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ABSTRACT
In this paper a generalized exponential distribution is considered for analyzing left-censored lifetime data as such mecha-
nisms are applicable when the observations become available in an ordered manner with some cases where the origin and
the event both occur prior to the start of follow-up. In the present study a test procedure is developed which will approxi-
mate a prescribed operating characteristics curve. We also done testing of hypothesis and tried to find values of r and C sub-
ject to the operating characteristics curve be such that L (α1) = Pr

(
acceptα = α1 whenα1 is the true value

)
= 1 − γ and

L (α2) = Pr
(
acceptα = α1 whenα2 is the true value

)
≤ β. By simulation technique it has been shown that a suitable value of

r is to be used for different values of γ and β.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Two-parameter generalized exponential (GE) distribution was originally introduced by Gupta and Kundu [1] as a skewed distribution,
and as an alternative to Weibull, gamma, or log-normal distribution. Because of the shape and scale parameters, it is observed that GE
distribution can take different shapes and it can be used quite effectively to analyze skewed data. Extensive work has been done by several
authors on GE distribution. See, e.g., by Gupta and Kundu [2–4], Raqab [5], Raqab and Ahsanullah [6], Zheng [7], and Mitra and Kundu
[8] studied the maximum likelihood estimators of the unknown parameters of the GE distribution for left-censored data.

GE distribution, which more accurately represents time to failure, is used instead of more commonly used exponential distribution.
Although, incorporation of GE distribution in life testing modeling adds to complexity of modeling and estimation, but due to its flexibility,
it fits more accurately to life data than exponential distribution.

The two-parameter GE distribution has the following density function:

f (x, α, λ) = αλ
(
1 − e−λ x)α−1 e−λ x, x > 0, α > 0, λ > 0 (1)

Cumulative distribution function (cdf)

F (x, α, λ) =
(
1 − e−λ x)α , x > 0, α > 0, λ > 0 (2)

Reliability function

R (x, α, λ) = 1 −
(
1 − e−λ x)α , x > 0, α > 0, λ > 0 (3)

Hazard function

h (x, α, λ) =
αλ

(
1 − e−λ x)α−1 e−λ x

1 −
(
1 − e−λ x

)α , x > 0, α > 0, λ > 0 (4)

Here α > 0 and λ > 0 are the shape and scale parameters respectively. For different values of the shape parameter, the density function can
take different shapes. From now on GE distribution with shape parameter α and scale parameter λ will be denoted by GE (α, λ).
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There is a widespread application and use of left-censoring or left-censored data in survival analysis and reliability theory, in which a subject
is left censored if it is known that the event of interest occurs some time before the recorded follow-up period. For example, a study conducts
as investigating factors influencing days to first oestrus in dairy cattle. You start observing your population (for argument’s sake) at 40
days after calving but find that several cows in the group have already had an oestrus event. These cows are said to be left censored at day
40, in medical studies patients are subject to regular examinations. Discovery of a condition only tells us that the onset of sickness fell in
the period since the previous examination and nothing about the exact date of the attack. Thus the time elapsed since onset has been left
censored. Similarly, we have to handle left-censored data when estimating functions of exact policy duration without knowing the exact
date of policy entry; or when estimating functions of exact age without knowing the exact date of birth. A study on the “Patterns of Health
Insurance Coverage among Rural and Urban Children” (Coburn et al. [9]) faces this problem due to the incidence of a higher proportion of
rural children whose spells were “left censored” in the sample (i.e., those children who entered the sample uninsured), and who remained
uninsured throughout the sample. Yet another study (Danzon et al. [10]) which used data on over 900 firms for the period 1988–2000
to estimate the effect on phase-specific (phases 1, 2 and 3) biotech and pharmaceutical R&D success rates of a firm’s overall experience,
its experience in the relevant therapeutic category, the diversification of its experience across categories, the industry’s experience in the
category, and alliances with large and small firms, saw that the data suffered from left censoring. This occurred, e.g., when a phase 2 trial was
initiated for a particular indicationwhere therewas no information on the phase 1 trial. Application can also be traced in econometricmodel,
e.g., for the joint determination of wages and turnover. Here, after the derivation of the corresponding likelihood function, an appropriate
dataset is used for estimation. For a model that is designed for a comprehensive matched employer–employee panel dataset with fairly
detailed information on wages, tenure, experience, and a range of other covariates, it may be seen that the raw dataset may contain both
completed and uncompleted job spells. A job durationmight be incomplete because the beginning of the job spells is not observed, which is
an incidence of left censoring (Bagger [11]). For some further examples, onemay refer to Balakrishnan and Varadan [12], Lee et al. [13], etc.

Put in general terms, let ……X (o),X (1),X (2),X (3), … .,X (r) the variable of interest of n subjects from some GE population is measured,
further let first (n−r) subjects are censored at X (1) the (n − r)th observation and the rest r ordered samples assumed at random from some
GE population and the data become available in such a way that the smallest observation comes first, the second smallest second,………..,
and finally the largest observation last.

The main aim of this paper is to establishing the Cramer Roa lower bound and efficiency of estimates with respect to Cramer Roa lower
bound. Besides that we also derived minimum variance of the biased estimates, also established testing of hypothesis and studied behavior
of operating characteristics (OC) curve of GE distribution. From the point of view of acceptance testing, the OC curve based on the r out
of n ordered observations for left-censored data (acceptance region of the form α̂(r,n) < C1 or α̂(r,n) > C2 is identical with that based on all
r out of r observations, details are given in the subsequent sections of the paper.

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, maximum likelihood estimators of the GE (𝛼, 𝜆) are derived in presence of left-censored observations. Let
X (1),X (2),X (3), … .,X (r) be the last r order statistics from a random sample of size n following GE (𝛼, 𝜆) distribution. For our convenience
we denote ordered statistics by X1,X2, … ,Xr, then the joint probability density function of the ordered statistics is given by

f (x1, x2, … ., xr; α, λ) =
n!
r! (F (x1))

n−r f (x1)… f (xr)

= n!
r!

(
1 − e−λ x1

)α(n−r) (αλ)r e−λ∑
r

i=1
xi

r

∏
i=1

(1 − e−λ xi )α−1

The log likelihood function of the observed sample is

L (α, λ) = ln (C) + r ln (α) + r ln (λ) − λ∑r

i=1
xi + (α − 1)

r

∑
i=1

ln(1 − e−λ xi )

+α (n − r) ln
(
1 − e−λ x1

)
; where C = n!

r!

The maximum likelihood estimation (MLE) of α say α̂(r,n) for known λ is

α̂(r,n) = α̂ = − r
∑r

˙
≀=1

ln
(
1 − e−λ xi

)
+ (n − r) ln

(
1 − e−λ x1

) = r
∑r

˙
≀=1

Ti + (n − r)T1
(5)

where Ti = ln
(
1 − e−λ xi

)−1 and T1 = ln
(
1 − e−λ x1

)−1
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The MLE α̂(r,n) is the biased estimate; however unbiased estimate can be constructed as

α̃(r,n) = α̃ = r − 1
r α̂(r,n) =

r − 1
∑r

.
≀=1

Ti + (n − r)T1
(6)

Result 1: If Xi are random variables independently and identically generalized exponentially distributed GED (α, λ), with λ known, then
Ti = ln

(
1 − e−λ xi

)−1 fallows Expo(α).
Result 2: α̂ the MLE of α has inverted gamma distribution [14] as given below:

f
(
α̂|α

)
= 1
αΓ (r + 1)e

−rα
α̂

( rα
α̂
)r+1

; α̂ ≥ 0, r, α ≥ 0 (7)

E (α̂) = rα
r − 1 and V (α̂) = r2α2

(r − 1)2 (r − 2)

Result 3: α̃ the unbiased estimate of α has inverted gamma distribution [14] as given below:

f
(
α̃|α

)
= 1
α (r − 1)Γ r e

−(r−1)α
α̃

(
(r − 1)α

α̃

)r+1

; α̃ ≥ 0, r > 0 (8)

E (α̃) = α and V (α̃) = α2
(r − 2)

The density (7) depends only on r and not on n, this is in fact identical with the density of α̂(r,r), i.e., MLE of α when r out of r observations
are tested.

3. CRAMER RAO LOWER BOUND (CRLB)

Cramer Rao lower bound unbiased, efficient, and sufficient estimate of MLE and unbiased estimate of the parameter α. It is also suggested
that an estimate of α which has minimum variance but is biased.

The log likelihood function of the observed sample is

L (α, λ) = ln (C) + r ln (α) + r ln (λ) − λ∑r

i=1
xi + (α − 1)∑r

i=1
ln(1 − e−λ xi )

+α (n − r) ln
(
1 − e−λ x1

)
; where C = n!

r!

L (α, λ) = ln (C) + r ln (α) + r ln (λ) − λ∑r

i=1
xi

+ (α − 1)
(
∑r

i=1
ln(1 − e−λ xi ) + (n − r) ln

(
1 − e−λ x1

))
+ (n − r) ln

(
1 − e−λ x1

)
(9)

Using Equation (5) or (6) in Equation (9) we have

= ln (C) + r ln (α) + r ln (λ) − λ∑r

i=1
xi + (α − 1)

(
− r
α̂
)
+ (n − r) ln

(
1 − e−λ x1

)
L (α) = C (λ, x) + r ln (α) − (α − 1)

( r
α̂
)

𝜕L (α)
𝜕α = r

α − r
α̂

Therefore E
(
𝜕L(α)
𝜕α

)2
= E

( r
α −

r
α̂
)2 ⇒ r2E

( 1
α −

1
α̂
)2 = r2E

( 1
α2 + 1

α̂2 − 2
αα̂

)
E
(
𝜕L (α)
𝜕α

)2

= r2
( 1
α2 +

2
α2 −

2
αα

)
⇒ E

(
𝜕L (α)
𝜕α

)2

= r2
α2
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Therefore Cramer Rao Lower Bound is α2

r2

Efficiency of the estimate α̂ with respect MVUE, Efficiency (α̂)= α2

r2 .
(r−1)2(r−2)

(rα)2

Efficiency (α̂) =
(
1 − 1

r

)2 (r − 2)
r2

Efficiency of the estimate α̃ with respect MVUE, Efficiency (α̃)= α2

r2 .
r−2
α2

Efficiency (α̃) = r − 2
r2

Clearly efficiency of α̂ is less than α̃.

Minimum variance biased estimate of α is α̂B =
(r−1)√(r−2)

r2
α̂ its variance coincides with Cramer Rao Lower Bound (CRLB).

4. DERIVATION OF TEST BASED ON THE r OUT OF n ORDERED FOLLOW-UP
OBSERVATIONS DRAWN FROM GED

In this section we develop a best test on the first r ordered observations (from a sample of size n) so as to decide between two values of
α, α1&α2 i.e.Ho : α = α1 andHo : α = α2. Case I: when α1 > α2 and case II: when α1 < α2.
By the best test we mean according to the usual Neyman–Pearson terminology a test which has the property that among all tests having a
fixed probability γ size of rejecting α = α1 when it is true, the test in question will have the largest possible chance of rejecting α = α1 when
the alternative α = α2 is true.
To derive the best test we use Neyman-Pearson (NP) lemma, according to the lemma a best test must be one for which the region of rejection
can be found from the inequality.

L (x1, x2, … ., xr, α2)
L (x1, x2, … ., xr, α1)

> k

n!
r! α

r
2λr∏r

i=1(1 − e−λ xi )α2−1 e
−λ∑r

i=1
xi (1 − e−λ x1 )α2(n−r)

n!
r! α

r
1λr∏r

i=1(1 − e−λ xi )α1−1 e
−λ∑r

i=1
xi (1 − e−λ x1 )α1(n−r)

> k

(α2 − α1) [
r

∑
i=1

ln
(
1 − e−λ xi

)
+ (n − r) ln

(
1 − e−λ x1

)
] > ln (k1)

where k1 =
(
k
(
α1
α2

)r)
,

Case I: when α1 > α2
Because α1 and α2 are preassigned constants such that α1 > α2, and using Equation (5) we have

(α2 − α1) [−
r
α̂ ] > ln (k1) ⇒ r(α1 − α2)

α̂ > ln (k1)

Since α1 andα2 are preassigned constants such that α1 > α2. It fallows at once that the region of rejection/critical region for α = α1 is

α̂ < r(α1 − α2)
ln (k1)

⇒ α̂ < C1, where C1 =
r(α1 − α2)
ln (k1)

i.e., best critical region is

W1 = {X : α̂ < C1} (10)

Case II when α1<α2:

(α2 − α1) [−
r
α̂ ] > ln (k2) ⇒ −r(α2 − α1)

α̂ > ln (k2) ; where k2 =
(
k
(
α2
α1

)−r)
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Since α1 andα2 are preassigned constants such that α2 > α1. It fallows at once that the region of rejection/critical region for α = α1 is

α̂ > − r(α2 − α1)
ln (k2)

⇒ α̂ > C2, where C2 = − r(α2 − α1)
ln (k2)

i.e., best critical region is

W2 = {X : α̂ > C2} (11)

5. DETERMINATION OF CONSTANTS C1 AND C2

The constants C1 andC2 are so chosen as to make the probability of each of the relations (10) and (11) equal to γ when the null hypothesis
Ho is true or in other words to meet the condition that the probability of rejecting α = α1 when true value equals γ, we need to choose
C1 andC2 so that

Case I when α1 > α2:

P {α̂ > C1| α = α1} = γ ⇒ P { 1α̂ > 1
C1
|Ho} = γ

To find C1 explicitly we use the result which states that α̂ has (7) as its probability density function and it can be very easily verified that
rα
α̂ ∼ Gamma (r)

Thus 2rα
α̂ ∼ Gamma

(
1
2
, r
)
i, e χ22r is a randomvariable which is distributed as chi-square with 2r degrees of freedom. Thus above probability

relation can be written as

P {2rαα̂ > 2rα1
C1

|α=α1
} = γ ⇒ P {χ2 (2r) > 2rα1

C1
|α=α1

} = γ (12)

Let us denote a chi-square variable with n degrees of freedom as χ2 (n) and let us define the constant χ2γ (n) by the equality
P [χ2 (n) > χ2γ (n)] = γ, where χ2γ (n) is the upper 100γ per cent point.

Then (12) can be written as 2rα1
C1

= χ2γ (2r) , this gives C1 =
2rα1

χ2γ(2r)
.

Hence (12) will be satisfied if the region of rejection for α = α1 is given by

W1 = {X : α̂ < 2rα1
χ2γ (2r)

} (13)

It is convenient in what follows to use acceptance rather than rejection regions. Consequently the NP theory tells us that a simple test for
α = α1 against α < α1 with type-I error equal to γ is given by an acceptance region of the form

A1 = {X : α̂ > 2rα1
χ2γ (2r)

} (14)

Case II when α1 < α2: Now constant C2 can be obtained as P {α̂ > C2|α = α1} = γ

P { 1α̂ < 1
C2

|||Ho} = γ ⇒ P {2rαα̂ < 2rα1
C2

|α=α1
} = γ

P {χ2 (2r) > 2rα1
C2

|α=α1
} = 1 − γ

Thus in a analogue as discussed earlier, the above probability equation can yield 2rα1
C2

= χ21−γ (2r), this gives C2 =
2rα1

χ2
1−γ(2r)

.

The best critical region can be written in the form as given below

W2 = {X : α̂ > 2rα1
χ21−γ (2r)

} (15)

It is convenient in what fallows to use acceptance rather than rejection regions. Consequently the NP theory tells us that a simple test for
α = α1 against α > α1 with type-I error equal to γ is given by an acceptance region of the form

A2 = {X : α̂ < 2rα1
χ21−γ (2r)

} (16)
Pdf_Folio:336



A. Hassan and M. Ahmad / Journal of Statistical Theory and Applications 19(2) 332–341 337

6. POWER FUNCTION OF THE TEST

Case I when α1 > α2: The power function of the test is

Power = 1 − β = P {X ∈ W1|H1
} = P {χ2 (2r) > 2rα2

C1
|α=α2

}

⇒ Power = P {χ2 (2r) > α2
α1
χ2γ (2r)}

According toNP lemma the region of rejection (13) has a greater chance of rejecting α = α1 when α = α2 is true than any other regionwhich
assigns probability γ to the rejection of α = α1 when α1 is the true value. Evidently the region (13) does not depend on the particular choice
of alternative α. Therefore the region (13) gives a uniformly most powerful test in the NP sense of the hypothesis α = α1 against α < α1.
Case II when α1 < α2: The power function of the test is

Power = 1 − β = P {X ∈ W2|H1
} = P {χ2 (2r) < 2rα2

C2
|α=α2

}

⇒ Power = P {χ2 (2r) < α2
α1
χ21−γ (2r)}

According toNP lemma the region of rejection (15) has a greater chance of rejecting α = α1 when α = α2 is true than any other regionwhich
assigns probability γ to the rejection of α = α1 when α1 is the true value. Evidently the region (15) does not depend on the particular choice
of alternative α. Therefore the region (15) gives a uniformly most powerful test in the NP sense of the hypothesis α = α1 against α > α1.

7. OC FUNCTION

Case I when α1 > α2: Let us now look at the OC curve of a procedure specified by (14), i.e., let us study

L (α) = Probability of acceptingα = α1 whenα is the true value

L (α) = P {α̂ > 2rα1
χ2γ (2r)

}

L (α) = 1 − P {χ2 (2r) > α
α1
χ2γ (2r)} (17)

The graph of L (α) for various values of r and of the ratio α
α1

when γ = 0.05 is given in Figure 1.

In the problem just discussed, it was assumed that r and γ are known and C1 is unknown. We shall now consider a problem where both r
and C1 are initially unknown. We want to choose these unknowns in such a way that the resulting OC curve will have the property that

L (α1) = 1 − γ and L (α2) ≤ β (18)

where α2 ≤ α1 and γ and β are prescribed in advance. To meet conditions (18) means substituting α2 forα in (17) and requiring that r be
such that

L (α2) ≤ β ⇒ P {χ2 (2r) < α2
α1
χ2γ (2r)} ≤ β

or P {χ2 (2r) > α2
α1
χ2γ (2r)} ≥ 1 − β

This implies that

α2
α1
χ2γ (2r) ≤ χ21−β (2r) ⇒ α1

α2
≥

χ2γ (2r)
χ21−β (2r)

(19)
Pdf_Folio:337
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Figure 1 OC of fests of the form MLE(𝛼) > C1, L(𝛼) = 0.95

Knowing (19) makes it an easy matter to find that integer r which ensures that the OC curve pass most nearly through the points
[α1, L (α1) = 1 − γ] and [α2, L (α2) = β]. It can be verified that as r goes through the values 1, 2, 3,….. the ratio χ2γ (2r) /χ21−β (2r) is strictly
decreasing and it is easy to show that it tends to zero. Consequently there is a smaller integer r such that α1

α2
≥ χ2

γ(2r)

χ2
1−β(2r)

This is the value of r which we wish to use. If with this value of r we use an acceptance region α = α1 of the form α̂ > C1 where C1 =
2rα1

χ2γ(2r)

We shall have a test whose OC curve is such that L (α1) = 1 − γ and L (α2) ≤ β. Incidentally, a region of acceptance for α = α1 of the form
α̂ > C∗

1 where C∗
1 =

2rα2

χ2
1−β(2r)

will give for same r an OC curve such that L (α1) ≤ 1 − γ and L (α2) = β.

Case II when α1 < α2: Let us now look at the OC curve of a procedure specified by (16), i.e., let us study

L (α) = Probability of acceptingα = α1 whenα is the true value

L (α) = P {α̂ < 2rα1
χ21−γ (2r)

} ⇒ L (α) = P {2rαα̂ >
αχ21−γ (2r)

α1
}

L (α) = P {χ2 (2r) > α
α1
χ21−γ (2r)} (20)

The graph of L (α) for various values of r and of the ratio α
α1

when γ = 0.05 is given in Figure 2.

In the problem just discussed, it was assumed that r and γ are known and C2 is unknown. We shall now consider a problem where both r
and C2 are initially unknown. We want to choose these unknowns in such a way that the resulting OC curve will have the property that

L (α1) = 1 − γ and L (α2) ≤ β (21)

where α2 ≥ α1 and γ and β are prescribed in advance. To meet conditions (21) means substituting α2 forα in (20) and requiring that r be
such that

L (α2) ≤ β

P {χ2 (2r) > α2
α1
χ21−γ (2r)} ≤ β

Pdf_Folio:338
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Figure 2 Operating characterstics of tests of the form
MLE(𝛼) < C2, L(𝛼1) = 0.95

This implies that

α2
α1
χ21−γ (2r) ≥ χ2β (2r) ⇒ α2

α1
≥

χ2β (2r)
χ21−γ (2r)

(22)

Knowing (22) makes it an easy matter to find that integer r which ensures that the OC curve pass most nearly through the points
[α1, L (α1) = 1 − γ] and [α2, L (α2) = β]. It can be verified that as r goes through the values 1, 2, 3,….. the ratio χ2β (2r) /χ21−γ (2r) is strictly
decreasing and it is easy to show that it tends to zero. Consequently there is a smaller integer r such that α2

α1
≥ χ2

β(2r)

χ2
1−γ(2r)

This is the value of r which we wish to use. If with this value of r we use an acceptance region α = α1 of the form α̂ < C2 where C2 =
2rα1

χ2
1−γ(2r)

.

We shall have a test whose OC curve is such that L (α1) = 1 − γ and L (α2) ≤ β. Incidentally, a region of acceptance for α = α1 of the form
α̂ > C∗

2 where C∗
2 =

2rα2

χ2
β(2r)

will give for same r an OC curve such that L (α1) ≤ 1 − γ and L (α2) = β.

8. UNIFORMLY MOST POWERFUL CRITICAL REGION

Case I: when α1 > α2

The best critical region as given in (13) is W1 = {X : α̂ < 2rα1

χ2γ(2r)
}

W1 =
⎧
⎨
⎩
X : −

r

∑
˙
≀=1

ln
(
1 − e−λ xi

)
− (n − r) ln

(
1 − e−λ x1

)
>
χ2γ (2r)
2α1

⎫
⎬
⎭

It is independent of α2, i.e., alternative value of α, therefore W1 is uniformly most powerful critical region for testing Ho : α = α1 against
H1 : α = α2 < α1, this implies that no choice of α2 can change the size of critical region for α2 < α1.Pdf_Folio:339
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Case II: when α2 > α1

The best critical region as given in (15) is W2 = {X : α̂ > 2rα1

χ2
1−γ(2r)

}

W2 =
⎧
⎨
⎩
X : −

r

∑
˙
≀=1

ln
(
1 − e−λ xi

)
− (n − r) ln

(
1 − e−λ x1

)
<
χ21−γ (2r)

2α1
⎫
⎬
⎭

It is independent of α2, i.e., alternative value of α, thereforeW2 is also uniformlymost powerful critical region for testingHo : α = α1 against
H1 : α = α2 > α1, this implies that no choice of α2 can change the size of critical region for α2 > α1.
However, since the two critical regions W1 andW2 are different, i.e., W1 ∩W2 = ∅, therefore there exists no critical region of size γ which
is uniformly most powerful for testing Ho : α = α1 against the two-tailed alternative H1 : α ≠ α1.
If α1

α2
= 3 and γ = β = 0.01, it is easy to show that a suitable r to use is 18. If α1

α2
= 3 and γ = 0.05, β = 0.01, then the proper r is 14. Similarly

If α1
α2

= 3 and γ = 0.1, β = 0.01 then proper r is 12. This means, for instance that if we want the test procedure to accept a lot whose life
characteristics is If α2 = 500 hours only 5% of the times, then it is possible to draw valid inference while observing only 9 observations
x1n, x2n, … ., x9n although rest (n-9) are left censored, and if α̂ > 935 hours accept α = α1, if α̂ < 935 hours accept α = α2. Such a procedure
will have an OC curve for which L(α1) = 0.95 and L(α2) ≤ 0.05. It should be noted that “n” number of items tested is left arbitrary. If one’s
object is to reduce testing time, then it is clearly advisable from Table 1 to make “n” more than 9.

Table 1 Values of r and acceptance regions for fixed γ, β where α = probability of rejecting α1 when α = α1; β = probability of accepting α1 when
α = α1; i.e., β = probability of accepting α1 when α = α2; for both cases α1 > 𝛼2 andα1 < 𝛼2. Acceptance regions are of the form α̂ > C1, α̂ < C2.

𝛼1/𝛼2 r C1/𝛼1 C1*/𝛼1 R C1/𝛼1 C1*/𝛼1 r C1/𝛼1 C1*/𝛼1
or Or or Or or or or

α2/α1 C2*/𝛼2 C2/𝛼2 C2*/𝛼2 C2/𝛼2 C2*/𝛼2 C2/𝛼2

𝛼 = 0.01, 𝛽 = 0.01 𝛼 = 0.01, 𝛽 = 0.05 𝛼 = 0.01, 𝛽 = 0.1

1.5 132 0.82403 0.82435 95 0.797427 0.796082 76 0.777591 0.778725

2 45 0.725126 0.728697 32 0.686571 0.68677 25 0.656565 0.66333

2.5 26 0.661445 0.665692 18 0.614133 0.61886 14 0.579971 0.591365

3 18 0.614133 0.623938 12 0.558402 0.577683 10 0.532393 0.535793

4 11 0.54605 0.576369 8 0.500001 0.502409 6 0.457719 0.475904

5 8 0.500001 0.550565 6 0.457719 0.45924 4 0.398203 0.458513

10 4 0.398203 0.48588 3 0.35689 0.366887 2 0.30128 0.376073

15 3 0.35689 0.458668 2 0.30128 0.375205 2 0.30128 0.250715

20 2 0.30128 0.673153 2 0.30128 0.281404 2 0.30128 0.188037

𝛼 = 0.05, 𝛽 = 0.01 𝛼 = 0.05, 𝛽 = 0.05 𝛼 = 0.05, 𝛽 = 0.1

1.5 98 0.853424 0.854591 66 0.825963 0.826612 51 0.805852 0.807819

2 34 0.770537 0.775582 22 0.727503 0.738565 17 0.699554 0.709745

2.5 20 0.71738 0.721883 13 0.668636 0.67624 10 0.636731 0.642952

3 14 0.677357 0.68806 9 0.6235 0.638947 7 0.591097 0.599094

4 9 0.6235 0.641491 6 0.57072 0.57405 4 0.515886 0.573142

5 7 0.591097 0.600804 4 0.515886 0.585515 3 0.476509 0.544432

10 3 0.476509 0.688002 2 0.421597 0.562807 2 0.421597 0.376073

15 2 0.421597 0.897537 2 0.421597 0.375205 2 0.421597 0.250715

20 2 0.421597 0.673153 2 0.421597 0.281404 2 0.421597 0.188037

(continued)
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Table 1 Values of r and acceptance regions for fixed γ, β where α = probability of rejecting α1 when α = α1; β = probability of accepting α1 when
α = α1; i.e., β = probability of accepting α1 when α = α2; for both cases α1 > 𝛼2 andα1 < 𝛼2. Acceptance regions are of the form α̂ > C1, α̂ < C2.
(Continued)

𝛼 = 0.1, 𝛽 = 0.01 𝛼 = 0.1, 𝛽 = 0.05 𝛼 = 0.1, 𝛽 = 0.1

1.5 82 0.87422 0.875869 53 0.84776 0.539311 40 0.828344 0.829731

2 29 0.803771 0.807497 18 0.762515 0.352952 14 0.738476 0.739206

2.5 17 0.757185 0.764511 10 0.703928 0.254692 8 0.679641 0.687268

3 12 0.722973 0.736895 7 0.664637 0.197032 5 0.625501 0.685141

4 8 0.679641 0.688206 5 0.625501 0.13656 3 0.563664 0.68054

5 6 0.646923 0.672162 3 0.563664 0.095302 2 0.514176 0.752146

10 3 0.563664 0.688002 2 0.514176 0.04216 2 0.514176 0.376073

15 2 0.514176 0.897537 2 0.514176 0.028106 2 0.514176 0.250715

20 2 0.514176 0.673153 2 0.514176 0.02108 2 0.514176 0.188037
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