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ABSTRACT
Circular regular graph designs play an important role in the design of experiments where most of the balanced incomplete
block designs require a large number of blocks. In this article, circular regular graph designs are constructed in blocks of size
four through cyclic shifts. Without studying the complete design, some standard properties of the designs can be observed only
through the sets of shifts. Therefore, method of cyclic shifts has an edge over existing methods.
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1. INTRODUCTION

Block designs are used in experimental planning with the purpose of maximizing the information extracted from a given number of experi-
ments. If homogeneous blocks of size k are available to accommodate all the k treatments, a randomized complete block design is preferred.
Incomplete block designs are used in situations where all the treatment combinations could not be run in each block. The most popular
incomplete block designs are balanced incomplete block designs (BIBDs) introduced by Yates [1]. BIBDs compare all treatments pairs with
equal precision. As the class of BIBDs do not fit for many experimental situations because often these designs require a large number of
replications, to overcome this Bose and Nair [2] introduced a class of binary, equireplicate and proper designs called partially balanced
incomplete block designs (PBIBDs). Bose [3] established the relation between PBIBDs and strongly regular graphs. Bose and Shimamoto
[4] are first to introduce the concept of association scheme in PBIBDs. Bose [5] used the graph theoretic method for the study of association
schemes of PBIBDs and also shown that strongly regular graph emerges from PBIBD with two associate class.

A PBIBD is obtained by identifying the v treatments with the v objects of an association scheme arranging into b blocks satisfying the
following conditions:

• Each block contains k treatments.

• Each treatment occurs in r blocks.

• If two treatments are ith associates, they occur together in 𝜆i blocks.
• Each treatment has exactly ni ith associates.

• Given any two treatments which are ith associates, the number of treatments common to the jth associates of the first, and the kth
associates of the second is and is independent of the pair of treatments.

An associate class is a set of treatment pairs where each pair from the set occur together the same number of times, 𝜆i . Regular graph design
(RGD) is an important class of PBIB designs with two association scheme. A RGD (v, k, r) is a collection of blocks of size k on a v-set (with
no restriction on repeated blocks) such that every element occurs in r blocks and any pair of objects occur together in either 𝜆1 or 𝜆2 blocks,
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where 𝜆1 is some constant and λ2 = λ1 + 1 RGDs were introduced by John and Mitchell [6]. Kreher et al. [7] discussed the existence of
resolvable RGDs with block size 4, 8, 12 and 16 points. A design is resolvable if its set of blocks can be partitioned into r parallel classes or
resolutions such that each element occurs in exactly one block in each class. Barandag et al. [8] considered the association scheme which
is related to the flag algebra of a BIBD, with λ = 1. By finding a suitable equivalence of this scheme, they constructed a 2-class association
scheme. Moreover, each 2-class association scheme is equivalent to a strongly regular graph. Cakiroglu [9] constructed optimal RGDs by
pijkadding the blocks of a BIBD repeatedly to the original design and presented the best RGDs for v ≤ 20, k ≤ 10 and replication r ≤ 10.

Nair andRao [10] have developed a set of sufficient combinatorial conditionswhich lead to construction of confounded designs. A catalogue
of different PBIB on two associate class designs can be found in Clatworthy [11]. Cheng andWu [12] constructed nearly BIBDs. Wallis [13]
discussed measures of optimality of RGDs from a combinatorial viewpoint. Various properties of these designs were also discussed. Kumar
[14] has given the construction of PBIBDs through unreduced BIBDs. Waliker et al. [15] have established the relation between minimum
dominating sets of a graph with the blocks of PBIBDs. Using method of cyclic shifts, Yasmin et al. [16] constructed some classes of BIBDs.
In this study, RGDs are constructed in blocks of size four through method of cyclic shifts.

2. METHOD OF CYCLIC SHIFTS

Method of cyclic shifts introduced by Iqbal [17] is simplified here only for BIBDs, PBIBDs and RGDs. In this construction, v treatments are
labeled as 0, 1, 2, … , v − 1. For further detail, see Yasmin et al. [16].

Let Sj = [qj1, qj2, … , qj(k−1)] be set(s) of shifts where 1 ≤ qji ≤ v − 1. A design is BIBD if each element of S∗j contains all elements

1, 2, … , v−1, equal number of times, say, 𝜆.Where Sj∗ = [qj1, qj2, … , qj(k−1),
(
qj1 + qj2

)
,
(
qj2 + qj3

)
, … ,

(
qj(k−2) + qj(k−1)

)
,
(
qj1 + qj2 + qj3

)
,(

qj2 + qj3 + qj4
)
, … ,

(
qj(k−3) + qj(k−2) + qj(k−1)

)
, … ,

(
qj1 + qj2 + … + qj(k−1)

)
, v − qj1, v − qj2, … , v − qj(k−1), v −

(
qj1 + qj2

)
, v −(

qj2 + qj3
)
, … , v −

(
qj(k−2) + qj(k−1)

)
, v −

(
qj1 + qj2 + qj3

)
, v −

(
qj2 + qj3 + qj4

)
, … , v −

(
qj(k−3) + qj(k−2) + qj(k−1)

)
, … ,

v − (qj1 + qj2 + … + qj(k−1))]. If 𝜆 has two values as 𝜆1 and λ2 = λ1 + 1 then it is RGD (PBIBD with two associate class).

Example 2.1

RGD is constructed from the set of shifts [2, 1, 4] for v = 9 and k = 4 with λ1 = 1 and λ2 = 2.

Here S = [2, 1, 4], v = 9 and k = 4 then S∗ = [2, 1, 4, 3, 5, 7, 7, 8, 5, 6, 4, 2] contains each of 1, 2, …, 8 either once or twice, according to the
method of cyclic shifts, it is a RGD. Now we explain the procedure to complete the design from the given set of shifts [2, 1, 4].

Consider 0, 1, …, and 8 as the elements of first unit for all blocks. To get the elements of second units for all blocks, add 2 (mod 9) to the
each element of first unit for all blocks. To get the elements of third units for all blocks, add 1 (mod 9) to the each element of second unit
for all blocks. Similarly add 4 (mod 9) to get the elements of fourth units for all blocks.

B1 B2 B3 B4 B5 B6 B7 B8 B9

0 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 0 1
3 4 5 6 7 8 0 1 2
7 8 0 1 2 3 4 5 6

3. CONSTRUCTION OF RGDS IN BLOCKS OF SIZE FOUR

In this section, RGDs are constructed in blocks of size four through following i sets of cyclic shifts.

Sj = [sj1, sj2, sj3] ; j = 1, 2, … , i.

Such that

i. 1 ≤ sj1, sj2, sj3 ≤ v − 1,

ii.
(
sj1 + sj2 + sj3

)
mod v ≠ 0,

iii. For λ1 = 0 and λ2 = 1, each of 1, 2, … , v − 1 appears once or no time in S*.Pdf_Folio:315
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iv. For λ1 = 1 and λ2 = 2, each of 1, 2, … , v − 1 appears once or twice in S*.

v. S∗ = {sj1, sj2, sj3, sj1 + sj2, sj2 + sj3, sj1 + sj2 + sj3, v − sj1, v − sj2, v − sj3, v − (sj1 + sj2), v − (sj2 + sj3), v − (sj1 + sj2 + sj3)mod v

In these designs, any pair of treatments which are first associates occur in exactly 𝜆1 blocks and second associates occur together in exactly
𝜆2 blocks, together. RGDs have eight parameters (v, b, r, k, 𝜆1, 𝜆2, n1, n2) of kind I and six parameters (pijk, i, j, k = 1, 2) of kind II. The
parameters of kind II may be arranged in the form of two symmetric matrices (P-matrices).

P1 =
(

p111 p112
p121 p122

)
andP2 =

(
p211 p212
p221 p222

)
RGDs constructed in these series are cyclic, therefore, general expression of P matrices can be written as

P1 =
(

𝛼 n1 − 𝛼 − 1
n1 − 𝛼 − 1 n2 − n1 + 𝛼 + 1

)
and P2 =

(
𝛽 n1 − 𝛽

n1 − 𝛽 n2 − n1 + 𝛽 − 1

)
where p111 = α is the number of treatments common to first associates of two treatments. Where these two treatments are first associates
of each other. Similarly, p211 = β is the number of treatments common to first associates of two treatments. Which these two treatments are
second associates of each other.

Series 3.1: RGDs can be constructed for v = 6w + 3, k = 4, b = vw, r = 4w with n1 = 4, n2 = v − 5, λ1 = 1 and λ2 = 2 through w sets of
shifts. P-matrices for these designs are

P1 =
(

𝛼 3 − 𝛼
3 − 𝛼 10 − v + 𝛼

)
and P2 =

(
𝛽 4 − 𝛽

4 − 𝛽 8 − v + 𝛽

)

Example 3.1

Set of shifts [2, 1, 4] provides RGD for v = 9, k = 4 with n1 = n2 = 4, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
0 3
3 1

)
and P2 =

(
3 1
1 2

)
For the convenience of readers, first and second associates of all treatments for this design are arranged in the following table:

Treatment No. First Associates Second Associates

0 1, 3, 6, 8 2, 4, 5, 7
1 0, 2, 4, 7 3, 5, 6, 8
2 1, 3, 5, 8 0, 4, 6, 7
3 0, 2, 4, 6 1, 5, 7, 8
4 1, 3, 5, 7 0, 2, 6, 8
5 2, 4, 6, 8 0, 1, 3, 7
6 0, 3, 5, 7 1, 2, 4, 8
7 1, 4, 6, 8 0, 2, 3, 5
8 0, 2, 5, 7 1, 3, 4, 6

Here, n1 = n2 = 4 and the parameters of kind II are

p111 = α = 0, p211 = β = 3, p112 = p121 = n1 − 𝛼 − 1 = 4 – 0 – 1 = 3,
p122 = n2 − n1 + 𝛼 + 1 = 4 – 4 + 0 + 1 = 1, p212 = p221 = n1 − 𝛽 = 4 – 3 = 1,
p222 = n2 − n1 + 𝛽 − 1 = 4–4 + 3 − 1 = 2

P1 =
(
0 3
3 1

)
, P2 =

(
3 1
1 2

)
Consider two treatments that are first associates of each other, treatment 0 and 1 are first associates; there is no treatment common in first
associates of treatment 0 and 1, hence p111 = α = 0. Similarly, there are three treatments 3, 6, 8 (or 2, 4, 7) that are common in first associates
of treatment 0 and second associates of treatment 1 (or common in second associates of treatment 0 and first associates of treatment 1),Pdf_Folio:316
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then p112 = p121 = 3. And there is only one treatment that is common in second associates of treatment 0 and 1 which is 5, therefore, p122 = 1.
Similarly, P2-matrix can be constructed.

Catalogue of RGDs constructed under Series 3.1 is presented in Table A.1 of Appendix A.

Series 3.2: RGDs can be constructed for v = 12w + 5, k = 4, b = vw, r = 4w with n1 = 4, n2 = v − 5, λ1 = 1 and λ2 = 0 through w sets of
shifts. P-matrices for these designs are

P1 =
(

𝛼 3 − 𝛼
3 − 𝛼 10 − v + 𝛼

)
andP2 =

(
𝛽 4 − 𝛽

4 − 𝛽 8 − v + 𝛽

)

Example 3.2

Set of shifts [1, 2, 4] provides RGD for v = 7, k = 4, b = 17, r = 4 with n1 = 4, n2 = 12, λ1 = 1 and λ2 = 0.

P-matrices for this design are P1 =
(
0 3
3 9

)
and P2 =

(
1 3
3 8

)
Catalogue of RGDs constructed under Series 3.2 is presented in Table A.2 of Appendix A.

Series 3.3: RGDs can be constructed for v = 12w − 1, k = 4, b = vw, r = 4w with n1 = v − 3, n2 = 2, λ1 = 1 and λ2 = 2 through w sets of
shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 4
v − 𝛼 − 4 𝛼 − v + 6

)
andP2 =

(
𝛽 v − 𝛽 − 3

v − 𝛽 − 3 𝛽 − v + 4

)

Example 3.3

Set of shifts [1, 2, 4] provides RGD for v = 11, k = 4, b = 11, r = 4 with n1 = 8, n2 = 2, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
5 2
2 0

)
and P2 =

(
7 1
1 0

)
Following are RGDs for v = 11 and 23

Parameters Sets of Shifts

v b r n1 n2 𝛼 𝛽

11 11 4 8 2 5 7 [1, 2, 4]
23 46 8 20 2 17 19 [1, 2, 7] + [5, 6, 8]

Series 3.4: RGDs can be constructed for v = 12w + 5, k = 4, b = v (w + 1), r = 4 (w + 1) with n1 = v − 9, n2 = 8, λ1 = 1 and λ2 = 2
through w + 1 sets of shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 10
v − 𝛼 − 10 𝛼 − v + 18

)
andP2 =

(
𝛽 v − 𝛽 − 9

v − 𝛽 − 9 𝛽 − v + 16

)

Example 3.4

Sets of shifts [1, 2, 4] and [5, 8, 3] provide RGD for v = 17, k = 4, b = 34, r = 8 with n1 = 8, n2 = 8, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
4 3
3 5

)
and P2 =

(
3 5
5 2

)
Catalogue of RGDs constructed under Series 3.4 is presented in Table A.3 of Appendix A.

Series 3.5: RGDs can be constructed for v = 12w − 4, k = 4, b = vw, r = 4w with n1 = v − 6, n2 = 5, λ1 = 1 and λ2 = 2 through w sets of
shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 7
v − 𝛼 − 7 𝛼 − v + 12

)
andP2 =

(
𝛽 v − 𝛽 − 6

v − 𝛽 − 6 𝛽 − v + 10

)
Pdf_Folio:317
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Example 3.5

Set of shifts [2, 1, 4] provides RGD for v = 8, k = 4, b = 8, r = 4 with n1 = 2, n2 = 5, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
0 1
1 4

)
and P2 =

(
0 2
2 2

)
Catalogue of RGDs constructed under Series 3.5 is presented in Table A.4 of Appendix A.

Series 3.6: RGDs can be constructed for v = 12w + 2, k = 4, b = v (w + 1), r = 4 (w + 1) , n1 = v − 12 with n2 = 11, λ1 = 1 and λ2 = 2
through w + 1 sets of shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 7
v − 𝛼 − 7 𝛼 − v + 12

)
andP2 =

(
𝛽 v − 𝛽 − 6

v − 𝛽 − 6 𝛽 − v + 10

)

Example 3.6

Sets of shifts [1, 2, 5] and [4, 1, 3] provide RGD for v = 14, k = 4, b = 28, r = 8 with n1 = 2, n2 = 11, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
0 1
1 10

)
and P2 =

(
0 2
2 8

)
Catalogue of RGDs constructed under Series 3.6 is presented in Table A.5 of Appendix A.

Series 3.7: RGDs can be constructed for v = 12w − 2, k = 4, b = vw, r = 4w with n1 = v − 4, n2 = 3, λ1 = 1 and λ2 = 2 through w sets of
shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 5
v − 𝛼 − 5 𝛼 − v + 8

)
andP2 =

(
𝛽 v − 𝛽 − 4

v − 𝛽 − 4 𝛽 − v + 6

)

Example 3.7

Set of shifts [2, 1, 4] provides RGD for v = 10, k = 4, b = 10, r = 4 with n1 = 6, n2 = 3, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
2 3
3 0

)
and P2 =

(
4 2
2 0

)
Following are RGDs for v = 10 and 22:

Parameters Sets of Shifts

v b r n1 n2 𝛼 𝛽

10 10 4 6 3 2 4 [2, 1, 4]
22 44 8 18 3 14 16 [4, 1, 7] and [2, 6, 3]

Series 3.8: RGDs can be constructed for v = 12w + 4, k = 4, b = v (w + 1) , r = 4 (w + 1) with n1 = v − 10, n2 = 9, λ1 = 1 and λ2 = 2
through w + 1 sets of shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 11
v − 𝛼 − 11 𝛼 − v + 20

)
andP2 =

(
𝛽 v − 𝛽 − 10

v − 𝛽 − 10 𝛽 − v + 18

)

Example 3.8

Sets of shifts [1, 2, 4] and [5, 8, 9] provide RGD for v = 16, k = 4, b = 32, r = 8, with n1 = 6, n2 = 9, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
2 3
3 6

)
and P2 =

(
2 4
4 4

)
Catalogue of RGDs constructed under Series 3.8 is presented in Table A.6 of Appendix A.Pdf_Folio:318
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Series 3.9: RGDs can be constructed for v = 12w + 6, k = 4, b = v (w + 1) , r = 4 (w + 1) with n1 = v − 8, n2 = 7, λ1 = 1 and λ2 = 2
through w + 1 sets of shifts. P-matrices for these designs are

P1 =
(

𝛼 v − 𝛼 − 9
v − 𝛼 − 9 𝛼 − v + 16

)
andP2 =

(
𝛽 v − 𝛽 − 8

v − 𝛽 − 8 𝛽 − v + 14

)

Example 3.9

Sets of shifts [1, 2, 4] and [5, 8, 9] provide RGD for v = 18, k = 4, b = 36, r = 8 with n1 = 10, n2 = 7, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
3 6
6 1

)
and P2 =

(
6 4
4 2

)
Catalogue of RGDs constructed under Series 3.9 is presented in Table A.7 of Appendix A

Following are some more RGDs for k = 4.

Design 1. Set of shifts [1, 2, 4] provides RGD for v = 12, k = 4, b = 12, r = 4 with n1 = 10, n2 = 1, λ1 = 1 and λ2 = 2.

P-matrices for this design are P1 =
(
8 1
1 0

)
and P2 =

(
10 0
0 0

)
Design 2. Set of shifts [2, 8, 1] provides RGD for v = 14, k = 4, b = 14, r = 4 with n1 = 1, n2 = 12, λ1 = 1 and λ2 = 0.

P-matrices for this design are P1 =
(
0 0
0 12

)
and P1 =

(
0 1
0 10

)
Design 3. Set of shifts [2, 3, 4] provides RGD for v = 15, k = 4, b = 15, r = 4 with n1 = 2, n2 = 12, λ1 = 1 and λ2 = 0.

P-matrices for this design are P1 =
(
0 1
1 11

)
and P1 =

(
0 1
1 10

)
Design 4. Sets of shifts [3, 4, 5] and [21, 19, 25] provide RGD for v = 27, k = 4, b = 54, r = 4 with n1 = 24, n2 = 2, λ1 = 1 and λ2 = 0.

P-matrices for this design are P1 =
(
23 1
1 0

)
and P1 =

(
22 1
1 0

)
In Appendix B, designs constructed in this article are compared with the RGDs already available in literature.

4. CONCLUSION

Because of the importance of RGDs, it is much needed to have a comprehensive list/catalogues of this class of designs. Therefore, RGDs
have been constructed in this article for blocks of size four through method of cyclic shifts. Nine series have been proposed along with
some individual designs. Proposed designs have also been compared with the designs constructed by Bose et al. [18], John et al. [19] and
Clatworthy [11]. Our proposed designs are new and have the efficiency greater than or equal to that of existing designs.
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APPENDIX A

Table A.1 Catalog of regular graph designs (RGDs) under Series 3.1 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

9 4 4 4 0 3 [2, 1, 4]
15 8 4 10 0 1 [1, 2, 4] + [2, 3, 4]
21 12 4 16 0 0 [1, 5, 3] + [1, 10, 4] + [2, 3, 4]
27 16 4 22 0 0 [1, 5, 6] + [2, 8, 9] + [4, 3, 13] + [1, 3, 9]
33 20 4 28 0 0 [2, 8, 3] + [1, 5, 12] + [4, 7, 9] + [4, 14, 5] + [1, 6, 2]
39 20 4 34 0 0 [2, 8, 3] + [1, 5, 12] + [4, 7, 9] + [4, 14, 5] + [3, 12, 2] + [8, 1, 6]
45 28 4 40 0 0 [1, 9, 5] + [2, 1, 19] + [2, 10, 15] + [3, 8, 16] + [4, 13, 6] + [5, 7, 9] + [6, 7, 4]
51 32 4 46 0 0 [1, 10, 12] + [3, 4, 14] + [5, 4, 16] + [6, 2, 13] + [12, 5, 19] + [1, 8, 2] + [13, 7, 17] + [19, 3, 23]

Table A.2 Catalog of regular graph designs (RGDs) under Series 3.2 with 𝜆1 = 0 and 𝜆2 = 1.

v r n1 n2 𝛼 𝛽 Sets of Shifts

17 4 4 12 0 1 [1, 2, 4]
29 8 4 24 0 1 [1, 2, 8] + [4, 5, 7]
41 12 4 36 0 0 [1, 5, 4] + [2, 11, 7] + [14, 3, 16]
53 16 4 48 0 0 [1, 9, 12] + [2, 15, 13] + [3, 4, 20] + [5, 6, 8]
65 20 4 60 0 1 [1, 9, 12] + [2, 15, 13] + [3, 4, 20] + [6, 5, 14] + [18, 16, 23]
77 24 4 72 0 0 [2, 10, 25] + [3, 11, 22] + [4, 5, 23] + [8, 21, 17] + [15, 1, 18] + [20, 6, 24]
89 28 4 84 0 0 [1, 2, 40] + [4, 5, 30] + [7, 8, 18] + [10, 11, 16] + [12, 13, 23] + [14, 20, 24] + [22, 6, 32]

Table A.3 Catalog of regular graph designs (RGDs) under Series 3.4 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

17 8 8 8 2 4 [1, 2, 4] + [5, 8, 1]
29 12 20 8 16 13 [1, 5, 10] + [2, 9, 3] + [8, 4, 7]
41 16 32 8 26 27 [1, 5, 4] + [2, 11, 7] + [14, 3, 16] + [1, 15, 12]
53 20 44 8 39 41 [1, 9, 12] + [2, 15, 13] + [3, 4, 20] + [5, 6, 8] + [16, 1, 18]
65 24 56 8 50 52 [1, 9, 12] + [2, 15, 13] + [3, 4, 20] + [6, 5, 14] + [18, 16, 23] + [1, 32, 29]
77 28 68 8 59 61 [1, 2, 30] + [4, 5, 12] + [6, 7, 24] + [10, 8, 20] + [16, 11, 14] + [23, 22, 26] + [15, 19, 16]
89 32 80 8 [1, 2, 40] + [4, 5, 30] + [10, 11, 16] + [14, 20, 24] + [1, 8, 18] + [12, 13, 23] + [22, 6, 32] + [1, 19, 17]

Table A.4 Catalog of regular graph designs (RGDs) under Series 3.5 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

8 4 2 5 0 0 [2, 1, 4]
20 8 14 5 8 12 [1, 6, 9] + [3, 2, 8]
44 16 38 5 32 34 [1, 14, 2] + [3, 7, 12] + [6, 5, 13] + [4, 8, 9]
56 20 50 5 46 46 [2, 16, 10] + [3, 17, 4] + [5, 9, 13] + [8, 25, 12] + [1, 6, 15]
68 24 62 5 56 58 [2, 22, 10] + [13, 4, 14] + [5, 15, 25] + [7, 1, 11] + [26, 3, 30] + [6, 21, 16]
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Table A.5 Catalog of regular graph designs (RGDs) under Series 3.6 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

14 8 2 11 0 0 [1, 2, 5] + [4, 1, 3]
26 12 14 11 8 6 [1, 3, 8] + [2, 5, 10]
38 16 26 11 17 16 [1, 3, 8] + [2, 5, 10] + [6, 3, 13] + [14, 18, 19]
50 20 38 11 28 31 [1, 8, 3] + [2, 5, 10] + [6, 3, 13] + [14, 4, 19] + [21, 24, 25]
62 24 50 11 40 40 [1, 8, 10] + [2, 15, 11] + [3, 20, 4] + [5, 16, 6] + [7, 13, 12] + [14, 29, 31]
74 28 62 11 50 54 [1, 8, 10] + [2, 15, 11] + [3, 20, 4] + [6, 16, 13] + [14, 7, 25] + [5, 31, 12] + [33, 34, 37]
86 32 74 11 68 64 [1, 8, 10] + [2, 15, 11] + [3, 20, 4] + [6, 16, 13] + [14, 7, 25] + [12, 31, 5] + [37, 41, 42] + [30, 33, 39]
98 36 86 11 [1, 10, 30] + [2, 15, 31] + [3, 18, 24] + [16, 4, 29] + [5, 34, 12] + [6, 19, 13] + [8, 14, 23] + [28, 27, 36] + [9, 26, 44]

Table A.6 Catalog of regular graph designs (RGDs) under Series 3.8 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

16 8 6 9 2 2 [1, 2, 4] + [5, 8, 9]
28 12 18 9 8 16 [1, 2, 4] + [5, 8, 9] + [10, 14, 12]
40 16 30 9 20 22 [1, 2, 4] + [5, 8, 9] + [14, 16, 21] + [12, 15, 20]
52 20 42 9 32 34 [1, 10, 13] + [2, 6, 12] + [3, 14, 16] + [4, 5, 21] + [7, 25, 15]
64 24 54 9 46 46 [1, 10, 13] + [2, 6, 12] + [3, 16, 14] + [4, 5, 21] + [15, 7, 25] + [27, 28, 29]
76 28 66 9 56 60 [1, 10, 13] + [2, 6, 12] + [16, 3, 14] + [4, 5, 21] + [7, 15, 25] + [31, 35, 38] + [32, 37, 34]
88 32 78 9 74 70 [1, 20, 19] + [2, 16, 26] + [4, 13, 30] + [3, 5, 28] + [6, 23, 9] + [14, 10, 25] + [11, 31, 37] + [7, 15, 12]
100 36 90 9 [1, 20, 19] + [2, 16, 26] + [4, 13, 30] + [5, 28, 3] + [6, 23, 9] + [14, 10, 25] + [8, 37, 11] + [7, 15, 12] + [41, 46, 50]

Table A.7 Catalog of regular graph designs (RGDs) under Series 3.9 with 𝜆1 = 1 and 𝜆2 = 2.

v r n1 n2 𝛼 𝛽 Sets of Shifts

18 8 10 7 3 6 [1, 2, 4] + [5, 8, 9]
30 12 22 7 16 19 [1, 2, 15] + [4, 5, 14] + [6, 8, 10]
42 16 34 7 26 30 [1, 5, 7] + [3, 11, 9] + [8, 2, 16] + [4, 17, 15]
54 20 46 7 38 40 [1, 5, 7] + [3, 11, 9] + [2, 8, 16] + [4, 17, 15] + [19, 25, 27]
66 24 58 7 52 50 [1, 12, 5] + [2, 27, 6] + [3, 7, 14] + [4, 19, 11] + [8, 20, 22] + [16, 9, 26]
78 28 70 7 62 66 [12, 1, 5] + [4, 19, 11] + [3, 7, 14] + [16, 9, 26] + [2, 29, 8] + [15, 17, 28] + [22, 20, 38]
90 32 82 7 78 76 [1, 15, 17] + [2, 20, 23] + [3, 4, 37] + [13, 5, 21] + [10, 14, 11] + [8, 19, 9] + [6, 34, 38] + [12, 30, 31]

APPENDIX B

v Reference r 𝜆1, 𝜆2 E1 E2 Overall E

8

b SR7 4 0, 2 0.75 0.86 0.84
b SR9 6 2, 3 0.83 0.87 0.85
d B6 4 0.85
aSer3.5 (0, 2, 3, 7) 4 1, 2 0.8083 0.8661 0.8487

9

aSer3.1 [1, 2, 4] 4 1, 2 0.8041 0.8616 0.8319
b R8 4 3, 1 0.94 0.77 0.80
b LS1 4 1, 2 0.80 0.87 0.83
d B12 4 0.83

10

b S17 4 4, 1 1 0.77 0.79
b T1 2 1, 0 0.83 0.71 0.79
b T2 4 2, 0 0.83 0.71 0.79
b T12 4 1, 2 0.80 0.87 0.82

(continued)
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Table A.1 (Continued)

v Reference r 𝜆1, 𝜆2 E1 E2 Overall E

c T33 4 0.82
aSer3.7 4 1, 2 0.7981 0.8646 0.82

11

aSer3.3 4 1, 2 0.8029 0.86979 0.816
d A25 4 0.817
b SR20 3 0, 1 0.75 0.82 0.80
b R15 4 2, 1 0.88 0.81 0.81
c,d R109/B36 4 0.813
aDesign 1 4 1, 2 0.8077 0.875 0.8134

14
b R24 4 0, 1 0.75 0.81 0.80
aSer3.6 8 1, 2 0.7801 0.8101 0.8053
aDesign 2 4 0, 1 0.75 0.8077 0.8029

15

aSer3.1 8 1, 2 0.7776 0.8087 0.7996
aDesign 3 4 0, 1 0.7452 0.8073 0.7978
b R27 4 0, 1 0.75 0.80 0.80
b R31 8 1, 2 0.78 0.81 0.80

16

b SR40 4 0, 1 0.75 0.80 0.79
b R36 6 2, 1 0.83 0.78 0.79
b LS12 7 2, 1 0.82 0.78 0.79
b LS15 8 2, 1 0.81 0.78 0.80
aSer3.8 8 1, 2 0.7778 0.8077 0.7954

17
b C5 8 1, 2 0.78 0.81 0.79
aSer3.2 4 0, 1 0.7356 0.7969 0.7806
aSer3.5 8 1, 2 0.775 0.8073 0.7908

18
b S62 8 8, 1 1 0.72 0.73
aSer3.9 8 1, 2 0.7734 0.8071 0.7869

20
b SR52 5 0, 1 0.75 0.79 0.78
aSer3.5 8 1, 2 0.7744 0.8096 0.7834

21 aSer3.1 12 1, 2 0.7692 0.7894 0.7853

22
b S82 10 10, 1 1 0.71 0.72
aSer3.7 8 1, 2 0.7775 .8099 0.7819

23 aSer3.3 8 1, 2 0.7787 0.8112 0.7816

24
b R46 7 0, 1 0.75 0.78 0.78
b R49 10 2, 1 0.80 0.78 0.78

26
aSer3.5 12 1, 2 0.7683 0.7875 0.7766
b R53 8 0, 1 0.75 0.78 0.78

27
aDesign 4 8 0, 1 0.7487 0.7799 0.7774
b R54 8 0, 1 0.75 0.78 0.78
aSer3.1 12 1, 2 0.7688 0.788 0.786

28

aSer3.8 12 1, 2 0.7648 0.7903 0.7731
b SR68 7 0, 1 0.75 0.78 0.77
b R55 8 0, 1 0.75 0.78 0.77
b R56 10 2, 1 0.80 0.77 0.78

29
aSer3.2 8 0, 1 0.7462 0.7773 0.7727
aSer3.4 12 1, 2 0.7693 0.7881 0.7746

30
aSer3.9 12 1, 2 0.7679 0.7899 0.7731
b R57 10 2, 1 0.80 0.77 0.78

32 b SR74 8 0, 1 0.75 0.77 0.77
33 aSer3.1 16 1, 2 0.7641 0.7791 0.7715
38 aSer3.6 16 1, 2 0.7632 0.7782 0.7676

(continued)
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Table A.2 (Continued)

v Reference r 𝜆1, 𝜆2 E1 E2 Overall E

39 aSer3.1 16 1, 2 0.7623 0.7789 0.7666

40
aSer3.8 16 1, 2 0.7627 0.7786 0.7664
b S1.12 4 1, 0 0.77 0.71 0.73
b S1.13 8 2, 0 0.77 0.71 0.73

41
aSer3.2 12 0, 1 0.7483 0.7686 0.7665
aSer3.4 16 1, 2 0.7641 0.7796 0.7671

42 aSer3.9 16 1, 2 0.7633 0.7799 0.7661
44 aSer3.5 16 1, 2 0.7640 0.7799 0.7658
45 aSer3.1 28 1, 2 0.7586 0.7674 0.7666
50 aSer3.6 20 1, 2 0.7606 0.7735 0.7635
51 aSer3.1 20 1, 2 0.7613 0.7736 0.7637
52 aSer3.8 20 1, 2 0.7606 0.7733 0.7629

53
aSer3.2 16 0, 1 0.7491 0.7643 0.7631
aSer3.4 20 1, 2 0.7617 0.7744 0.7636

54 aSer3.9 20 1, 2 0.7611 0.7737 0.7627
56 aSer3.5 20 1, 2 0.7619 0.7742 0.7630
62 aSer3.6 24 1, 2 0.7591 0.7694 0.7610
63 aSer3.1 24 1, 2 0.7594 0.7699 0.7611
64 aSer3.8 24 1, 2 0.7594 0.7697 0.7609

65
aSer3.2 20 0, 1 0.7494 0.7618 0.7611
aSer3.4 24 1, 2 0.7597 0.7702 0.761

66 aSer3.9 24
68 aSer3.5 24 1, 2 0.7597 0.7702 0.7605
74 aSer3.6 28 1, 2 0.7577 0.767 0.7591
76 aSer3.8 28 1, 2 0.7579 0.7672 0.7591

77
aSer3.2 24 0, 1 0.7496 0.7598 0.7593
aSer3.4 28 1, 2 0.7581 0.7671 0.759

78 aSer3.9 28 1, 2 0.7582 0.7674 0.759
(a) Proposed designs of this article. (b) Designs in Bose et al. [18]. (c) Designs in Clatworthy [11]. (d) Designs in John et al. [19].
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