International Journal of Computational Intelligence Systems

ATLANTIS Vol. 13(1), 2020, pp. 914-919
PRESS DOTL: hitps://doi.org/10.2991/ijcis.d.200615.002; ISSN: 1875-6891; eISSN: 1875-6883 s
https://www.atlantis-press.com/journals/ijcis/ $ystims

.

Research Article

Accuracy Improvement of Autonomous Straight Take-off,
Flying Forward, and Landing of a Drone with Deep

Reinforcement Learning

Che-Cheng Chang!, Jichiang Tsai>", Peng-Chen Lu?, Chuan-An Lai!

! Department of Information Engineering and Computer Science, Feng Chia University, No. 100, Wenhua Rd., Xitun Dist., Taichung City 407, Taiwan (R.O.C.)
’Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist.,

Taichung City 402, Taiwan (R.O.C.)

’Graduate Institute of Communication Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan (R.O.C.)

ARTICLE INFO

Article History

ABSTRACT

Received 31 Jan 2020
Accepted 09 Jun 2020

Keywords

Drones

Deep reinforcement learning
Q-learning

Autonomous flight

1. INTRODUCTION

The application of Unmanned Aerial Vehicles (UAVs), also known
as drones, has been increasingly prevalent in recent years. The
drones can be used in different applications both indoors and out-
doors. However, in the course of achieving the above tasks, the
Global Positioning System (GPS) may not be always precise and
available due to the effects of signal attenuation and multi-path
propagation [1,2]. In the literature, there have been three major
classes of methods for positioning the drones. First, the sensor-
fusion method relies on multiple sensors in order to gather more
data for the pose estimation of the drone. On the other hand, the
device-assisted method relies on the use of ground sensors for esti-
mating the position and trajectory of the drone. The last one is the
vision-based approach, which analyzes the geometric features to
find the flying path. Thus, for the purpose of eliminating the disad-
vantage of GPS, we intend to utilize onboard sensors, e.g., cameras,
LiDARs, and so on, equipped by a drone to realize the vision-based
approach for performing tasks.

In this work, we use the typical Reinforcement Learning (RL) con-
cept, Q-Learning [3,4], to control a drone so that the drone can
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Nowadays, drones are expected to be used in several engineering and safety applications both indoors and outdoors, e.g., explo-
ration, rescue, sport, entertainment, and convenience. Among those applications, it is important to make a drone capable of
flying autonomously to carry out an inspection patrol. In this paper, we present a novel method that uses ArUco markers as a
reference to improve the accuracy of a drone on autonomous straight take-off, flying forward, and landing based on Deep Rein-
forcement Learning (DRL). More specifically, the drone first detects a specific marker with one of its onboard cameras. Then it
calculates the position and orientation relative to the marker so as to adjust its actions for achieving better accuracy with a DRL
method. We perform several simulation experiments with different settings, i.e., different sets of states, different sets of actions
and even different DRL methods, by using the Robot Operating System (ROS) and its Gazebo simulator. Simulation results show
that our proposed methods can efficiently improve the accuracy of the considered actions.
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autonomously take-off, fly forward, and land in a straight line the
best it can. One remarkable advantage is without the need of human
supervision, as well as allowing the drone to learn how to use
high-level actions autonomously. The drone obtains the required
information simply through its onboard cameras instead of other
expensive sensors. Therefore, the design is not affected by the afore-
mentioned issue of GPS and can be applied to both indoor and out-
door scenarios. More specifically, the drone uses either its front or
bottom camera to detect an ArUco marker [5-7]. The marker is
essential for the purpose of positioning the drone during the course
of autonomous flight in our work. By taking the center of a marker
as a reference, the drone can calculate the relative position and ori-
entation information between itself and the marker. Then it will
take the corresponding action based on the control strategy of some
Q-learning derivatives immediately.

At last, we present a simulation study based on a simulator of the
robot operating system (ROS) [8,9], called Gazebo [10], where we
use its Parrot AR. Drone 2.0 module to conduct our simulation
experiments. In the experiments, we investigate the effects of tak-
ing different sets of actions under different sets of states, as well
as adopting distinct Deep Reinforcement Learning (DRL) methods
derived from the basic Q-learning concept, namely, Deep Q Net-
works (DQNs), Double DQN, and Dueling DQN.
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The simulation results show that the use of different sets of DRL
approaches, states, and actions will have distinct accuracy improve-
ments of the flight results of a drone as well as convergence speeds
of the corresponding learning processes. Hence, by choosing the
proper DRL method and the sets of states and actions, we can obtain
better efficiency, accuracy, and convergence for a drone taking off,
flying forward, and landing straight. Notice that although there are
some related researches in the literature [11], they only exploited
the concept of double DQN to land the UAV. Yet in this work, we
further give a comprehensive discussion on the effects of taking dif-
ferent sets of actions under different sets of states, as well as adopt-
ing distinct DRL methods.

The rest of this paper is organized as follows: In Section 2, we review
the preliminary knowledge related to the necessary components for
our work, ie., Q-learning approaches, ArUco marker, ROS, and
Gazebo. Then we elaborate our methods of autonomous flight in
Section 3. In Section 4, we analyze the simulation results corre-
sponding to distinct experimental settings. Lastly, we conclude this
paper and discuss some possible future works in Sections 5.

2. METHODOLOGICAL FRAMEWORK
2.1. Robot Operating System

The ROS is a flexible framework for creating robot software. It is a
collection of tools, libraries, and conventions that aim to simplify
the task of designing complex and robust robot behavior across var-
ious platforms. Since creating robust robot software is very hard,
no single individual, laboratory, or institution can hope to do it on
their own [8,12,13]. Thus ROS was built to encourage collaborative
robotics software development. For instance, one institution might
contribute a system for producing maps, and another laboratory
might use maps to navigate.

In ROS, a process is represented as a node in a graph structure and
connected by edge(s) called topic(s). Hence, a node can pass mes-
sages to one another through topics, e.g., making a service call, pro-
viding a service, and so on. ROS uses peer-to-peer communication
between all node processes. This decentralized architecture works
well since one robot application often consists of many kinds of net-
worked computer hardware.

2.2. Gazebo

Gazebo is a 3D dynamic simulator with the ability to accurately and
efficiently simulate robots in complex indoor and outdoor environ-
ments [10,14,15]. While similar to game engines, Gazebo can offer
physics simulation at a higher degree, e.g., a suite of sensors, inter-
faces for both users and programs, and so on. Furthermore, since
Gazebo was integrated with ROS, it has become one of the primary
tools used in the ROS community.

There are many existing modulus in the Gazebo simulator for
different experiments. Particularly, we use the Parrot AR. Drone
2.0 module in our simulation experiments. The Parrot AR. Drone
2.0 includes ARM Cortex A8 processor with DSP and supports
Linux. Hence, it can be exploited to implement a real system easily.
Moreover, the Parrot AR. Drone 2.0 is equipped with two camera

modulus, front, and vertical cameras. The specification of cameras
mounted on it is as follows:

» Front camera: HD(720P) sensor; 92° lens; 30FPS video.

» Vertical camera: QVGA (240 X 320) sensor; 64° lens; 60FPS
video.

2.3. ArUco Marker

Camera pose estimation is a common and important problem in
many applications requiring a precise localization in the environ-
ment, e.g., augmented reality, virtual reality, and robotics. It is one
of the vision-based approaches to analyze the geometric features
to position the drone and find the flying path. Although some
researches like to seek natural features, fiducial markers are still
attractive because they are easy to detect and achieve high speed
and precision. For dealing properly with this issue, there have been
many researches of different fiducial markers proposed in the lit-
erature [16]. Among those existing contributions, the design of an
ArUco marker is one feasible way for our work [16,17]. Particularly,
an ArUco marker is composed of many binary bits. There are five
bits in every row, where the second and fourth bits serve as infor-
mation bits and the other three bits are used for error detection.
Moreover, each marker has its unique ID. It is able to recognize the
ID of the marker by the information bits in it, and there are totally
1024 different IDs.

2.4. Q-learning

Q-learning is an algorithm commonly used in RL for the estimation
side of a problem. More specifically, Q-learning provides a solution
for the control part and tries to estimate the action-value to take the
best possible action for the problem. It uses the state-action-reward-
state tuples as experience to realize estimation [18]. Namely, it
consists of an agent that will interact with an external environment
represented by states. At time f, the agent will be given a reward r
after taking an action a in state s. Then the agent will transfer to
the next state s’ By the recursive operation, we can calculate the
expected total reward in the future corresponding to each state and
action, Q(s, a), called the Q-value, which is updated as follows:

Q(s,a) « (1 - a)Q(s,a) + a(r + y n}ﬁx Q(sl,al))s (1)

where a € (0,1] and y € [0, 1] are the learning rate and discount
rate, respectively. The Q-value of each state and action will be stored
in a table called Q-table. The goal of RL is to find a policy for choos-
ing a proper action at a certain state to accumulate the rewards as
many as possible at successive steps.

2.5. Deep Q Network

The term “Deep” in the “Deep Q Networks” refers to the use of
“Deep Convolutional Neural Networks” (DCNNs) in the DQNs
[18]. DCNNG are inspired by the way that human’s visual cortex area
of the brain understands the images received by the eyes. While dis-
cussing about the state-formulations of a Q-learning approach, for
image inputs, the state should be abstracted humanly due to the effi-
ciency of implementation. Namely, the agent should be intelligent
enough to make sense of these visual states. Hence, we can enable
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the Q-learning agent to simplify the state of raw image pixels by uti-
lizing DCNNE.

2.6. Double DQN

Generally, the state-space and state-size may be extremely large, and
it may take a lot of time for the agent to learn sufficient informa-
tion about the environment and then determine which state/action
may lead to the best reward. Consequently, the agent of a DQN
may get stuck to exploiting the explored and estimated state-action
combinations that have relatively higher values but not the highest
ones because DQN is known to sometimes learn unrealistically high
action values due to its max operation. This may lead to the over-
estimation of Q-values for some state-action combinations lead-
ing to suboptimal training. Hence, the Double DQN algorithm is
proposed to solve this issue by selecting the action on the basis of
a network, called the Online Q Network, but using the value cor-
responding to this particular state-action from another network,
called the Target Q Network [18]. The equation is shown as follows:

Qs < 1(s, @) + yQ(s', argmaxQ’ gy 1)), (2)
al

where Q' is for action selection and Q for action evaluation. There-
fore, it helps us reduce the overestimation of Q-value.

2.7. Dueling DQN

The DQN and Double DQN models are both sequential architec-
tures. Particularly, all the neurons in a layer are connected only to
the neurons in one layer before and one layer after their own layer.
Namely, there are no branches or loops existed in these models. In
the Dueling DQN model, which is a nonsequential architecture, the
model layers will branch into two different subnetworks, i.e., esti-
mation and advantage networks. Each has its own connected layer
and output layers. Particularly, by splitting the network into two
channels, Dueling DQN can learn which states are valuable with-
out learning the effect of each action at each state. Such a skill is
useful for some states where their actions will not affect the envi-
ronment. Namely, it is not necessary to compute the value of each
action, and thus helps us accelerate the training procedure. Further-
more, by decoupling the estimation of two channels, it can help us
find much more reliable Q-values [18]. Dueling DQN can be rep-
resented mathematically as below:

Qia0,0,8) < Viso,8 + (Aat,a) — H;?‘XA(S,W;Q,(X))’ (3)

where “A” represents the advantage value, “ 6 the parameter vec-
tor of the convolutional layer, “ a” the parameter vector of the
advantage network, and “ 8” the parameter vector of the state-value
function.

As a result, we can summarize that Q-learning can be considered
as the fundamental concept of all existing DRL approaches, which
utilizes a table to store the quantified effects of all sets of states
and actions. However, since the number of states in a real-world
problem is too much to be defined, Q-learning is almost infeasi-
ble in real-world problems. Then DQN made up the above defi-
ciency by combining the neural network and Q-learning, which
can abstract the states for image inputs humanly. Hence, the
Q-learning concept is feasible now due to the introduction of DQN.

However, DQN will cause the over-fitting problem and thus reduce
the learning performance. So Double DQN was then proposed to
deal properly with this issue. Double DQN remains the same as
DQN except the updating function. On the other hand, during the
learning procedure, some states are pointless such that computing
resources are wasted upon trying to find the best actions to take
for these states. Thus Dueling DQN was introduced to divide the
Q-network into two channels to separately compute the quantified
effects of states and actions to avoid the aforementioned problem.
Namely, the quantified effects of states can be evaluated regardless
of the effects of subsequent actions.

3. OUR METHODS

In this section, we start to introduce our work and methods in detail.
First, our work intends to make a drone take-off stably, fly forward
straight, and land on the target platform precisely. Particularly, in
our working scenario, for the purpose of positioning the drone dur-
ing the period of autonomous flight, there are totally three ArUco
markers used for reference. By taking the center of a marker as a
reference, the drone can obtain the relative position and orienta-
tion information between itself and the marker. Then it will take the
corresponding action according to the obtained position and orien-
tation information and the control strategy of a Q-learning deriva-
tive immediately. The properties of these three ArUco markers are
shown below:

* The first marker is placed under the AR. Drone to indicate the
place where the drone takes off;

* The second one is put on a front wall for the drone to head on;

* The last marker is on the ground as the landing target.

Here, the learning procedure is described, and the experimental
scenario is shown in Figure 1. First, the drone is placed on the first
marker whose ID is 5 before it takes off, where is the initial posi-
tion for every flight. Then the front camera of the drone will cap-
ture the second marker with ID 0 on the front wall after it takes off
from the initial position to a specific height. As soon as the drone
reaches the height and finds marker 0, it will start to fly toward this
marker until its bottom camera captures the third maker whose ID
is 10 on the landing platform. Then the drone descends vertically
and finally lands on the landing platform based on the detection of
its bottom camera.

The take-off, flying forward, and landing procedures of the drone
are all trained with the proposed methods based on the Q-learning
concept. Figure 2 shows the states and rewards adopted by our
method. We consider two different sets of states. Part (a) in Figure 2
shows that the image captured by the camera is divided into a 3 by
3 grid with 10 different states (sy ~ sg); whereas part (b) in Figure 2
shows that the image is partitioned into a 5 by 5 grid with 26 states
(so ~ $25). The red number on the figure indicates the correspond-
ing reward of each state. On the other hand, we consider two differ-
ent sets of actions for the control strategies based on the Q-learning
approaches in the experiments:

 Four-action set: up, down, left, and right.

* Eight-action set: up, down, left, right, top-left, top-right,
bottom-left, and bottom-right.



C.C. Chang et al. / International Journal of Computational Intelligence Systems 13(1) 914-919 917

In the last part of this section, we use a block diagram to
explain the flowchart among ROS, Gazebo and our methods,
which is shown in Figure 3. First, node ar_track_alvar gets images
from node ardrone through topic /ardrone/bottom/image_raw and
topic /ardrone/front/image_raw for detecting the ArUco markers.
According to the information from ar_track_alvar and the infor-
mation related to flight status of the drone from ardrone, node
DQN can obtain the corresponding position and orientation infor-
mation between the ArUco markers and the drone. Then it sends
the reactive action instruction based on the control strategy of the
DQN approach to node /cmd_vel immediately. Accordingly, node
Gazebo will operate the drone and then update all information of
the drone and environment. The updated information will also be
sent to ardrone. Similarly, for the applications of Double DQN/Du-
eling DQN, we just need to replace node DoubleDQN/DuelingDQN
with DQN.

(a) (b)

Figure 2 States and rewards adopted by our
methods: (a) Dividing into a 3 by 3 grid with 10
different states .

ardrone

/ardrone/bottom/image_raw
/ardrone/front/image_raw

| /ardrone/navdata

Gazebo /ardrone/takeoff
/ardrone/forward
/ardrone/land

/ardrone/reset

Jemd_vel

Figure 3 The flowchart of our architecture.

4. SIMULATION RESULTS

In this study, we employ the Gazebo simulator of ROS to implement
and verify our methods. Moreover, we use its Parrot AR. Drone 2.0
module in the simulation experiments. During a flight, Gazebo will
calculate the average distance between the center of the drone and
that of the corresponding marker to be the accuracy degree of this
flight. Our experimental settings are as follows:

* Three procedures: Drone take-off, flying forward, and landing;

¢ Four combinations of state and action sets: 10 states with 4
actions, 10 states with 8 actions, 26 states with 4 actions, and 26
states with 8 actions;

¢ Three learning approaches: DQN, Double DQN, and Dueling
DQN;

» Each procedure with every combination of state and action sets
based on each learning approach is executed 1000 times.

Moreover, we have posted parts of our simulation experiment
videos in YouTube (https://youtu.be/BFH6rjyR-vo).

First, for the drone take-off, flying forward, and landing procedures
based on DQN, Figures 4-6 separately show the average accuracy
degrees with respect to corresponding markers of every 50 flights
for the four combinations of state and action sets. Note that the
reason for considering every 50 flights as a whole is that doing so
can present the experimental results more clearly. According to the
results, we can find that the larger adopted number of states is, the
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higher the accuracy degree becomes. Moreover, with more actions
able to be exploited, the learning process of the drone converges
more quickly. Particularly, for the drone take-off, which is the sim-
plest one among all procedures, its control strategies with the four
combinations of state and action sets based on DQN can all achieve
the highest accuracy (about 2.5cm). Since the experimental results
of Double DQN and Dueling DQN are similar as that of DQN, we
do not present the results here for the reason of simplicity.

On the other hand, we start to consider the three procedures
under the same state and action set but based on different learn-
ing approaches, i.e., DQN, Double DQN, or Dueling DQN. Some
experiment results for drone take-off are first shown in Figures 7
and 8. Similarly, for such a simplest procedure, the two extreme sce-
narios with most and least number states and actions, i.e., 10 states
with 4 actions and 26 states with 8 actions, can still achieve high
accuracy (about 2.5cm). Particularly, after being trained 800 times,
the accuracy degrees based on Dueling DQN converges much more
stably due to the property of Dueling DQN that by decoupling the
estimation of two channels, this learning technique can help us
obtain much more reliable Q-value for each action.

Next, for the flying forward procedure, we consider the aforemen-
tioned two extreme state and action sets as well. According the cor-
responding results shown in Figures 9 and 10, we can find that
among the three approaches, in spite of larger error values during
the training course, Dueling DQN enjoys the best accuracy degree
after being trained 800 times. Finally, since the experimental results
for drone take-off and landing are similar, we do not present the
results for landing here.

According to those figures shown above, we can learn the efficiency
in convergence of the experiments. In the last part of this section,
we present some important and interesting statistics of these exper-
iments with Table 1. Specifically, since all experimental results for
drone take-off and landing based on the three learning approaches
are similar and have smaller error values, it is hard and meaningless
to discuss them. Hence, we only consider the experimental results
of flying forward procedures under two extreme scenarios with the
most and least number of states and actions, respectively. In Table 1,
we can observe that all the three learning approaches gets better
average error values in the scenario with 26 states and 8 actions.
Furthermore, Dueling DQN possesses the best improvement from
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Table 1  The statistics of the flying forward procedure.

DQN Double DQN  Dueling DQN DQN

Double DQN  Dueling DQN
Mean 11.45873 10.00787 10.30215 10.60394 10.00403 8.024729

Standard deviation 1787481 1.671201 3.105719 2.047313 1.183294 1.46527

10.30215 cm to 8.024729 cm. On the other hand, upon consid-
ering the standard deviation of error values among these experi-
ments, DQN becomes worse under the scenario with more states
and actions while Double DQN and Dueling DQN still become
better. Particularly, Dueling DQN achieves the best improvement
as well.

5. CONCLUSIONS

In this work, we have presented several control strategies to improve
the accuracy of some fundamental actions during a drone flies. The
goal is to make the drone take-off, fly forward, and land as straight
as possible. As far as we know, we are the first to propose DRL
methods to this end. Moreover, we have demonstrated the efficacy
of our methods by some simulation experiments with different set-
tings. According to the experimental results, the learning process
can achieve more accurate results and converge more quickly with
more adopted states and actions.

On the other hand, it is obvious that there is no certain learning
method that can always enjoy the best efficiency on accuracy and
convergence. Hence, for future works, we intend to combine more
than one DRL method to integrate their learning results so as to
make a better decision for all different scenarios. Moreover, the
Asynchronous Advantage Actor Critic (A3C) algorithm is also an
interesting topic for our future research. Particularly, we further
intend to implement more complicated applications with advanced
DRL methods, such as Policy Gradient methods, to make a drone
able to fly completely autonomously and more precisely.
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