by

mr (t) =
( t
𝜆
) r

2 (−1)𝛼

(𝜆t) (r + 1)
(
e−𝜃e−𝜆t − e−𝜃

)𝛼 ∞
∑
k=0

∞
∑
l=0

(−1)k+l (𝛼 − k + 1)k e
l[log(𝜃k)−

𝜆t
2
]+𝜃(−𝛼+k)

k! l! l
r
2
+1

× [rWhittakerM
(
− r
2 ,

r + 1
2 , l𝜆t

)
+WhittakerM

(
− r
2 + 1, r + 1

2 , l𝜆t
)
] , r ≥ 1,

where WhittakerM (𝜇, 𝜈, z) is the Whittaker M function, which can be defined in terms of the hypergeometric function as follows:

WhittakerM (𝜇, 𝜈, z) = e
−

1
2 z

1
2
+𝜈

hypergeom
(
[12 + 𝜈 − 𝜇] , [1 + 2𝜈] , z

)
.
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Proof. From (12) and using F
(
y
)
given by (2), we have that

1
F(t) ∫

t

0
r
(
t − y

)r−1 F(y)dy = 1(
e−𝜃e

−𝜆t
−e−𝜃

1−e−𝜃

)𝛼 ∫
t

0
r
(
t − y

)r−1
(
e−𝜃e

−𝜆y − e−𝜃

1 − e−𝜃

)𝛼

dy

= r
(e−𝜃e−𝜆t − e−𝜃)𝛼 ∫

t

0

(
t − y

)r−1
(
e−𝜃e

−𝜆y − e−𝜃
)𝛼

dy

= re−𝜃𝛼

(e−𝜃e−𝜆t − e−𝜃)𝛼 ∫
t

0

(
t − y

)r−1
(
e−𝜃

(
e−𝜆y−1

)
− 1

)𝛼
dy

= r(−1)𝛼e−𝜃𝛼

(e−𝜃e−𝜆t − e−𝜃)𝛼 ∫
t

0

(
t − y

)r−1
(
1 − e−𝜃

(
e−𝜆y−1

))𝛼
dy.

Now using (9) and proceeding a similar way in the proofs of Propositions 2.2 and 2.3 follow the result.

Thus, the mean of the reversed residual life of the EPE distribution is given by

m1 (t) =
(−1)𝛼

2t
1
2 𝜆

3
2
(
e−𝜃e−𝜆t − e−𝜃

)𝛼
∞
∑
k=0

∞
∑
l=0

(−1)k+l (𝛼 − k + 1)k e
l[log(𝜃k)−

𝜆t
2
]+𝜃(−𝛼+k)

k! l! l
3
2

× [WhittakerM
(
−1
2 , 1, l𝜆t

)
+WhittakerM

(1
2 , 1, l𝜆t

)
] .

The Bonferroni and Lorenz curves (see [14]) and Gini index have many applications not only in economics to study income and poverty,
but also in other fields like reliability, insurance and medicine. The Bonferroni curve BF[F(y)] is given by

BF [F
(
y
)
] = 1

𝜇F
(
y
) ∫

y

0
uf (u) du, (13)

or equivalently by

BF(p) =
1
𝜇p ∫

p

0
F−1 (t) dt,

where p = F(y) and F−1(t) = inf {y ∶ F(y) ≥ t}.

Proposition 2.5. From the relationship between the Bonferroni curve and the mean residual lifetime given by Theorem 2.1 of Pundir et al. [15],
the Bonferroni curve of the distribution function F of EPE distribution is given by

BF [F
(
y
)
] = 𝛼𝜃

𝜇𝜆
(
e−𝜃e−𝜆y − e−𝜃

)𝛼 ∞
∑
k=0

∞
∑
l=0

(−1)𝛼+k+l−1 [𝜃 (k + 1)]l (𝛼 − k)k e
−𝜃(𝛼−k−1)

k! l! (l + 1)2

× {1 + [−𝜆y (l + 1) − 1] e−𝜆y(l+1)} .
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Proof. From (13) and using f
(
y
)
given by (3) and F

(
y
)
given by (2), we have that

1
𝜇F(y) ∫

y

0
uf (u) du = 1

𝜇
(

e−𝜃e
−𝜆y

−e−𝜃

1−e−𝜃

)𝛼 ∫
y

0
u𝛼𝜃𝜆e

−𝜆u−𝜃e−𝜆u (e−𝜃e
−𝜆u − e−𝜃)𝛼−1

(1 − e−𝜃)𝛼
du

= 𝛼𝜃𝜆
𝜇(e−𝜃e−𝜆y − e−𝜃)𝛼 ∫

y

0
ue−𝜆u−𝜃e

−𝜆u
(
e−𝜃e

−𝜆u − e−𝜃
)𝛼−1

du

= 𝛼𝜃𝜆e−𝜃(𝛼−1)

𝜇(e−𝜃e−𝜆y − e−𝜃)𝛼 ∫
y

0
ue−𝜆u−𝜃e

−𝜆u
(
e−𝜃

(
e−𝜆u−1

)
− 1

)𝛼−1

du

= 𝛼𝜃𝜆(−1)𝛼−1e−𝜃(𝛼−1)

𝜇(e−𝜃e−𝜆y − e−𝜃)𝛼 ∫
y

0
ue−𝜆u−𝜃e

−𝜆u
(
1 − e−𝜃

(
e−𝜆u−1

))𝛼−1

du.

Now using (9) and making binomial expansion a similar way in the proofs of Propositions 2.2–2.4 follow the result.

Also, the Lorenz curve of F that follows the EPE distribution can be obtained via the expression LF[F(y)] = BF[F(y)]F(y).
The scaled total time and cumulative total time on test transform of a distribution function F are given by

SF [F
(
y
)
] = 1

𝜇 ∫
y

0
S (u) du

and

CF = ∫
1

0
SF [F

(
y
)
] f(y)dy,

respectively (see [15]). If F(y) is the EPE distribution function specified by (2), then using formula (9) and the Taylor series of the exponential
function e−x,

SF [F
(
y
)
] = 1

𝜇𝜆
∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

(−1)k+l+m (2 − k)k (𝛼k − l + 1)l (𝜃l)
m (

1 − e−my𝜆)
k! l!m!m

(
1 − e𝜃

)𝛼k e−𝜃l
and

CF =
𝛼

𝜇𝜆
(
1 − e−𝜃

)𝛼 ∞
∑
k=0

∞
∑
l=0

∞
∑
m=0

∞
∑
n=0

∞
∑
o=0

∞
∑
p=0

(−1)𝛼+k+l+m+n+o+p−1

×
(2 − k)k (𝛼k − l + 1)l (𝛼 − n)n (2 − o)o 𝜃m+p+1lm (n + 1)p

(
1 − e−𝜆(om+p+1)

)
k! l!m! n! o! p!m

(
1 − e𝜃

)𝛼k e−𝜃(−𝛼+l+n+1)
(
om + p + 1

) .

Finally, the Gini index can be obtained from the relationship G = 1 − CF.

3. INFERENCE

In this section we discuss inference and interval estimation for the model parameters.

3.1. Estimation by Maximum Likelihood

Let y =
(
y1, … , yn

)
be a random sample of the EPE distribution with unknown parameter vector 𝝑 = (𝜃, 𝜆, 𝛼) . The logarithm of likelihood

function for 𝝑 is given by

ℓ(𝝑) = n log(𝛼𝜃𝜆) − 𝜆
n
∑
i=1

yi − 𝜃
n
∑
i=1

e−𝜆yi − n𝛼 log(1 − e−𝜃) + (𝛼 − 1)
n
∑
i=1

log(e−𝜃e
−𝜆yi − e−𝜃). (14)
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The maximum likelihood estimates (MLEs) of 𝝑 = (𝜃, 𝜆, 𝛼) can be directly obtained by maximizing the log-likelihood function (14), or
alternatively, by finding the solution for the following three nonlinear equations:

𝜕ℓ(𝝑)
𝜕𝜃 = n

𝜃 −
n𝛼

e𝜃 − 1
−

n

∑
i=1

e−𝜆yi − (𝛼 − 1)
n

∑
i=1

(
e−𝜆yi−𝜃e

−𝜆yi − e−𝜃

e−𝜃e−𝜆yi − e−𝜃

)
= 0, (15)

𝜕ℓ (𝝑)
𝜕𝜆 = n

𝜆 −
n

∑
i=1

yi + 𝜃
n

∑
i=1

yie−𝜆yi + 𝜃 (𝛼 − 1)
n

∑
i=1

(
yie−𝜆yi−𝜃e

−𝜆yi

e−𝜃e−𝜆yi − e−𝜃

)
= 0, (16)

𝜕ℓ (𝝑)
𝜕𝛼 = n

𝛼 +
n

∑
i=1

log
(
e−𝜃e

−𝜆yi − e−𝜃
)
− n log

(
1 − e−𝜃

)
= 0. (17)

The Eq. (17) can be solved exactly for 𝛼, i.e.,

�̂� = n [
n

∑
i=1

log

(
1 − e− ̂𝜃

e− ̂𝜃e−�̂�yi − e− ̂𝜃

)
]
−1

,

conditional upon the values of ̂𝜃 and ̂𝜆, where �̂�, ̂𝜃 and ̂𝜆 are the MLEs for 𝛼, 𝜃 and 𝜆, respectively. Therefore, it is sufficient to solve the
Eqs. (15) and (16) iteratively in order to find the MLEs for 𝜃 and 𝜆.

3.2. Interval Estimation

For EPE distribution the Fisher information matrix is given by

𝕀 (𝝑) = n𝕀1 (𝝑) = n [
𝚤𝜃,𝜃 𝚤𝜃,𝜆 𝚤𝜃,𝛼
𝚤𝜃,𝜆 𝚤𝜆,𝜆 𝚤𝜆,𝛼
𝚤𝜃,𝛼 𝚤𝜆,𝛼 𝚤𝛼,𝛼

] ,

where

𝚤𝜃,𝜃 =
1
𝜃2 +

𝛼e−𝜃(
1 − e−𝜃

)2 − (𝛼 − 1)
⎛⎜⎜⎝𝔼[

e−2𝜆y − e−𝜃
(
1−e−𝜆y

)
1 − e𝜃(1−e−𝜆y) ]

2

− 𝔼[ e
𝜆y − e−𝜃

(
1−e−𝜆y

)
1 − e𝜃(1−e−𝜆y) ]

⎞⎟⎟⎠ ,

𝚤𝜆,𝜆 =
1
𝜆2 + 𝜃𝔼 [y2e−𝜆y] + 𝜃 (𝛼 − 1)

⎛⎜⎜⎜⎝𝔼 [
y2e−𝜆y

1 − e−𝜃(1−e−𝜆y) ] + 𝜃𝔼
⎡
⎢
⎢
⎣

y2e−2𝜆y−𝜃
(
1−e−𝜆y

)
(
1 − e−𝜃(1−e−𝜆y)

)2

⎤
⎥
⎥
⎦

⎞⎟⎟⎟⎠ ,

𝚤𝜃,𝜆 = −𝔼 [ye−𝜆y] − (𝛼 − 1)
⎛⎜⎜⎜⎝𝔼 [

ye−𝜆y
(
1 − 𝜃e−𝜆y

)
1 − e−𝜃(1−e−𝜆y) ] + 𝜃𝔼

⎡
⎢
⎢
⎣

ye−2𝜆y − e−2𝜆y−𝜃
(
1−e−𝜆y

)
(
1 − e−𝜃(1−e−𝜆y)

)2

⎤
⎥
⎥
⎦

⎞⎟⎟⎟⎠ ,

𝚤𝛼,𝛼 = 𝛼−2, 𝚤𝜆,𝛼 = −𝜃𝔼 [
ye−𝜆y

1 − e𝜃(1−e−𝜆y) ] , 𝚤𝜃,𝛼 =
1

e𝜃 − 1
+ 𝔼[ e

−𝜆y − e−𝜃
(
1−e−𝜆y

)
1 − e𝜃(1−e−𝜆y) ] .

The above expressions depend on some expectations that can be easily computed using numerical integration.

Large sample inference for the model parameters can be based, in principle, on the MLEs and their estimated standard errors. Following
Cox and Hinkley [16], under suitable regularity conditions, it can be shown that

√n
( ̂𝝑 − 𝝑

) D→ N3
(
0, 𝕀−1

1 (𝝑)
)
,

as n →∞. This asymptotic behavior remains valid if Fisher information is evaluated at the MLEs, ̂𝝑, say 𝕀−1 ( ̂𝝑
)
. Alternative estimates can

be obtained from the inverse observed information matrix 𝕀−1 ( ̂𝝑
)
since it is a consistent estimator of 𝕀−1 (𝝑) .We can use the approximate
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trivariate normal N3
(
𝝑, 𝕀−1 ( ̂𝝑

))
distribution of ̂𝝑 to construct approximate confidence regions for some parameters and survival function

of EPE model.

For testing goodness of fit of the EPE distribution and for comparing this distribution with some of its special cases, we consider the
likelihood ratio statistics (LRS). For instance, for comparing the EPE distribution with the PE distribution proposed by [4] for a given data
set we consider the hypothesis test given byH0 ∶ 𝛼 = 1 versus H1 ∶ 𝛼 ≠ 1. In this case, the LRS is given byΛ = 2 {ℓ

( ̂𝜃, ̂𝜆, �̂�
)
− ℓ

( ̃𝜃, ̃𝜆, 1
)
},

where ̂𝜃, ̂𝜆 and �̂� are theMLEswithout restriction and ̃𝜃 and ̃𝜆 are the estimates underH0. Following [16], underH0 we assume an asymptotic
chi-square distribution with one degree of freedom for Λ.

4. SIMULATION STUDY

This section presents the results of a simulation study that has been performed in order to verify the behavior of the standard errors, bias
and root mean squared errors of the maximum likelihood estimators of 𝜃, 𝜆 and 𝛼. We generated 1, 000 samples of size n= 30, 50, 100, 200
and 500 from the EPE distribution for each one of the three sets of values of 𝝑 = (𝜃, 𝜆, 𝛼): (0.5, 2.0, 0.5), which corresponds to a decreasing
failure rate function; (0.5, 2.0, 2.0), from which follows that the failure rate is increasing; and (2.0, 2.0, 0.5), whose failure rate function has
a bathtub shape. The results are condensate in Table 1, which shows the averages of the 1, 000 MLEs, Av

( ̂𝝑
)
, together with their standard

errors, SE
( ̂𝝑

)
, bias, B

( ̂𝝑
)
, and root mean squared errors, RMSE

( ̂𝝑
)
. Besides, Table 1 shows the coverage probability of the 95% confidence

intervals for parameters of the EPE distribution, CP (𝝑). Table 1 indicates the following results: convergence has been achieved in all cases,
i.e., for all three sets of parameter values; the biases are always smaller than one empirical SE. These results suggest theMLEs have performed
consistently. The standard errors of the MLEs decrease when sample size increases. The empirical coverage probabilities are close to the
nominal coverage level, 0.95. In particular, as sample size increases.

5. APPLICATION

In this section we consider a real data set of 520 failure times (10, 000’s of hours) of industrial devices. Initially, in order to identify the shape
of a lifetime data failure rate function we shall consider a graphical method based on the TTT plot (see [17]). In its empirical version, the
TTT plot is given by G (r/n) = [

(
∑r

i=1 Yi∶n
)
+ (n − r)Yr∶n] /

(
∑r

i=1 Yi∶n
)
, where r = 1, … , n and Yi∶n denote the order statistics of the

sample. It has been shown that the failure rate function is decreasing (increasing) if the TTT plot is convex (concave). Even though the TTT
plot is only a sufficient condition, not a necessary one for indicating the failure rate function shape, it is used here as a crude indicative
of its shape. Figure 3 (upper-left panel) shows the TTT plot for the considered data, which is first convex and then concave. It indicates a
bathtub-shaped failure rate function, which can be properly accommodated by a EPE distribution.

Then, the EPE distribution was fitted to the data. Table 2 presents the MLEs and the corresponding 95% confidence intervals of the EPE
distribution parameters, which were based on the Fisher information matrix at the MLEs, given by

Table 1 The averages of the 1, 000 maximum likelihood estimates (MLEs), Av
( ̂𝝑

)
, their standard errors, SE

( ̂𝝑
)
, bias, B

( ̂𝝑
)
, root mean squared errors,

RMSE
( ̂𝝑

)
, and the coverage probabilities of the 95% confidence intervals for parameters of the exponentiated Poisson-Exponential (EPE) distribution,

CP(𝝑). The parameter vector is given by 𝝑 = (𝜃, 𝜆, 𝛼).

n 𝝑 Av( ̂𝝑) SE( ̂𝝑) B( ̂𝝑) RMSE( ̂𝝑) CP(𝝑)

(0.5, 2.0, 0.5) (1.222, 2.422, 0.498) (1.507, 0.816, 0.147) (0.722, 0.422,−0.002) (1.670, 0.918, 0.147) (0.993, 0.950, 0.951)
30 (0.5, 2.0, 2.0) (1.383, 2.159, 1.976) (2.087, 0.444, 0.863) (0.883, 0.159,−0.024) (2.265, 0.472, 0.863) (0.998, 0.971, 0.952)

(2.0, 2.0, 0.5) (2.484, 2.141, 0.535) (2.578, 0.610, 0.217) (0.484, 0.141, 0.035) (2.622, 0.626, 0.220) (0.995, 0.948, 0.945)
(0.5, 2.0, 0.5) (0.946, 2.223, 0.491) (1.167, 0.635, 0.115) (0.446, 0.223,−0.009) (1.248, 0.672, 0.115) (0.983, 0.953, 0.941)

50 (0.5, 2.0, 2.0) (1.181, 2.110, 1.937) (1.761, 0.367, 0.697) (0.681, 0.110,−0.063) (1.888, 0.383, 0.700) (1.000, 0.964, 0.971)
(2.0, 2.0, 0.5) (2.089, 2.034, 0.533) (1.745, 0.468, 0.166) (0.089, 0.034, 0.033) (1.746, 0.469, 0.169) (0.995, 0.958, 0.963)
(0.5, 2.0, 0.5) (0.812, 2.163, 0.489) (0.863, 0.468, 0.085) (0.312, 0.163,−0.011) (0.918, 0.495, 0.085) (0.974, 0.948, 0.950)

100 (0.5, 2.0, 2.0) (0.942, 2.067, 1.936) (1.244, 0.262, 0.555) (0.442, 0.066,−0.064) (1.320, 0.270, 0.559) (0.999, 0.961, 0.964)
(2.0, 2.0, 0.5) (2.037, 2.007, 0.513) (1.223, 0.366, 0.120) (0.037, 0.007, 0.013) (1.223, 0.366, 0.121) (0.990, 0.943, 0.943)
(0.5, 2.0, 0.5) (0.630, 2.056, 0.494) (0.636, 0.351, 0.070) (0.130, 0.056,−0.006) (0.649, 0.355, 0.070) (0.969, 0.958, 0.954)

200 (0.5, 2.0, 2.0) (0.741, 2.037, 1.962) (0.872, 0.188, 0.415) (0.241, 0.037,−0.038) (0.904, 0.192, 0.417) (1.000, 0.965, 0.974)
(2.0, 2.0, 0.5) (1.960, 1.995, 0.512) (0.873, 0.248, 0.080) (−0.040,−0.005, 0.012) (0.874, 0.248, 0.081) (0.953, 0.954, 0.953)
(0.5, 2.0, 0.5) (0.538, 1.985, 0.490) (0.428, 0.331, 0.075) (0.038,−0.015,−0.010) (0.430, 0.331, 0.075) (0.956, 0.949, 0.951)

500 (0.5, 2.0, 2.0) (0.582, 2.013, 2.001) (0.572, 0.125, 0.287) (0.082, 0.013, 0.001) (0.578, 0.125, 0.287) (0.995, 0.961, 0.985)
(2.0, 2.0, 0.5) (2.014, 1.997, 0.500) (0.535, 0.185, 0.053) (0.014,−0.003, 0.000) (0.535, 0.185, 0.053) (0.962, 0.939, 0.947)
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Figure 3 Upper-left panel: empirical scaled TTT-Transform on the real data set. Upper-
right panel: histogram with estimated densities of the exponentiated Poisson-Exponential
(EPE) distribution, PE distribution and exponential distribution (ED). Lower-left panel:
Kaplan–Meier curve with estimated survival functions of the EPE distribution, PE
distribution and ED. Lower-right panel: estimated hazard function of the EPE distribution.

𝕀( ̂𝝑) = [
12.077 −10.895 196.073
−10.895 27.168 −149.504
196.073 −149.504 3736.717

] .

As discussed in Section 3.2, for comparison of nested models, which is the case when comparing the EPE distribution with the PE distribu-
tion and the PE distribution with the ED, we can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain
the LRS. Thus, the LRS used for testing H0 ∶ 𝛼 = 1 results in Λ = 112.211 with p-value < 0.0001, indicating that the EPE model presents
a much better fitting than the PE model to the data set under consideration. The LRS used for testing H0 ∶ 𝜃 = 0 (for details on this com-
parison, see results in [4]) is Λ′ = 1.741 with p-value = 0.187, which gives favorable evidence to the restricted model, i.e., the ED, over
the full model, i.e., the PE model. The last column of Table 2 presents the log-likelihood values for the three fitted models. We also com-
pare the EPE distribution, PE distribution and ED by inspection of the Akaike’s information criterion (AIC), −2ℓ

( ̂𝝑
)
+ 2k, and Schwarz’s

Bayesian information criterion (BIC), −2ℓ
( ̂𝝑

)
+ k log(n), where k is the number of parameters in the model and n is the sample size. The

favorite model is the one with the smaller value on each criterion. The estimated statistics AIC and BIC for the EPE distribution are equal
to −472.468 and −459.706, respectively. While, the estimated statistics AIC and BIC for the PE distribution are equal to −362.256 and
−353.749, respectively; and the estimated statistics AIC and BIC for the ED are equal to−362.516 and−358.262, respectively. The EPE dis-
tribution overcomes the corresponding PE distribution and ED in both considered criterion. These results are corroborated by the plot in
the lower-left panel of Figure 3, which compares the estimated survival functions obtained via ED, PE and EPE model fitting on the empir-
ical Kaplan–Meier survival function. Figure 3 also shows the estimated densities (upper-right panel) and the hazard function obtained via
EPE model fitting (lower-right panel).

Besides, for the sake of illustration, in order to compare our EPE distributionwith other lifetime distributions capable ofmodeling a bathtub-
shaped failure rate function, we fitted the exponentiated Nadarajah-Haghighi (ENH) distribution developed by Lemonte [18], with pdf
given by

f(y) = 𝛼𝛽𝜆 (1 + 𝜆y)𝛼−1 exp{1 − (1 + 𝜆y)𝛼}
[1 − exp{1 − (1 + 𝜆y)𝛼}]1−𝛽 , y > 0,

with all parameters 𝛼, 𝛽, 𝜆 > 0. The MLEs of the parameters of the ENH model are given by �̂� = 6.847, ̂𝛽 = 0.606 and ̂𝜆 = 0.269, with
the maximum log-likelihood value equal to ℓ(⋅) = 223.036. The estimated statistics AIC and BIC for the ENH distribution are equal to
−440.071 and −427.310. Notice that our EPE distribution outperforms the ENH distribution in both considered criterion.Pdf_Folio:284
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Table 2 MLEs and their corresponding 95% confidence intervals.

Parameter

Distribution 𝜃 𝜆 𝛼 ℓ(.)

EPE 5.167 5.075 0.373 239.2338
[3.480; 6.854] [4.585; 5.565] [0.286; 0.460]

PE 0.362 4.204 − 183.1281
[0.086; 1.516] [3.606; 4.801]

ED − 3.859 − 182.2578
[3.528; 4.191]

MLE,maximum likelihood estimate; EPE, exponentiated Poisson-Exponential; ED, exponential
distribution; PE, Poisson-Exponential.

6. CONCLUDING REMARKS

In this paper we propose a new lifetime distribution. The EPE distribution is a generalization of the PE distribution proposed by [4], which
accommodates increasing, decreasing and bathtub failure rate functions. It arises on a latent complementary competing risks scenario,
where the lifetime associated with a particular risk is not observable but only the maximum lifetime value among all risks. We provide a
mathematical treatment of this new distribution including explicit algebraic formulaes for its survival function and failure rate function,
quantiles and moments. We discussed maximum likelihood estimation, which presented an adequate numerical stability in the simulation
study performed. The EPE distribution allows a straightforwardly nested hypothesis testing procedure for comparison with its PE distribu-
tion particular case. The practical relevance and applicability of the EPE distribution were demonstrated in a real data set.
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