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ABSTRACT
In this study, we have focused to propose a flexible model that demonstrates increasing, decreasing and upside-down bathtub-
shaped density and failure rate functions. The proposedmodel refers to as the exponentiated power function (EPF) distribution.
Somemathematical and reliability measures are developed and derived.We develop explicit expressions for the moments, quan-
tile function and order statistics. Some shapes of the density and the reliability functions are sketched out and discussed. We
suggest the method to estimate the unknown parameters of EPF by the maximum likelihood estimation. Two suitable lifetime
datasets from engineering sector are used to explore the dominance of the EPF distribution.
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1. INTRODUCTION

In this unanticipated world of science, probability distributions recompense an imperative role to elucidate the real-world phenomenon
and in distribution theory, so far the power function (PF) distribution is considered as one of the simplest and handy lifetime distribu-
tion likewise exponential and Pareto distributions. The PF distribution is the special case of the beta distribution and one may sight the
importance of the PF distribution in statistical tests such as likelihood ratio test. The simplicity and usefulness of the PF distribution com-
pelled the researchers to explore its further extensions, generalizations and applications in different areas of science. For more details we
refer the readers to Dallas [1]. He developed an interesting relationship between PF and Pareto distribution when the inverse transforma-
tion of the Pareto variable developed the PF. Meniconi and Barry [2] found PF as a best-fitted model on electronic components dataset.
Saran and Pandey [3] developed a characterization based on the k-th record values. Independence of record values based characterization
discussed by Chang [4]. Order statistics (OS) and lower record values supported characterization suggested by Tavangar [5]. Cordeiro and
Brito [6] developed the beta version of PF and discussed its comprehensive properties along with the application in the petroleum reservoir
and milk production datasets. Ahsanullah et al. [8] illustrated a characterization based on lower record values. Zaka et al. [7] applied vari-
ous methods to estimate the parameters of PF comprising least square (LS), relative least square (RLS) and ridge regression (RR) and based
on the simulated results, LS method declared as the best method for the estimation of parameters of PF.

Several authors generalized the PF in G family of distributions. For this, see the exemplar work of Tahir et al. [9]. They [9] generalized the PF
in Weibull-G family of distributions and found its application in two-lifetime bathtub datasets. Shahzad et al. [10] derived the moments of
PF by using L-moments, TL-moments, LL-moments and LH- moments. They discovered the method L- moments provide better estimates
on different sample sizes as compared to the competing methods. Haq et al. [11] generalized the PF in the transmuted family and illustrated
its application in two-lifetime datasets. Okorie et al. [12] expressed the PF in Marshall-Olkin G family and discussed its application in
survival times of 50 objects and survival times of a group of patients who received only chemotherapy treatment. Abdul-Moniem [13]
investigated the PF in Kumaraswamy G family and illustrated its application in the plasma concentration of indomethacin dataset. Haq
et al. [11] this time illustrated the PF in McDonald and modeled it to the three-lifetime datasets. Hassan et al. [14] generalized the PF in
Odd exponential - G class and discussed its application in three-lifetime datasets.
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Lehmann [15] introduced the exponentiated G family of distributions. It can be defined as the CDF F(x) of base distribution is raised to the
power say 𝛼 > 0 and the corresponding exponentiated G(x) can be written as G (x) = (F (x))𝛼 .
We have the following objectives:

i. We develop two-parameters model namely exponentiated power function (EPF) distribution and so far we are concerned it has not
been studied and discussed earlier.

ii. Computational point of view, the EPF distribution provides simplex and uncomplicated cdf, pdf and likelihood function.

iii. EPF distribution presents flexible shapes of density such as: left-skewed, right-skewed, symmetric, canopy, bathtub and reverse
bathtub-shaped.

iv. It has flexible shapes of hazard rate function such a: U-shape, J-shape and bathtub-shaped hazard rate function.

v. EPFdistribution offersmore realistic and rationalized results specifically on bathtub-shaped failure rate data and it presents consistently
better fit over its competing models.

vi. We are highly concerned to discover and explore its further application in diverse areas of science, where modeling through base line
distribution lack.

This article is organized on the following steps: Construction of the proposed model and its properties are presented in Section 2. Esti-
mation of the model parameters by the method of maximum likelihood estimation and the Monte Carlo simulation study is performed in
Section 3. Application of the proposed model is illustrated in Section 4 and the final conclusion is stated in Section 5.

2. NEW MODEL

In this section we present a newmodel by introducing a shape parameter (𝛽 > 0) to the baseline distribution, developed by Saran and Pandey
[3]. The new model can be referred to as the EPF distribution. The associated CDF of EPF distribution.

A random variable X is said to follow the exponentiated power function (EPF) distribution if the associated CDF and corresponding PDF
of the EPF distribution are defined by

F (x) =
(
1 −

( g − x
g −m

)𝛼)𝛽

, (1)

and the corresponding PDF of EPF distribution is given by

f (x) =
𝛼𝛽

(
g − x

)(
g −m

)α 𝛼−1 (
1 −

( g − x
g −m

)𝛼)𝛽−1

, (2)

where 𝛼 > 0 and 𝛽 > 0 are the two shape parameters andm is a possible minimum (m < x) and g is a possible maximum value of x
(
g > x

)
.

For 𝛽 = 1, proposed model reduces to the baseline model.

One of the imperative roles of probability distribution in reliability engineering is the reliability analysis and to predict the life of a device.
A range of reliability measures have been developed and studied in literature, however, survival function of EPF distribution

S (x) = 1 −
(
1 −

( g − x
g −m

)𝛼)𝛽

, (3)

and the failure rate function of the EPF distribution is given by

h (x) =
𝛼𝛽

(
g − x

)𝛼−1
(
1 −

(
g−x
g−m

)𝛼)𝛽−1

(
g −m

)α(1 −
(
1 −

(
g−x
g−m

)𝛼)𝛽) . (4)

Most of the time it is assumed that the mechanical components follow to the bathtub-shaped failure rate function. It is quite obvious
to establish the following useful measures including cumulative hazard rate function Hc (x) =

(
− log (R (x))

)
, reverse hazard rate func-

tion Hr (x) = f (x) /R (x), mills ratio M (x) = R (x) /f (x), odd function O (x) = F (x) /R (x) and elasticity e (x) = xf (x) /F (x) for the EPF
distribution.Pdf_Folio:298
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2.1. Shapes

Various shapes of the density and failure rate functions of the EPF distribution for selected choices of the parameter are presented in
Figures 1–4. Figures 1–3 present the density plots possible shapes like left-skewed, right-skewed, symmetric, canopy shape, bathtub and
reverse bathtub shaped. However, Figure 4 illustrates the U-shape, J-shape and bathtub-shaped failure rate function of the EPF distribution.
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Figure 1 Density plot of exponentiated power function (EPF)
distribution for Black(𝛼 = 5.1, 𝛽 = 21.1), Red(𝛼 = 5.5, 𝛽 = 4.2),
Blue(𝛼 = 4.3, 𝛽 = 7.3), Hotpink(𝛼 = 3.4, 𝛽 = 8.4), Green(𝛼 = 2.5,
𝛽 = 9.5), Goldenrod1(𝛼 = 2.0, 𝛽 = 10.5) for m = 1, g = 7.

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

x

f(x
)

Figure 2 Density plot of exponentiated power function (EPF)
distribution for Black(𝛼 = 6.1, 𝛽 = 1.1), Red(𝛼 = 5.2, 𝛽 = 1.2),
Blue(𝛼 = 4.3, 𝛽 = 1.3), Hotpink(𝛼 = 3.4, 𝛽 = 1.4), Green(𝛼 = 2.5,
𝛽 = 1.5), Goldenrod1(𝛼 = 1.6, 𝛽 = 1.6) for m = 1, g = 7.
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Figure 3 Density plot of exponentiated power function (EPF)
distribution for Black(𝛼 = 2.3, 𝛽 = 2.9), Red(𝛼 = 1.1, 𝛽 = 1.1),
Blue(𝛼 = 0.01, 𝛽 = 0.02), Hotpink(𝛼 = 2.1, 𝛽 = 1.1), Green(𝛼 = 1.3,
𝛽 = 2.9), Goldenrod1(𝛼 = 1.5, 𝛽 = 1.5) for m = 1, g = 7.
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Figure 4 Failure rate function plot of exponentiated power
function (EPF) distribution for Black(𝛼 = 0.009,𝛽 = 0.1), Red(𝛼 = 1.1,
𝛽 = 1.1), Blue(𝛼 = 1.1, 𝛽 = 0.1), Hotpink(𝛼 = 2.1, 𝛽 = 0.3), Green(𝛼
= 0.2, 𝛽 = 0.001), Goldenrod1(𝛼 = 2.5, 𝛽 = 0.1) for m = 1, g = 7.
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2.2. Linear Representations

Linear representation of PDF and CDF lead the calculations easier than the conventional integral calculation corresponding to determining
the mathematical properties.

For power series expansion, if “𝛽” is real noninteger and −1 < z < 1, then it can be written as

(1 − z)𝛽−1 =
∞
∑
j=0

wjzj,

where wj = (−1) j
(
𝛽 − 1
j

)
= (−1) jΓ (𝛽)

j! Γ
(
𝛽 − j

) ,
by Eq. (1), CDF in linear representation is written as

F (x) =
∞
∑
i,j=0

(−1)i+j
(
𝛽
i

)(
𝛼i
j

)( g
g −m

)𝛼i (x
g

)𝛼ij
,

F (x) =
∞
∑
i,j=0

Aijx𝛼ij, (5)

whereAij = (−1)i+j
(
𝛽
i

)(
𝛼i
j

)(
g −m

)−𝛼i (g)−𝛼i(j−1) , 𝛼, 𝛽 > 0,m ≤ x and g ≥ x, and by Eq. (2), PDF in linear representation is written
as

f (x) = 𝛼𝛽
g −m

( g − x
g −m

)𝛼−1 ∞
∑
i=0

(−1)i
(
𝛽 − 1
i

)( g − x
g −m

)𝛼i
,

f (x) =
∞
∑
i,j=0

𝛼𝛽g−(j−1)(𝛼i+𝛼−1)

(g −m)𝛼+𝛼i
(−1)i+j

(
𝛽 − 1
i

)(
𝛼i + 𝛼 − 1

j

)
xj(𝛼i+𝛼−1),

f (x) =
∞
∑
i,j=0

Bijxj(𝛼i+𝛼−1), (6)

where Bij =
𝛼𝛽g−(j−1)(𝛼i+𝛼−1)

(g −m)𝛼+𝛼i
(−1)i+j

(
𝛽 − 1
i

)(
𝛼i + 𝛼 − 1

j

)
, 𝛼, 𝛽 > 0,m ≤ x and g ≥ x.

Further properties of EPF distribution will be discussed by the conventional integral technique.

2.3. Limiting Behavior

Here we study the limiting behavior of distribution function, density function, reliability function and failure rate function of the EPF
distribution present in Eqs. (1), (2), (3) and (4) at x → m and x → g.

Proposition 1. Limiting behavior of distribution function, density function, reliability function and failure rate function of the EPF distribution
at x → m is followed by

F (x) ∼ 0,

f (x) ∼ 0,

S (x) ∼ 1,

h (x) ∼ 0,
Pdf_Folio:300
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Proposition 2. Limiting behavior of distribution function, density function, reliability function and failure rate function of the EPF distribution
at x → g is followed by

F (x) = 1,

f (x) = 0,

S (x) = 0,

h (x) = 0,

Above limiting behaviors of distribution function, density function, reliability function and failure rate function illustrate the effect of parameters
on the tail of the EPF distribution.

2.4. Moments and Its Associated Measures

Moments have a remarkable role in the discussion of distribution theory, to study the significant characteristics of a probability distribution.

Theorem 1. Let X ∼ EPF
(
x; 𝛼, 𝛽,m, g

)
, the r-th ordinary moment say μ′r is written as

𝜇′r =
r

∑
k=0

𝛽gr
(

r
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

)
,

Proof from Eq. (2), 𝜇′r can be written as

𝜇′r =
g

∫
m

xr
𝛼𝛽

(
g − x

)(
g −m

)α 𝛼−1 (
1 −

( g − x
g −m

)𝛼)𝛽−1

dx,

r-th ordinary moment of X is given by

𝜇′r =
r

∑
k=0

𝛽gr
(

r
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

)
, (7)

where B (. , . ) is the beta function and 𝛼 > 0, 𝛽 > 0 are the shape parameters with m ≤ x and ≥ x.

One can derive the mean of X by setting r = 1 in (7) and it is given by

𝜇′1 =
r

∑
k=0

𝛽g
(
1
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

)
.

For higher moments about the origin like 2nd, 3rd and 4th, it can be formulated by setting r = 2, 3 and 4 in the Eq. (7) respectively. Further to
discuss the variability in X, the Fisher index (Var (x) /E (x)) plays a supportive role.

Corollary 1. The relation between the ordinary moments and central moments is defined by

𝜇s =
s

∑
i=0

(
s
i

)
(−1)i

(
𝜇′1
)i 𝜇′s−i.

The s-th central moment of X is given by

𝜇s =
s

∑
i=0

(
s
i

)
(−1)i

⎛⎜⎜⎜⎜⎜⎜⎝

(
𝛽g

1

∑
k=0

(
1
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

))i

(
𝛽gs−i

s−i

∑
k=0

(
s − i
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎟⎟⎠
,

Pdf_Folio:301
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The skewness and kurtosis of X are

𝛽1 =

⎛⎜⎜⎜⎜⎜⎝
∑3

i=0

(
3
i

)
(−1)i

⎛⎜⎜⎜⎜⎜⎝

(
𝛽g∑1

k=0

(
1
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))i

(
𝛽g3−i∑3−i

k=0

(
3 − i
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

2

⎛⎜⎜⎜⎜⎜⎝
∑2

i=0

(
2
i

)
(−1)i

⎛⎜⎜⎜⎜⎜⎝

(
𝛽g∑1

k=0

(
1
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))i

(
𝛽g2−i∑2−i

k=0

(
2 − i
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

3

and

𝛽2 =

∑4

i=0

(
4
i

)
(−1)i

⎛⎜⎜⎜⎜⎝

(
𝛽g∑1

k=0

(
1
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))i

(
𝛽g4−i∑4−i

k=0

(
4 − i
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
∑2

i=0

(
2
i

)
(−1)i

⎛⎜⎜⎜⎜⎝

(
𝛽g∑1

k=0

(
1
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))i

(
𝛽g2−i∑2−i

k=0

(
2 − i
k

)
(−1)k

(
g−m
g

)k
B
( k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

2 .

Corollary 2. The relation between ordinary moments and cumulants of a probability distribution is defined as

Kr = 𝜇′r −
r−1

∑
j=1

(
r − 1
j − 1

)
Kj𝜇′r−j.

The r-th cumulants of X are given by

Kr =

⎛⎜⎜⎜⎜⎜⎝

(
𝛽gr

r

∑
k=0

(
r
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

))
−

r−1

∑
j=1

(
r − 1
j − 1

)
Kj(

𝛽gr−j
r−j

∑
k=0

(−1)k
(
r − j
k

)( g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

))
⎞⎟⎟⎟⎟⎟⎠
.

Furthermore, moment generating function can be written as

MX (t) =
∞
∑
r=0

tr
r!𝜇

′
r.

Moment generating function of X is given by

MX (t) =
∞
∑
j=0

tj
j! 𝛽g

r
r

∑
k=0

(
r
k

)
(−1)k

(g −m
g

)k

B
(
k
𝛼 + 1, 𝛽

)
.

2.5. Quantile Function

Hyndman and Fan [16] introduced the concept of quantile function. The pth quantile function of X ∼ EPF
(
x; 𝛼, 𝛽,m, g

)
is obtained by

inverting the CDF mention in Eq. (1). Quantile function is defined by

p = F
(
xp
)
= P

(
X ≤ xp

)
, 0 < p < 1.
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Quantile function of X is given by

xp = g −
(
g −m

)(
1 − p

1
𝛽
) 1

𝛼
. (8)

One may obtain 1st quartile, median and 3rd quartile of X by setting p = 0.25, 0.5 and 0.75 in Eq. (8) respectively. Henceforth, to generate
random numbers, we assume that CDF Eq. (1) follows uniform distribution u = U (0, 1).

2.6. Quantiles-Based Skewness, Kurtosis and Mean Deviation

Based on the quantile function, one can study the skewness (symmetry) and kurtosis (peakedness) of X by using the following useful
measures introduced by Bowley [17] and Moors [18] respectively.

SkB =
Q(

3
4

) + Q(
1
4

) − 2Q(
1
2

)
Q(

3
4

) − Q(
1
4

) , andKrM =
Q(

3
8

) − Q(
1
8

) − Q(
5
8

) + Q(
7
8

)
Q(

6
8

) − Q(
2
8

) .

These descriptive measures are based on quartiles and octiles. Moreover, these measures are less reactive to the outliers and work more
effectively for the distributions having the deficiency in moments.

Furthermore, quartile deviation of X is obtain by

QDB =
Q(

3
4

) − Q(
1
4

)
2 .

In Figure 5, the Bowley skewness as a function of 𝛼, Figure 6, the Moors kurtosis as a function of 𝛼 and Figure 7, the quartile deviation as a
function of 𝛼 of X is plotted for selected values of 𝛽 in the support of fixedm and g.
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Figure 5 Red(𝛽 = 1.2), Blue(𝛽 = 1.9), Green(𝛽 = 3.5) form= 1, g = 5.  
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Figure 6 Red(𝛽 = 0.2), Blue(𝛽 = 0.3), Green(𝛽 = 0.4) form= 1, g = 5.
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Figure 7 Red(𝛽 = 0.2), Blue(𝛽 = 0.3), Green(𝛽 = 0.4) form= 1, g = 5.

2.7. Mode

Mode of EPF distribution is obtained by taking the first derivative of the PDF mention in Eq. (2)

f ′ (x) =

⎛⎜⎜⎜⎜⎜⎜⎝

−𝛼𝛽 (𝛼 − 1)(
g −m

)2 ( g − x
g −m

)𝛼−2 (
1 −

( g − x
g −m

)𝛼)𝛽−1

+

𝛼𝛽(
g −m

)2 ( g − x
g −m

)𝛼−1

𝛼 (𝛽 − 1)

(
1 −

( g − x
g −m

)𝛼)𝛽−2 ( g − x
g −m

)𝛼−1

⎞⎟⎟⎟⎟⎟⎟⎠
,

and set f ′ (x) equal to zero, we obtain the simplified form of mode is illustrated as follows:

x̂ = g −
(
g −m

)( 𝛼 − 1
𝛼 (𝛽 − 1)

)1/𝛼
.

2.8. Entropy

The disorderedness of a system is defined as entropy. The extended form of Shannon entropy is Rényi entropy as 𝛿 → 1. One can study
the shapes of PDF and its tail behaviors, either by performing the entropy or kurtosis measure. The Rényi [19] entropy has a wide range of
application such as in medical science (ultrasound signals, neurobiology), information theory (maximizing the distribution) and computer
science (pattern recognition, image matching, ZIP files, MP3s, JPEGs and the problem of source coding).

Rényi entropy is described as

I𝛿 (X) =
1

𝛿 − 1
log

∞

∫
0

f 𝛿 (x) dx; 𝛿 > 0 and 𝛿 ≠ 1.

The simplified form of Rényi entropy when X ∼ EPF
(
x; 𝛼, 𝛽,m, g

)
, is given by

I𝛿 =
1

𝛿 − 1
log

g

∫
m

( 𝛼𝛽
g −m

)𝛿 ∞
∑
i,j=0

⎛⎜⎜⎜⎜⎜⎝
(−1)i+j

(
𝛿 (𝛽 − 1)

i

)(
𝛿(i𝛼 + 𝛼 − 1

j

)
( g
g −m

)𝛿(i𝛼+𝛼−1)

g(−j)xj

⎞⎟⎟⎟⎟⎟⎠
dx,
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hence simple mathematics reduces the Rényi entropy as follows:

I𝛿 =
1

𝛿 − 1
log(

∞
∑
i,j=0

wij

j + 1 (g
j+1 −mj+1)),

where wij =
( 𝛼𝛽
g −m

)𝛿
⎛⎜⎜⎜⎜⎜⎝
(−1)i+j

(
𝛿 (𝛽 − 1)

i

)(
𝛿(i𝛼 + 𝛼 − 1

j

)
( g
g −m

)𝛿(i𝛼+𝛼−1)

g(−j)

⎞⎟⎟⎟⎟⎟⎠
, 𝛼 > 0, 𝛽 > 0.

The quadratic Rényi entropy is considered, as a special case of Rényi entropy. To obtain quadratic Rényi entropy of X, simply substitute 𝛿
by 2 in the above equation.

2.9. Order Statistics

In reliability analysis and life testing of a component in quality control, OS and its moments are considered as noteworthy measures. Let
X1,X2, ...,Xn be a random sample of size n follow to the EPF distribution and X(1) < X(2) < ... < X(n) be the corresponding OS. The random
variables X(i),X(1) and X(n) be the ith, minimum and maximum OS of X. The PDF of X(i) is given by

fx(i) (x) =
n!

(i − 1) ! (n − i) ! (F (x))
i−1 (1 − F (x))n−i f (x) ,

for i = 1, 2, 3, … , n.
By incorporating the Eqs. (1) and (2), i-th OS PDF of X is given by

fx(i) (x) =
n!

(i − 1) ! (n − i) !

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

((
1 −

( g − x
g −m

)𝛼))𝛽i−1 ⎛⎜⎜⎝1 −
(
1 −

( g − x
g −m

)𝛼)𝛽⎞⎟⎟⎠
n−i

(
𝛼𝛽

(
g − x

)(
g −m

)α 𝛼−1)
(
1 −

( g − x
g −m

)𝛼)𝛽−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The Eq. (9) is quite helpful in computing thew-thmomentOS of the EPF distribution. Further, theminimum andmaximumOS ofX follows
directly from the Eq. (9) with i = 1 and i = n, respectively.

The w-th moment OS, E
(
Xw
OS
)
, of X is

E
(
Xw
OS
)
=

n−i

∑
j=0

r

∑
k=0

ujk
(
B
((

k
a + 1

)
, b

(
i + j

)))
, (10)

where ujk =
b

B (i, n − i + 1)

(
(−1)j+k

(
n − i
j

)(
r
k

)(
g −m

)k g−k−r
)

and B (. , . ) is the beta function and 𝛼 > 0, 𝛽 > 0 are the shape

parameters withm ≤ x and g ≥ x.

2.10. Stress–Strength Reliability

Let X1 and X2 be the strength and stress of a random component respectively. The life of the random component is described by the model
known as the stress–strength reliability model. The inadequate and adequate working of a component depend on the conditions X2 > X1
and X2 < X1 respectively. It can be expressed as

R = P (X2 < X1) .
Pdf_Folio:305
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Let X1 ∼ EPF (x; 𝛼, 𝛽,m, g) and X2 ∼ EPF (x; 𝛼, 𝛾,m, g) be independent and follow to EPF distribution. The reliability R is defined as

R =
g

∫
m

f1 (x) F2 (x) dx.

From Eqs. (1) and (2), reliability R is written as

R =
g

∫
m

𝛼𝛽
(
g − x

)(
g −m

)α 𝛼−1 (
1 −

( g − x
g −m

)𝛼)𝛽−1 (
1 −

( g − x
g −m

)𝛼)𝛾

dx,

and simplified form of the above equation in term of 𝛽 and 𝛾 yields the reliability function of the EPF distribution and it is given by

R = 𝛽
𝛽 + 𝛾 .

3. PARAMETER ESTIMATION

In this section, we suggest the method of maximum likelihood estimation which provides the maximum information about the unknown
model parameters.

From (2), the likelihood function, L (𝜗) =∏n
i=1 f

(
xi; 𝛼, 𝛽,m, g

)
, of the EPF distribution is

l = n ln𝛼 + n ln𝛽 − 𝛼n ln
(
g − x

)
+ (𝛼 − 1)∑ ln

(
g − x

)
+ (𝛽 − 1)∑ ln

(
1 −

( g − x
g −m

)𝛼)
.

To obtain the maximum likelihood estimates (MLEs) of the model parameters can be obtained by maximizing the above equation with
respect to 𝛼, 𝛽 or by solving the following nonlinear equations:

𝜕l
𝜕𝛼 = n

𝛼 − nln
(
g −m

)
+∑ ln

(
g −m

)
+ (𝛽 − 1)∑

⎛⎜⎜⎜⎝
−
(

g−x
g−m

)𝛼
ln
(

g−x
g−m

)
1 −

(
g−x
g−m

)𝛼
⎞⎟⎟⎟⎠ ,

𝜕l
𝜕𝛽 = n

𝛽 +∑
(
ln

(
1 −

( g − x
g −m

)𝛼))
.

The above two non-linear equations do not provide the analytical solution for MLEs and the optimum value of 𝛼, and 𝛽. The Newton-
Raphson is an appropriate algorithm which plays a supportive role in such kind of MLEs. For numerical solution we prefer the R software
and under its package namely, Adequacy-Model, to estimate the parameters of EPF distribution.

3.1. Simulation Study

A simulation study can be executed by (a) Identity simulation; (b) Quasi-identity simulation; (c) Laboratory simulation; (d) Computer
simulation. In this section, the performance of MLE’s, we discuss by the following algorithm:

Step-1: A random sample x1, x2, x3,..., xn of sizes n = 25, 50, 100, 200 and 500 are generated from Eq. (8).

Step-2: Each sample is simulated 1000 times.

Step-3: The required results are obtained based on the different combinations of the parameters place in S-I(𝛼 = 0.5, 𝛽 = 1.5, m = 1 and
g = 4), S-II(𝛼 = 3.5, 𝛽 = 1.5,m = 4 and g = 5), S-III(𝛼 = 2.5, 𝛽 = 1.5,m = 1 and g = 9), S-IV(𝛼 = 1.5, 𝛽 = 2.5,m = 1 and g = 4).

Step-4: Average MLEs and their corresponding standard errors (short S.Es) (present in parenthesis) are presented in Table 1.

Step-5: Biases and mean square errors (MSEs) are presented in Tables 2 and 3.

Step-6: Mean, median, variance, skewness, kurtosis and confidence intervals (CIs) (90% and 95%) are presented in Tables 4–7.

Step-7: Increase in the sample sizes reflects the consistent decrease in biases and MSEs, mean, median, variance, skewness, kurtosis and the
two-sided 90% and 95% CI of the MLEs.

Step-8: Finally based on the results, we can declare that the method of maximum likelihood estimation works quite well for EPF.Pdf_Folio:306
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Table 1 Average values of maximum likelihood estimates (MLEs) with standard errors (present in
parenthesis) for various sample sizes.

S-I S-II

Parameters Parameters

(Standard Errors) (Standard Errors)

�̂� ̂𝛽 �̂� ̂𝛽

25
0.4305 1.4049 3.0139 1.4049
(0.1025) (0.3881) (0.7179) (0.3882)

50
0.4914 1.5148 3.4395 1.5148
(0.0821) (0.3031) (0.5747) (0.3031)

100
0.5374 1.5624 3.7617 1.5624
(0.0630) (0.2221) (0.4411) (0.2222)

200
0.5206 1.4769 3.6441 1.4768
(0.0440) (0.1479) (0.3080) (0.1483)

500
0.4739 1.4460 3.3175 1.4460
(0.0254) (0.0908) (0.1775) (0.0908)

Table 2 Bias and mean square errors (MSEs) for various sample sizes.

S-III

For �̂� For ̂𝛽

n Bias MSE Bias MSE

25 0.1909 0.4984 0.2196 0.3599
50 0.1034 0.1966 0.1128 0.1172
100 0.0259 0.0906 0.0506 0.0481
200 0.0155 0.0418 0.0394 0.0216
500 −0.0068 0.0094 0.0179 0.0047

Table 3 Bias and mean square errors (MSEs) for various sample sizes.

S-IV

For �̂� For ̂𝛽

n Bias MSE Bias MSE

25 0.4029 0.1429 0.4534 1.4515
50 0.0586 0.0571 0.2289 0.4349
100 0.0174 0.0265 0.1034 0.1736
200 0.0122 0.0123 0.0796 0.0781
500 0.0003 0.0027 0.0369 0.0166

4. APPLICATION

This section reports the application of EPF distribution. Accordingly, we consider two suitable lifetime datasets. The first dataset refers to
the failure times of fifty devices put on life test at time zero discussed by Aarset [20] and the observations are 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0,
2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0,
72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0. The second dataset illustrates the thirty devices failure
times discussed by Meeker and Escobar [21] and the observations are 275,13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300,
300, 2, 261, 293, 88, 247, 28, 143, 300, 23, 300, 80, 245, 266. The EPF distribution compares to its competing models based on the criteria:Pdf_Folio:307
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Table 4 Mean, median, variance, skewness and Kurtosis for various sample sizes.

For �̂� S-III

n Mean Median Variance Skewness Kurtosis

25 2.6909 2.6040 0.4619 0.8309 4.0110
50 2.6034 2.5672 0.1859 0.1859 3.0492
100 2.5259 2.5022 0.0898 0.4047 3.0275
200 2.5155 2.5009 0.0416 0.4418 3.2494
500 2.4932 2.4912 0.0093 0.1690 3.1844

For ̂𝛽 S-III

n Mean Median Variance Skewness Kurtosis

25 1.7196 1.5939 0.3117 1.7798 8.2574
50 1.6128 1.5735 0.1044 1.0428 4.9496
100 1.5506 1.5307 0.0456 0.6965 3.7277
200 1.5394 1.5268 0.0200 0.5001 3.1365
500 1.5179 1.5167 0.0041 0.1631 3.1463

Table 5 Mean, median, variance, skewness and Kurtosis for various sample sizes.

For �̂� S-IV

n Mean Median Variance Skewness Kurtosis

25 1.6029 1.5608 0.1323 0.7349 3.7258
50 1.5580 1.5388 0.0537 0.4042 2.9432
100 1.5174 1.5027 0.0262 0.3582 2.9546
200 1.5122 1.5023 0.0121 0.3922 3.1839
500 1.5002 1.4993 0.0027 0.1432 3.1876

For ̂𝛽 S-IV

n Mean Median Variance Skewness Kurtosis

25 2.9533 2.6818 1.2460 1.9720 9.2736
50 2.7289 2.6453 0.3825 1.1625 5.4804
100 2.6034 2.5520 0.1629 0.7596 3.8927
200 2.5796 2.5516 0.0718 0.5571 3.2296
500 2.5369 2.5343 0.0152 0.1807 3.1734

Table 6 Two-sided 90% and 95% confidence intervals (CIs) for 𝛼 and 𝛽 for various sample sizes.

S-III

Two-sided 90% CI Two-sided 95% CI

n For �̂� For ̂𝛽 For �̂� For ̂𝛽

25 (2.6555, 2.7263) (1.6904, 1.7486) (2.6487, 2.7331) (1.6850, 1.7542)
50 (2.5809, 2.6258) (1.5960, 1.6296) (2.5766, 2.6301) (1.5927, 1.6329)
100 (2.5103, 2.5415) (1.5394, 1.5616) (2.5073, 2.5446) (1.5373, 1.5638)
200 (2.5049, 2.5262) (1.5320, 1.5468) (2.5029, 2.5282) (1.5307, 1.5482)
500 (2.4881, 2.4982) (1.5144, 1.5213) (2.4872, 2.4991) (1.5138, 1.5220)

-log-likelihood (-LogL), Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC). The following goodness-of-fit statistics comprising Anderson-Darling (A*) and
Cramer-von Mises (W*) are used to study the fit of EPF distribution to the data. The minimum value of (-LogL), AIC, BIC, CAIC, HQIC,
A* orW* can be helpful to declare the model as best fit to the data.Pdf_Folio:308
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Numerous facts and figures of proposed and competing models are presented in Tables 8–12, corresponding to the Aarset [20] and Meeker
and Escobar [21] datasets. Table 8 illustrates the various descriptive statistics. Tables 9 and 11 describe the parameters estimates and their
standard errors (present in parenthesis). Furthermore, Tables 10 and 12 express the various selection criterions and goodness-of-fit statistics.
The EPF distribution satisfies the criteria of a better fit model based on the results. Consequently, we declare the EPF distribution is a better
fit in its competing models on both the datasets.

Competing Models

Abbr. Model Parameters/Variable Range Reference

GPF G (x) = 1−
( g− x
g−m

)𝛼
𝛼 > 0,m ≤ x ≤ g Saran and Pandey [3]

WPF G (x) = 1− e
−a

(
x𝛽

𝛾𝛽−x𝛽

)b

a, b, 𝛾, 𝛽 > 0, 0 < x ≤ 𝛾 Tahir et al. [9]

KPF G (x) = 1−
(
1−

(
x
𝛾

)𝜃𝛼)𝛽

𝛼,𝛽, 𝜃, 𝛾 > 0, 0 < x ≤ 𝛾 Abdul-Moniem [13]

MOPF G (x)= 1−
𝛼
(
1−

(
x
𝛾

)𝛽)
(

x
𝛾

)𝛽
+𝛼

(
1−

(
x
𝛾

)𝛽) 𝛼,𝛽, 𝛾 > 0, 0 < x ≤ 𝛾 Okorie et al. [12]

OGEPF G (x) =
⎛⎜⎜⎝1− e

−𝜆
(

x𝛼

𝛾𝛼−x𝛼

)⎞⎟⎟⎠
𝛽

𝛼,𝛽, 𝜆 > 0, 0 < x ≤ 𝛾 Tahir et al. [22]

GPF = generalized power function; WPF =Weibull power function; KPF = Kumaraswamy power function;
MOPF = Marshall-Olkin power function, OGEPF = odd generalized exponentiated power function.

Table 7 Two-sided 90% and 95% confidence intervals (CIs) for 𝛼 and 𝛽 for various sample sizes.

S-IV

Two-sided 90% CI Two-sided 95% CI

n For �̂� For ̂𝛽 For �̂� For ̂𝛽

25 (1.5840, 1.6219) (2.8952, 3.0114) (1.5804, 1.6256) (2.8841, 3.0226)
50 (1.5459, 1.5700) (2.6967, 2.7611) (1.5436, 1.5724) (2.6905, 2.7672)
100 (1.5090, 1.5259) (2.5824, 2.6244) (1.5074, 1.5275) (2.5784, 2.6284)
200 (1.5064, 1.5179) (2.5656, 2.5935) (1.5054, 1.5190) (2.5629, 2.5962)
500 (1.4975, 1.5029) (2.5305, 2.5433) (1.4970, 1.5034) (2.5292, 2.5446)

Table 8 Descriptive information.

Data Min. 1st Quartile Median Mean 3rd Quartile Maximum

Aarset 0.10 13.50 48.50 45.67 81.25 86.00
Meeker and Escobar 2.00 68.75 196.50 177.03 298.25 300.00

Table 9 Parameter estimates and standard errors in parenthesis for Aarset dataset form ≤ x and g, 𝛾 ≥ x.

Models Estimates (Standard Errors)

�̂� ̂𝛽 â b̂ ̂𝜃 ̂𝜆

EPF
0.33 0.45 − − − −

(0.0781) (0.0742)

(continued)
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Table 9 Parameter estimates and standard errors in parenthesis for Aarset dataset form ≤ x and g, 𝛾 ≥ x.
(Continued)

Models Estimates (Standard Errors)

�̂� ̂𝛽 â b̂ ̂𝜃 ̂𝜆

KPF
0.37 0.41 − − 1.05 −

(23.4742) (0.0678) (67.1407)

OGEP
3.33 0.14 − − − 0.05

(0.6629) (0.0283) (0.0174)

WPF
− 1.49 0.73 − 1.05 −

(0.4886) (1.2097) (67.1407)

MOPF
7.62 0.26 − − − −

(5.7076) (0.1544)

GPF
0.58 − − − − −

(0.0817)
EPF = exponentiated power function; GPF = generalized power function; WPF =Weibull power function;
KPF = Kumaraswamy power function; MOPF = Marshall-Olkin power function, OGEPF = odd generalized
exponentiated power function.

Table 10 Information criterions and goodness-of-fit statistics for Aarset dataset.

Model -LogL AIC BIC HQIC CAIC W* A*

EPF 199.17 402.34 406.16 403.79 402.59 0.0434 0.3579
KPF 201.58 409.16 414.89 411.34 409.68 0.0442 0.3750
OGEP 204.12 414.24 419.97 416.42 414.76 0.0374 0.3102
WPF 205.18 416.35 422.09 418.54 416.87 0.0459 0.3799
MOPF 212.55 429.11 432.93 430.56 429.36 0.1179 0.8264
GPF 213.56 429.12 431.03 429.85 429.20 0.0482 0.3628
EPF = exponentiated power function; GPF = generalized power function; WPF =Weibull power function;
KPF = Kumaraswamy power function; MOPF = Marshall-Olkin power function, OGEPF = odd generalized
exponentiated power function.

Table 11 Parameter estimates and standard errors in parenthesis for Meeker and Escobar dataset form ≤ x
and g, 𝛾 ≥ x.

Model Estimates (Standard Errors)

�̂� ̂𝛽 â b̂ ̂𝜃 ̂𝜆

EPF
0.15 0.41 − − −

(0.0464) (0.0849)

KPF
0.50 0.22 − − 0.67 −

(62.6313) (0.0446) (83.6549)

OGEP
1.44 0.21 − − − 0.005
(0.58) (0.05) (0.003)

WPF
− 3.38 0.81 0.21 − −

(1.3170) (0.2509) (0.0487)

MOPF
11.80 0.28 − − − −
(13.33) (0.27)

GPF
0.23 − − − − −

(0.0507)
EPF = exponentiated power function; GPF = generalized power function; WPF =Weibull power function;
KPF = Kumaraswamy power function; MOPF = Marshall-Olkin power function, OGEPF = odd generalized
exponentiated power function.

The following fitted PDFs, CDFs, competingmodels, KaplanMeier survival and probability probability (PP) plots are drafted over empirical
histogram for Aarset data, presented in Figures 8–11, respectively.Pdf_Folio:310
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Table 12 Information criterions and goodness-of-fit statistics for Meeker and Escobar dataset.

Model -LogL AIC BIC HQIC CAIC W* A*

EPF 119.63 243.26 246.06 244.15 243.70 0.09 0.85
KPF 125.21 256.41 260.62 257.76 257.34 0.19 1.45
WPF 152.58 311.15 315.36 312.50 312.08 0.08 0.75
OGEP 154.37 314.74 318.94 316.08 315.66 0.28 1.92
GPF 154.37 314.74 318.94 316.08 315.66 0.28 1.92
MOPF 165.53 335.06 337.87 335.96 335.51 0.34 2.30
EPF = exponentiated power function; GPF = generalized power function; WPF = Weibull power function;
KPF = Kumaraswamy power function; MOPF = Marshall-Olkin power function, OGEPF = odd generalized
exponentiated power function.
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The following fitted PDFs, CDFs, competing models, Kaplan Meier survival and PP plots are drafted over empirical histogram for Meeker
and Escobar data, presented in Figures 12–15, respectively.

5. CONCLUSION

In this article, we have developed a flexible model that demonstrates the bathtub-shaped density and failure rate functions and addresses the
most efficient and consistent results, over the data follows to the bathtub-shaped phenomena. The proposed distribution is the exponenti-
ated form of generalized power function distribution and it is referred to as the exponentiated power function (EPF) distribution. Numerous
structural and reliability measures are derived and discussed. Model parameters are estimated by the method of maximum likelihood esti-
mation and the Monte Carole simulation is carried out as well to investigate the performance of the MLEs. Two datasets from engineering
sectors discussed by Aarset and Meeker and Escobar, are used to reveal the superiority of EPF distribution over its competing models.
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power function (EPF) distribution for Aarset data
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Escobar data
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