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Abstract— The metric dimension is one of the problems in 

graph theory which is interesting to study until now. The metric 

dimension has many applications such as image processing. 

However, not all graphs have been obtained for the metric 

dimensions such as a bridge graph. A bridge graph is a graph 

obtained from two connected graphs 𝑮𝟏 , 𝑮𝟐  with adding a new 

edge  𝒖𝒗  where 𝒖 in 𝑮𝟏  dan 𝒗  in 𝑮𝟐 .  A bridge graph is a new 

graph which has a larger order than the previous graph 𝑮𝟏 or 𝑮𝟐. 

Therefore, the subdivision graph metric dimension can be obtained 

from the metric dimension before subdivision. Metric dimension of 

bridge graph can be determined by analysis of structure and 

analysis of the distance between vertices. This article shows the 

upper bound of a bridge graph from two connected graphs. In 

addition, this paper shows metric dimension the bridge graphs 

which obtained from the caterpillar and cycle graph. 

Keywords— bridge graph, metric dimension, caterpillar, cycle 

graph. 

I. INTRODUCTION 

The metric dimension is one of the concepts of graph 
dimensions that has many applications. The application of 
the concept of metric dimensions appears in several papers 
such as robot navigation [1]–[3] and optimization of the 
placement of threat detection sensors [4]. The application of 
this concept cannot be used on all graphs because many 
graphs still have unknown dimension, such as bridge graphs. 
A bridge graph is a graph obtained from the operation of 
adding new sides of two graphs. This bridge graph is an 
interesting graph caused by the addition of orders from order 
of two graphs before operating with the bridge edge. 
Therefore, the metric dimension of a bridge graph can be 
determined by the metric dimensions of the two graphs 
before it is operated. 

The dimensions of the graph such as metric and partition 
dimensions have been studied by several researchers. The 
metric dimension has been published in several articles as in 
[2], [3], [5]. Even the metric dimensions in certain class 
graphs are also researched, such as [6] giving metric 
dimensions of bipartite graphs, [7] metric dimensions from 
lexicographic products of graphs. As recently as 2019, [4] 
provided the metric dimension results from general wheels. 

A bridge graph is a graph obtained from the operation of 
two graphs by adding one edge on the two graphs. Therefore, 
this bridge graph can be considered as the extend graph of 
the two previous graphs. In other words, if two graphs of 
smaller orders have been obtained the metric dimension, then 
the bridge operation can give the metric dimension of the 
bridge graph of the larger order. Therefore, the metric 
dimension bridge graph is one of the interesting graphs in 
dimension graph research.  Although, until now the research 
of metric dimension on bridge graphs has not published it 
yet. However, the other variants of the metric dimension, 
namely the partition dimension have been published such as 
the partition dimension od subdivision on the star  graph [8]. 
[9] the partition dimension of subdivision homogeneous 
caterpillar [10], homogeneous firecrackers [11], subdivision 
of a Complete graph [8], [12]. 

The problems in this article are to find the metric 
dimension of the graphs especial the bridge graphs. This 
paper shows the upper bound the metric dimensions of bridge 
graphs from two connected graphs. The bridge graph is a 
graph that is obtained from two graphs connected by two 
vertices of the two graphs in the form of edges. We show 
also the metric dimension the bridge graph form cycle C_m 
and a homogeneous caterpillar C(m,n). Let G be a connected 

graph, and x,y∈ V(G). The distance between the vertex x 

and y in G, d(x,y), is the length of a shortest path from x to y. 
Let W={w_1,w_2,⋯,w_k }⊂ V(G). The representationof x 
respect to W, r(x|W)= (d(x,w_1),d(x,w_1),⋯,d(x,w_k) ). If 

r(x│W)≠ r(y|W) for x≠ y∈ V(G), then  W is called a 

resolving set of G. The metric dimension of G, dim(G), is a 
minimum cardinality of all resolving set of G. 

II. METHOD 

The research is focused on determining of metric 
dimensions of the bridge graphs on caterpillar and cycle 
graphs.  We begin by determining the uppers bound of the 
metric dimension of bridge graphs of any connected graph 
and the cycle graph.  Next, the research is continued to 
determine exactly the metric dimensions of the specific 
graphs namely caterpillar and cycle graphs. Furthermore, this 
research was carried out in several stages as follows. 
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We determine the upper bound of the metric dimension of 
the component of a connected graph 𝐺 . Let 𝐺1  and 𝐺2   be 
two connected graphs and 𝑢 ∈ 𝑉(𝐺1) , 𝑣 ∈  𝑉(𝐺2) . 

Determination of the upper bound  𝑑𝑖𝑚(𝐵(𝐺1, 𝐺2, 𝑢𝑣)) used 

the properties of degree the vertices 𝑢 and 𝑣. 

Determination of the upper bound of the metric 
dimension of the bridge graph used properties of component 
the bridge graph. 

We determine the exact value of metric dimension on 
specific homogeneous caterpillar graph  𝐶𝑚,𝑛 , and cycle 

graph 𝐶𝑝. We explore the properties of bridge graph which 

considers the following properties. 

Properties of the pendant and non-pendant edge of 
homogeneous caterpillar graph. Let 𝑢𝑣 be an edge of graph 
𝐺. The edge 𝑢𝑣 is called the pendant edge if one of vertices 
{𝑢, 𝑣} is degree one,  and the otherwise is called non-pendant 
edge 

Properties of the vertex on cycle graph which is 
connected to a vertex of the homogeneous caterpillar graph. 

Properties of distance two vertices 𝑢 and 𝑣 to any vertex 
𝑥 in bridge graph 𝐵(𝐺1, 𝐺2, 𝑢𝑣) such that 𝑑(𝑢, 𝑥) ≠ 𝑑(𝑣, 𝑥) 

for any 𝑥 ∈ 𝑉(𝐵(𝐺1, 𝐺2, 𝑢𝑣)). 

 

III. RESULTS AND DISCUSSION 

In this section, we show the upper bound of the metric 
dimension from the components which is obtained from a 
graph that is removed the bridge edge. Let 𝐺1 and 𝐺2 be two 
connected graphs,  𝑎 ∈ 𝑉(𝐺1), 𝑏 ∈ 𝑉(𝐺2). The bridge graph 
𝐵(𝐺1, 𝐺2, 𝑎𝑏) is a graph which is obtained from 𝐺1  dan 𝐺2 
with lingking 𝑎 ∈  𝑉(𝐺1) to 𝑏 ∈  𝑉(𝐺2)[13]. 

Theorem 1. 

Let 𝐺be a connected graph and 𝑢𝑣 be a bridge edge of 
𝐺 , deg(𝑢) ≥  3, deg(𝑣) ≥  3 . Let 𝐺1 and 𝐺2 be two 
components of 𝐺 which are obtained by removing edge 𝑢𝑣 of 
𝐺. If dim(𝐺) = 𝑘 then dim(𝐺𝑖) ≤  𝑘 with 𝑖 ∈ {1,2}. 

Proof 

For a contradiction, suppose dim(𝐺𝑖) ≥  𝑘 + 1 . This 
means that there is a subset 𝑊 = {𝑤1 , 𝑤2, ⋯ , 𝑤𝑘 , 𝑤𝑘+1} as a 
basis of  𝐺𝑖.   

We will show that dim(𝐺𝑖) ≤  𝑘 for 𝑖 ∈ {1,2}.  Let 𝑥, 𝑦 
be two distinct vertices of 𝐺𝑖. Now consider endpoint 𝑢 of the 
bridge 𝑢𝑣  in 𝐺 . If 𝑑(𝑥, 𝑢) = 𝑑(𝑦, 𝑢)  then the vertices 
𝑥, 𝑦 cannot be distinguished by any vertex in {𝑢} ∪  𝑉(𝐺2). 
Since dim  (𝐺) = 𝑘 , the vertices 𝑥, 𝑦 are distinguished 
by 𝑡 vertices {𝑤1, 𝑤2, ⋯ , 𝑤𝑡} with 𝑡 < 𝑘 of 𝑉(𝐺1).  

Next, we will show that 𝑡 ≠  𝑘 , suppose 𝑡 = 𝑘 . 
Since deg(𝑣) ≥  3 , there is at least two vertices 𝑥, 𝑦  in 
𝐺2 which have the same distance to any vertex in {𝑢} ∪
 𝑉(𝐺1). Therefore, we have the vertices 𝑥,𝑦 which cannot be 
distinguished by any vertex in di {𝑢} ∪  𝑉(𝐺1) , a 
contradiction to dim(𝐺) = 𝑘. As a consequence, we obtain 
𝑡 < 𝑘. Let 𝑊 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑡} ∪  {𝑢} be a subset of 𝑉(𝐺1). 
Therefore, we can say that W is a resolving set of 𝐺1 . 
Because any pair distinct 𝑥, 𝑦 that has the same distance to 

vertex 𝑢  is distinguished by a vertex of {𝑤1, 𝑤2, ⋯ , 𝑤𝑡} . 
Whereas, any pair distinct that has different distance to 
vertex u can be distinguished by vertex 𝑢. Furthermore, we 
obtain dim(𝐺1) ≤  𝑡 + 1 ≤  𝑘 . In the same ways, we have 
𝑑𝑖𝑚(𝐺2) ≤  𝑘. 

The next Theorem 2 give the upper bound of the metric 
dimension of a bridge graph which is obtained from two 
connected graphs.  

Theorem2. 

Let 𝐺1 and 𝐺2  be two connected graphs and 𝑢 ∈ 𝑉(𝐺1), 
𝑣 ∈  𝑉(𝐺2) . If dim (𝐺1) = 𝑡 and dim(𝐺2) = 𝑠 , then 
dim  (𝐵(𝐺1, 𝐺2, 𝑢𝑣)) ≤  𝑡 + 𝑠 

Proof 

Let 𝑊1 = {𝑤1 , 𝑤2, ⋯ , 𝑤𝑡} and𝑊2 = {𝑤′1 , 𝑤′2, ⋯ , 𝑤𝑠
′}  be 

a resolving partition of 𝐺1  and 𝐺2 , respectively. Let 𝐺 =
𝐵(𝐺1, 𝐺2, 𝑢𝑣) and 𝑊 = 𝑊1 ∪ 𝑊2 be subset of 𝑉(𝐺). Let 𝑤∗ 
be a vertex in  𝑊1 which has a minimum of 𝑑(𝑤𝑖 , 𝑢) for any 
𝑤𝑖 ∈ 𝑊1. We will show that W is a resolving set of 𝐺. 

Let 𝑥, 𝑦  be two distinct vertices of 𝐺 . If 𝑥, 𝑦 ∈  𝑉(𝐺1) , 
then consider the distance 𝑥 and 𝑦 to vertex 𝑢.  If 𝑑(𝑥, 𝑢) =
𝑑(𝑦, 𝑢), then the vertices 𝑥 and 𝑦 cannot be distinguished by 
any vertex in 𝐺2. Therefore, the vertices 𝑥 and 𝑦 can be only 
distinguished by the members of 𝑊1 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑡} . If 
𝑑(𝑥, 𝑢) ≠ 𝑑(𝑦, 𝑢), then the vertices 𝑥, 𝑦 are distinguished by 
a vertex 𝑤". So, if we have any distinct pair 𝑥, 𝑦 in 𝐺1then 
𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). In the same argument, if we have any 
distinct pair 𝑥, 𝑦 in 𝐺2 then 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). 

Now if 𝑥 ∈ 𝐺1 and 𝑦 ∈ 𝐺2, then consider distance 𝑥, 𝑦 to 
𝑤 ∗.If 𝑑(𝑥, 𝑤∗) ≠ 𝑑(𝑦, 𝑤∗), then clearly the vertices 𝑥 and 𝑦 
are distinguished by 𝑤∗ . If 𝑑(𝑥, 𝑤∗) = 𝑑(𝑦, 𝑤∗) , then 
consider shortest 𝐿 from 𝑥 to 𝑤∗.  If  𝑢 ∈ 𝐿 then 𝑑(𝑥, 𝑤∗) =
𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑤∗) . Whereas, we have 𝑑(𝑦, 𝑤∗) =
𝑑(𝑦, 𝑢) + 𝑑(𝑢, 𝑤∗) . Since 𝑑(𝑥, 𝑤∗) = 𝑑(𝑦, 𝑤∗) , we obtain 
𝑑(𝑥, 𝑢) = 𝑑(𝑦, 𝑢) . Since 𝑢𝑣  is a bride edge, this implies  
𝑑(𝑥, 𝑣) > 𝑑(𝑦, 𝑣) . So, we have 𝑑(𝑥, 𝑤") > 𝑑(𝑦, 𝑤") . 
Furthermore, we obtain 𝑟(𝑥|𝑊) ≠  𝑟(𝑦|𝑊).   

If  𝑢 ∉  𝐿  then 𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑤∗) > 𝑑(𝑥, 𝑤∗) .  Since 
𝑑(𝑥, 𝑤∗) = 𝑑(𝑦, 𝑤∗) , we obtain 𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑤∗) >
𝑑(𝑦, 𝑤∗) = 𝑑(𝑦, 𝑢) + 𝑑(𝑢, 𝑤∗) .  So, we have 𝑑(𝑥, 𝑢) >
𝑑(𝑦, 𝑢) . Therefore, 𝑑(𝑥, 𝑣) > 𝑑(𝑦, 𝑣)  and we have 
𝑑(𝑥, 𝑤") > 𝑑(𝑦, 𝑤") . Furthermore, we obtain 𝑟(𝑥|𝑊) ≠
 𝑟(𝑦|𝑊). These imply that 𝑊 is a resolving set of  𝐺. 

For the simple example, if we have 𝐺1 = 𝑃𝑛  and 𝐺2 =
𝑃𝑚, then consider the Figure 1. 
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Fig. 1. (a) 𝑃𝑛 𝑎𝑛𝑑 𝑃𝑚   are two path graph, (b) 𝐺 = 𝐵(𝑃𝑛, 𝑃𝑚, 𝑢𝑣)  with 

dim(𝐺) = 1, (c,d) 𝐺 = 𝐵(𝑃𝑛 , 𝑃𝑚, 𝑢𝑣) with 𝑑𝑖𝑚 (𝐺) = 2 

In the Figure 1. We have the metric dimension of 𝐺 =
𝐵(𝑃𝑚, 𝑃𝑛 , 𝑢𝑣), 𝑑𝑖𝑚(𝐺) ≤  2. 

The metric dimension of bridge graph from a 
homogeneous caterpillar and cycle graph 

In this section, we show the metric dimensions of 
homogeneous caterpillar and cycle graphs. A homogenous 
caterpillar graph, 𝐶(𝑚, 𝑛) is a graph obtained by attaching 𝑛 
leaves to each vertex 𝑣𝑖 of a path 𝑃𝑚. The path 𝑃𝑚of 𝐶(𝑚, 𝑛) 
is called a backbone of 𝐶(𝑚, 𝑛).  All leaves attached to a 

vertex 𝑣𝑖  is labeled by 𝑤𝑖,1, 𝑤𝑖,2, ⋯ , 𝑤𝑖,𝑛 and all vertices of 

𝑃𝑚 of 𝐶(𝑚, 𝑛) is labeled by 𝑣1, 𝑣2, ⋯ , 𝑣𝑚. A cycle graph, 𝐶𝑘 
with 𝑘 ≥ 3 is a graph with each vertex 𝑢𝑖  which has degree 
two. So, the vertices of cycle 𝐶_𝑘  is labeled by𝑢1, 𝑢2, ⋯ , 𝑢𝑘. 

The metric dimensions shown in following Theorem 2 is 
the metric dimensions of the bridge graph 𝐵 (𝐺1, 𝐺2, 𝑎𝑏) of 
the homogeneous caterpillar graph 𝐺1  =  𝐶(𝑚, 𝑛) and cycle 
graph 𝐶𝑝 , specifically on the bridge edge of a vertex 𝑢𝑖  of 

cycle 𝐺2 to endpoint of the backbone of 𝐺1. 

Theorem 3.  

Let 𝐶𝑚,𝑛 be a homogeneous caterpillar  graph and 𝐶𝑘𝑝 be 

a cycle graph .  If 𝑎 ∈ 𝑉(𝐶𝑚,𝑛), 𝑏 ∈ 𝑉(𝐶𝑝) , then 

dim (𝐵(𝐶𝑚,𝑛, 𝐶𝑝, 𝑎𝑏)) = 𝑚(𝑛 − 1) + 1 ,  for 𝑎 = 𝑣𝑡 , 𝑡 ∈

{1,2, ⋯ , 𝑚}. 

Proof 

Without loss of generality (wlog), let 𝑏 = 𝑢1 and let 𝐺 =
𝐵(𝐶(𝑚, 𝑛), 𝐶𝑝, 𝑣𝑡𝑢1) for some 𝑡 ∈  [2, 𝑚 − 1]. 

First, we will show  dim(𝐺) ≤ 𝑚(𝑛 − 1) + 1 . Let 𝑊 =
{𝑤1,1, . . , 𝑤1,(𝑛−1), 𝑤2,1, . . , 𝑤2,(𝑛−1), … , 𝑤𝑚,1, . . , 𝑤𝑚,(𝑛−1), 𝑢𝑘} . 

To show dim(𝐺) ≤ 𝑚(𝑛 − 1) + 1, we will show that W is a 
basis of 𝐺 . Supposed 𝑥, 𝑦 ∈ 𝐺 . We consider the proof in 
three cases: 

Case 1. For both of 𝑥 and 𝑦  in 𝐶(𝑚, 𝑛) ,  we consider 
𝑑(𝑥, 𝑣𝑡) and 𝑑(𝑦, 𝑣𝑡). If 𝑑(𝑥, 𝑣𝑡) ≠ 𝑑(𝑦, 𝑣𝑡), then 𝑥 and  𝑦 

are distinguished by 𝑤𝑡,1 .  If 𝑑(𝑥, 𝑣𝑡) = 𝑑(𝑦, 𝑣𝑡) , then 

consider the vertices  𝑥 or 𝑦 as a leaf or a vertex of backbone 
of 𝐶(𝑚, 𝑛) . If the vertices 𝑥 and  𝑦  are two vertices of 
backbone 𝐶(𝑚, 𝑛) then 𝑥 = 𝑣𝑖  and 𝑦 = 𝑣𝑗   for some 𝑖 ≠  𝑗 ∈
 [2, 𝑚 − 1]. Therefore, since a leaf 𝑤𝑖,1 is adjacent to 𝑣𝑖, then  

the vertex 𝑑(𝑥, 𝑤𝑖,1) = 1, whereas the distance from vertex 𝑦 

to 𝑤𝑖,1, 𝑑(𝑥, 𝑤𝑖,1) > 1. So, this implies that the vertices 𝑥, 𝑦 

are distinguished by 𝑤𝑖,1 . If the vertices 𝑥 and  𝑦  are two 

leaves of 𝐶(𝑚, 𝑛) , then let 𝑥 = 𝑤𝑖,1  and 𝑦 = 𝑤𝑗,1 for some 

𝑖 ≠  𝑗 ∈  [2, 𝑚 − 1] . Since 𝑑(𝑤𝑖,1, 𝑤𝑖,2) = 2  and 

𝑑(𝑤𝑖,1, 𝑤𝑖,2) > 2, then the vertices 𝑥, 𝑦 are distinguished by 

𝑤𝑖,2. If the vertex 𝑥 is a leaf and 𝑦 is a vertex od backbone 

𝐶(𝑚, 𝑛), then wlog let 𝑥 = 𝑤𝑖,1 and 𝑦 = 𝑣𝑗  for some 𝑖 ≠  𝑗 ∈

 [2, 𝑚 − 1] . Since 𝑑(𝑣𝑗 , 𝑤𝑗,1) = 1  and 𝑑(𝑤𝑖,1, 𝑤𝑗,1) > 1 , 

then the vertices 𝑥, 𝑦 are distinguished by 𝑤𝑗,1. These imply 

𝑟(𝑥|𝑈) =  𝑟(𝑦|𝑈). 

Case 2. For both of  𝑥 and  𝑦 in 𝐶𝑘 . If 𝑑(𝑥, 𝑢𝑘) ≠
𝑑(𝑦, 𝑢𝑘), then clearly, vertices 𝑥 and 𝑦 are distinguished by 
𝑢𝑘 . If 𝑑(𝑥, 𝑢𝑘) = 𝑑(𝑦, 𝑢𝑘) , then we have 𝑑(𝑥, 𝑢1) ≠
𝑑(𝑦, 𝑢1). So the vertices 𝑥 and 𝑦 are distinguished by 𝑤𝑡,𝑗 for 

some 𝑗 ∈  {1,2, ⋯ , 𝑛 − 1}. 

Case 3. For 𝑥 ∈ 𝑉(𝐶(𝑚, 𝑛)) and 𝑦 ∈ 𝑉(𝐶𝑘), consider the 
distance 𝑥  and 𝑦  to vertex 𝑢𝑘 . If 𝑑(𝑥, 𝑢𝑘) = 𝑑(𝑦, 𝑢𝑘), then 
𝑑(𝑥, 𝑣𝑡) ≠ 𝑑(𝑦, 𝑣𝑡).  So, the vertices 𝑥  and 𝑦  are 

distinguished by 𝑤𝑡,1 . If 𝑑(𝑥, 𝑢𝑘) ≠ 𝑑(𝑦, 𝑢𝑘), then clearly, 

vertices 𝑥 and  𝑦  are distinguished by 𝑢𝑘 . These imply 
𝑟(𝑥|𝑈) =  𝑟(𝑦|𝑈). 

Base on the cases 1, 2, and 3, we obtain that 𝑊  is a 
resolving set of 𝐺  with |𝑊| = (𝑚(𝑛 − 1) + 1) . Therefore, 
we have 

 dim(𝐺) ≤ 𝑚(𝑛 − 1) + 1 (1) 

 

Next, we will show dim(𝐺) ≥ 𝑚(𝑛 − 1) + 1. 

For a contradiction, suppose there is a set 𝑈 as a basis of 𝐺 
with |𝑈| < (𝑚(𝑛 − 1) + 1). 

Let 𝑈 = {𝑧1, 𝑧2, ⋯ , 𝑧𝑚(𝑛−1)} ⊂ 𝑉(𝐺)  with |𝑈| =

(𝑚(𝑛 − 1)).  

If all vertices  𝑧𝑖 in 𝑈 are in the vertices of 𝑉(𝐶(𝑚, 𝑛)), 

then  there are at least two vertices 𝑢2 and 𝑢𝑘 which have the 
same distance to vertex 𝑣𝑡 . So, the vertices 𝑢2 and 𝑢𝑘  have 

the same distance to any vertex in 𝑉(𝐶(𝑚, 𝑛)). Therefore, 

we have 𝑑(𝑢2, 𝑧𝑖) =  𝑑(𝑢𝑘, 𝑧𝑖). This implies that 𝑟(𝑢2|𝑈) =
 𝑟(𝑢𝑘|𝑈), a contradiction to 𝑈 as a basis of 𝐺.  

If there is  a vertex of 𝑧𝑡 ∈  𝑈  for some 𝑡 ∈  [1, 𝑚(𝑛 −
1)] which is a vertex of 𝑉(𝐶𝑘), then  there are at least one 
vertex 𝑣𝑘  which has two leaves 𝑤𝑘,1and 𝑤𝑘,2  for some 𝑘 ∈
 [1, 𝑚] such that 𝑤𝑘,1and 𝑤𝑘,2 are not in set 𝑈. This is caused 

by there are 𝑚(𝑛) leaves of 𝐶(𝑚, 𝑛) whereas there are only  
𝑚(𝑛 − 1) − 1  vertex 𝐶(𝑚, 𝑛)   in set 𝑈 .   This implies 

𝑟(𝑤𝑘,1|𝑈) =  𝑟(𝑤𝑘,2|𝑈), a contradiction to 𝑈 as basis of  𝐺. 

These consequences, we have 

 dim(𝐺) ≥ 𝑚(𝑛 − 1) + 1.    (2) 

Bases on inequations (1) and (2), we obtain dim(𝐺) =
𝑚(𝑛 − 1) + 1.   

Theorem 4. 

Let 𝐶(𝑚, 𝑛) be a homogen caterpillar  graph and 𝐶𝑘 be a 

cycle graph .  If 𝑎 ∈ 𝑉(𝐶𝑚,𝑛), 𝑏 ∈ 𝑉(𝐶𝑘) , then 
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dim (𝐵(𝐶(𝑚, 𝑛), 𝐶𝑝, 𝑎𝑏)) = 𝑚(𝑛 − 1),  for 𝑎 = 𝑤𝑡,1 ,  for 

some 𝑡 ∈  [1, 𝑚]. 

Proof 

Without loss of generality (wlog), let 𝑏 = 𝑢1 and let 𝐺 =
𝐵(𝐶(𝑚, 𝑛), 𝐶𝑝, 𝑤𝑡,1𝑢1) for some 𝑡 ∈  [1, 𝑚].  

First, we will show  dim(𝐺) ≤ 𝑚(𝑛 − 1) . Let 𝑊 =
{𝑤1,1, . . , 𝑤1,(𝑛−1), ⋯ , 𝑤𝑡,2, … , 𝑤𝑡,(𝑛−1), … , 𝑤𝑚,1, . . , 𝑤𝑚,(𝑛−1), 𝑢𝑘} 

with |𝑊| = 𝑚(𝑛 − 1). We note that the set 𝑊 is different to 

𝑊  in Theorem 1 or 2, because the vertex 𝑤𝑡,1  is in 𝑊  of 

Theorem 1 or 2, whereas in Theorem 3, the vertex 𝑤𝑡,1 is not 

in 𝑊 . Suppose 𝑥, 𝑦 ∈ 𝐺 . We consider the proof in three 
cases: 

Case 1. For both of 𝑥 and 𝑦  in 𝐶(𝑚, 𝑛) ,  we consider 

𝑑(𝑥, 𝑤𝑡,1)  and 𝑑(𝑦, 𝑤𝑡,1) . If 𝑑(𝑥, 𝑤𝑡,1) ≠ 𝑑(𝑦, 𝑤𝑡,1) , then 

they have 𝑑(𝑥, 𝑤𝑡,2) ≠ 𝑑(𝑦, 𝑤𝑡,2). So, thw vertices  𝑥 and  𝑦 

are distinguished by 𝑤𝑡,2 .  If (𝑥, 𝑤𝑡,1) = 𝑑(𝑦, 𝑤𝑡,1) , then 

consider the vertices  𝑥  or 𝑦  as a leaf or a vertex of 
backbone 𝐶(𝑚, 𝑛). If the vertices 𝑥 and 𝑦 are two vertices of 
backbone 𝐶(𝑚, 𝑛) then 𝑥 = 𝑣𝑖  and 𝑦 = 𝑣𝑗   for some 𝑖 ≠  𝑗 ∈
 [2, 𝑚 − 1]. Therefore, since a leaf 𝑤𝑖,1 is adjacent to 𝑣𝑖, then  

the vertex 𝑑(𝑥, 𝑤𝑖,1) = 1, whereas the distance from vertex 𝑦 

to 𝑤𝑖,1, 𝑑(𝑥, 𝑤𝑖,1) > 1. So, this implies that the vertices 𝑥, 𝑦 

are distinguished by 𝑤𝑖,1 . If the vertices 𝑥 and  𝑦  are two 

leaves of 𝐶(𝑚, 𝑛), then wlog let 𝑥 = 𝑤𝑖,1  and 𝑦 = 𝑤𝑗,1  for 

some 𝑖 ≠  𝑗 ∈  [2, 𝑚 − 1] . Since 𝑑(𝑤𝑖,1, 𝑤𝑖,2) = 2  and 

𝑑(𝑤𝑖,1, 𝑤𝑖,2) > 2, then the vertices 𝑥, 𝑦 are distinguished by 

𝑤𝑖,2 .   If the vertex 𝑥 is a leaf and 𝑦  is a vertex of 

backbone  𝐶(𝑚, 𝑛), then let 𝑥 = 𝑤𝑖,1  and 𝑦 = 𝑣𝑗   for some 

𝑖 ≠  𝑗 ∈  [2, 𝑚 − 1] . Since 𝑑(𝑣𝑗 , 𝑤𝑗,1) = 1  and 

𝑑(𝑤𝑖,1, 𝑤𝑗,1) > 1, then the vertices 𝑥, 𝑦 are distinguished by 

𝑤𝑗,1.  These imply 𝑟(𝑥|𝑊) ≠   𝑟(𝑦|𝑊). 

Case 2. For both of 𝑥 and  𝑦 in 𝐶𝑘 . If 𝑥, 𝑦  have the 
different distance to vertex 𝑢𝑘 , 𝑑(𝑥, 𝑢𝑘) ≠  𝑑(𝑦, 𝑢𝑘),  then 
the vertices 𝑥 and 𝑦 are distinguished by 𝑢𝑘.  If the vertices 
𝑥, 𝑦 have the same distance to vertex 𝑢𝑘 , then 𝑥 and 𝑦  are 

distinguished by 𝑤𝑡,2. These imply 𝑟(𝑥|𝑊) =  𝑟(𝑦|𝑊). 

Case 3. For 𝑥 ∈ 𝐶(𝑚, 𝑛)  and 𝑦 ∈ 𝑉(𝐶𝑝), If 𝑑(𝑥, 𝑣𝑡) ≠
𝑑(𝑦, 𝑣𝑡), then they are distinguished by 𝑤𝑡,2.  If 𝑥 and 𝑦 have 

the same distance to vertex 𝑣𝑡, 𝑑(𝑥, 𝑣𝑡) = 𝑑(𝑦, 𝑣𝑡) = 𝑟, then 

we obtain 𝑑(𝑥, 𝑎𝑝) = 𝑑(𝑥, 𝑣𝑡) + 𝑑(𝑣𝑡 , 𝑤𝑡,1) +

𝑑(𝑤𝑡,1, 𝑢1) +  𝑑(𝑢1, 𝑢𝑘) =  𝑟 + 3 . Whereas, we have 

𝑑(𝑦, 𝑢𝑘) ≤  𝑟 .  This implies that the vertices 𝑥, 𝑦  are 
distinguished by 𝑢𝑘.  These imply 𝑟(𝑥|𝑊) =  𝑟(𝑦|𝑊). 

Base on the cases 1 ,2, and 3, we obtain that 𝑊  is a 
resolving set of 𝐺  with |𝑊| = (𝑚(𝑛 − 1) + 1) . Therefore, 
we have  

 dim(𝐺) ≤ 𝑚(𝑛 − 1)  (3) 

Next, we will show dim(𝐺) ≥ 𝑚(𝑛 − 1). 

For a contradiction, suppose there is a set 𝑈 as a basis of 
𝐺 with |𝑍| ≤ 𝑚(𝑛 − 1) − 1. 

Let 𝑍 = {𝑧1, 𝑧2, ⋯ , 𝑧𝑚(𝑛−1)−1} ⊂ 𝑉(𝐺)  with |𝑈| =
𝑚(𝑛 − 1) − 1 . We know that there are 𝑚(𝑛) − 1   leaves 
𝑤𝑖,𝑗 where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤  𝑗 ≤  𝑛 and 𝑚 center in 𝐶(𝑚, 𝑛).  

If  any vertex 𝑣𝑖 is only adjacent to one leaf  which is not 
in set Z namely every vertex of 
{𝑤_(1, 𝑛), 𝑤_(2, 𝑛), ⋯ , 𝑤_(𝑚, 𝑛)} is not in Z,  then we have 
vertices 𝑢2 and 𝑢𝑘  have the same distance to any vertex in 

𝑉(𝐶(𝑚, 𝑛)) . So, we have 𝑑(𝑢2, 𝑧1) =  𝑑(𝑢𝑘, 𝑧1) . This 

implies that 𝑟(𝑢2|𝑍) =  𝑟(𝑢𝑘|𝑍) , a contradiction to 𝑍  as a 
basis of 𝐺.  

If  there is  a vertex of 𝑧𝑡 ∈  𝑍   for some 𝑡 ∈
 [1, 𝑚(𝑛 − 1)] which is not a leaf of 𝐶(𝑚, 𝑛), then there are 
at least two leaves 𝑤𝑘,𝑗  for some 𝑘 ∈  [1, 𝑚] , we say 𝑤𝑘,1 

and 𝑤𝑘,2, which have the same distance any vertex in 𝐺. This 

implies 𝑟(𝑤𝑘,1|𝑍) =  𝑟(𝑤𝑘,2|𝑍), a contradiction to 𝑍 as basis 

of 𝐺. These consequences, we have 

 dim(𝐺) ≥ 𝑚(𝑛 − 1)  (4) 

Bases on inequations (3) and (4), we obtain dim(𝐺) =
𝑚(𝑛 − 1). 

IV. CONCLUSION 

In this paper, we gave three properties of the metric 
dimension of some bridge graphs as follows: 

1. For any bridge graph 𝐺 with uv as a bridge edge and 𝐺1 
and 𝐺2  are two components of G, we obtained that the 
upper bound of metric dimension of  𝐺1 or 𝐺2 is at most 
dimension metric of G. 

2. For 𝐺1 and 𝐺2  be two connected graph and 𝑢 ∈ 𝑉(𝐺1), 
𝑣 ∈  𝑉(𝐺2), we obtain that dim(𝐵(𝐺1, 𝐺2, 𝑢𝑣)) is at most 
the sum of metric dimension of 𝐺1 and 𝐺2. 

3. For the homogeneous caterpillar  graph  𝐶𝑚,𝑛 and cycle 

graph 𝐶𝑝 , we obtained the exact value of metric 

dimension of the bridge graphs  𝐵(𝐶𝑚,𝑛 , 𝐶𝑝, 𝑎𝑏) where 

𝑎 ∈ 𝑉(𝐶𝑚,𝑛 ), 𝑏 ∈ 𝑉(𝐶𝑝 ), namely 

a. dim (𝐵(𝐶𝑚,𝑛 , 𝐶𝑝, 𝑎𝑏)) = 𝑚(𝑛 − 1) + 1, for 𝑎 = 𝑣𝑡 , 

and  𝑡 ∈ {1,2, ⋯ , 𝑚}. 

b. dim (𝐵(𝐶(𝑚, 𝑛), 𝐶𝑝, 𝑎𝑏)) = 𝑚(𝑛 − 1) ,  for 𝑎 =

𝑤𝑡,1,  for 𝑡 ∈ {1,2, ⋯ , 𝑚}. 
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