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ABSTRACT
This article aims to make use of moment-generating functions (mgfs) to derive the density of mixture distributions from hier-
archical models. When the mgf of a mixture distribution doesn’t exist, one can extend the approach to characteristic functions
to derive the mixture density. This article uses a result given by E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80. The present
work complements E.R. Villa, L.A. Escobar, Am. Stat. 60 (2006), 75–80 article with many new examples.
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1. INTRODUCTION

A random variable X is said to have mixture distribution if it depends on a quantity that has a distribution. The mixture distribution arises
from a hierarchical model (see [1], p. 165). A typical example of a hierarchical model is as follows: Consider a large number of eggs laid
by an insect. The survival of each egg has a probability 𝜃. If each egg’s survival is independent, then we have a sequence of Bernoulli trials
on egg’s survival. Assume that the “large number” of eggs laid is a random variable and follows the Poisson distribution with parameter 𝜆.
Hence, if we let X is equal to the number of survivors and Y is equal to the number of eggs laid, then

X|Y follows Binomial (Y, 𝜃) andY follows Poisson (𝜆) , (1)

constitute a hierarchical model, where the notation X|Y = y denotes the conditional distribution of X given Y = y follows Binomial (y, 𝜃),
and the (marginal) distribution of Y is Poisson (𝜆). It turns out that the (marginal) distribution of X is Poisson (𝜆𝜃). Thus, the distribution
of the number of survivors X, which is Poisson (𝜆𝜃), is a mixture distribution as it is a result of combining the distribution of X|Y and the
distribution of Y. In general, hierarchical models lead to mixture distributions.

Mixture models play an important role in the theory and practice. There are textbooks, monographs, and journal articles discussing history,
theory, applications, and the usefulness of mixture models. Mixture models became popular as, among others: they (a) provide a simple
device to include other variation and correlation in the model, (b) add model flexibility, and (c) allow modeling the data that arise in multi-
stages. The literature shows several authors, namely Everitt and Hand [2], Titterington et al. [3], Böhning [4], McLachlan and Peel [5] have
discussed mixture models and provided the statistical methodology and references on finite mixtures.

Lindsay [6] discussed the application of mixture models and its interrelation with other related fields, among others. In discussing mixture
models, Casella and Berger [1] showed the derivation of mixture models from hierarchical models. Panjer and Willmot [7] consider appli-
cations of mixture models in actuarial sciences. Karlis and Xekalaki [8] derived results related to Poisson mixtures models with applications
in various other fields. The mixture models of continuous and discrete types can be found in Johnson et al. [9,10] and Gelman et al. [11].
To fit plant quadrat data on the blue-green sedge, Skellam [12] used a mixture of binomial with varying sample sizes modeled with Pois-
son distributions. The Gamma mixture of Poisson r.v.’s yield negative-binomial, while Green and Yule [13] used this mixture distribution
to model “accident proneness”; see Bagui and Mehra [14]. The research dated back to Pearson [15] shows modeling the mixing of different
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crab type with mixtures of two normal. The mixture distribution negative-binomial can arise in the distribution of the sum of N indepen-
dent random variables, each having the same logarithmic distribution and N having a Poisson distribution; this mixture distribution was
used in modeling biological spatial data; see Gurland [16], Bagui and Mehra [14].

2. MIXTURE MODEL

Consider a two-stage mixture model of type (1) where X|Y ∼ fX|Y(x|y) and Y ∼ fY(y). It is customary to derive the mixture distribution fX(x)
of the mixture X from the joint density of X and Y, fX,Y(x|y) = fY(y)fX|Y(x|y), as

fX(x) =
⎧⎪
⎨⎪
⎩

∫
∞

−∞
fY(y)fX|Y(x|y)dy ifY is continuous

∑
y
fY(y)fX|Y(x|y) ifY is dicrete

(2)

Villa and Escobar [17] derived mixture distributions from the moment-generating function (mgf) of X, and they derived the mgf of X as
MX(t) = E [MX|Y(t)], whereMX|Y(t) is the mgf of X|Y and the expectation is over the distribution of the r.v. Y. From the known distribution
of X|Y with known mgf Villa and Escobar [17] rewritesMX|Y(t) as

MX|Y(t) = a1(t)ea2(t)Y (3)

where a1(t) and a2(t) are functions of t andmay also depend on the parameter of the distribution ofX|Y. Then they arrived at themgf ofX as

MX(t) = E [MX|Y(t)] = a1(t)MY [a2(t)] . (4)

In the above, we assumed that all mfg’s exist. Whenmfg of X|Y is not found from the known list, then the mgf of X can be computed directly
as

MX(t) = E
(
etX

)
= E [E

(
etX|Y

)
] (5)

From the joint mgf of X and Y,MX,Y(t, s), one can also derive the mgf of X as

MX(t) = E [MX|Y(t)] = E [E
(
etX+sY|Y

)
] = E [esYE

(
etX|Y

)
] = E [esYMX|Y(t)] . (6)

Then by setting s = 0 in the above Eq. (6), one would get the mgf of X,MX(t).

The main goal of this article is to derive mixture distributions that complements the examples of Villa and Escobar [17] using the above mgf
method.

3. EXAMPLES

There are situations where obtaining the mixture distributions by usingmgf is much easier than getting it by the marginalization of the joint
distribution. The examples considered here are the complements of the cases discussed by Villa and Escober [17].

3.1. The Binomial–Binomial Mixture

The mixture model of the Binomial mixture of Binomial random variables is

X|Y ∼ BIN
(
Y, p1

)
Y ∼ BIN

(
n, p2

) } ⇒ X ∼ BIN
(
n, p1p2

)
. (7)

Proof. The mgf for X|Y is

MX|Y(t) = [q1 + p1et]
Y = eln(q1+p1e

t)Y = a1(t)ea2(t)Y,

where q1 = 1 − p1, a1(t) = 1, and a2(t) = ln
(
q1 + p1et

)
.

Now by Eq. (4),

MX(t) = a1(t)MY [a2(t)] = MY [ln
(
q1 + p1et

)
]

= [q2 + p2eln(q1+p1e
t)]

n
= [q2 + p2

(
q1 + p1et

)
]n

= [q + pet]n , Binomialmgf, (8)
Pdf_Folio:384
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where p = p1p2 and q = q2 + p2q1 = 1 − p1p2 = 1 − p.

Thus, it follows from (8) that X ∼ BIN
(
n, p1p2

)
, (see Appendix, Table A1, Villa and Escober [17]).

3.2. The Negative-Binomial–Binomial Mixture

The mixture model of the Negative-binomial mixture of Binomial random variables is

X|Y ∼ BIN
(
Y, p1

)
Y ∼ NEGBIN

(
𝛼, p2

)} ⇒ X ∼ NEGBIN(𝛼, p), (9)

where p = p2/
(
p2 + p1p2

)
and q2 = 1 − p2.

Proof. The mgf for X|Y is

MX|Y(t) = [q1 + p1et]
Y = eln(q1+p1e

t)Y = a1(t)ea2(t)Y,

where q1 = 1 − p1, a1(t) = 1, and a2(t) = ln
(
q1 + p1et

)
.

Now by Eq. (4),

MX(t) = a1(t)MY [a2(t)] = MY [ln
(
q1 + p1et

)
]

= [ p2
1 −

(
1 − p2

)
eln(q1+p1et)

]
𝛼

= [ p2
1 −

(
1 − p2

) (
q1 + p1et

)]𝛼 , negative-binomialmgf,

= [p/ {1 − (1 − p)et}]𝛼 , (10)

where p = p2/(p2 + p1p2). Thus, it follows from (10) that X ∼ NEGBIN(𝛼, p), (see Appendix, Table A2, Villa and Escober [17]).

3.3. The Exponential–Exponential Mixture

The mixture model of the exponential mixture of shifted exponential random variables is

X|Y ∼ 𝜆e−𝜆(x−Y), x ≥ Y

Y ∼ (1 + 𝜆)e−(1+𝜆)y, y ≥ 0
} ⇒ X ∼ 𝜆(1 + 𝜆)e−𝜆x (1 − e−x) , x ≥ 0. (11)

Proof. The mgf for X|Y is given by

MX|Y(t) = EX|Y [etX] = 𝜆 ∫
∞

Y
etxe−𝜆(x−Y)dx = 𝜆e𝜆Y ∫

∞

Y
e−(𝜆−t)xdx = 𝜆etY

(𝜆 − t)
, t < 𝜆, (12)

where a1(t) =
𝜆
𝜆−t

and a2(t) = t.

Now by Eq. (4),

MX(t) =
𝜆

𝜆 − t
MY(t) =

𝜆(1 + 𝜆)
(𝜆 − t)(1 + 𝜆 − t)

. (13)

The above mgf is the mgf of the density fX(x) = 𝜆(1+ 𝜆)e−𝜆x (1 − e−x), x ≥ 0. It follows from (13) that X ∼ 𝜆(1+ 𝜆)e−𝜆x (1 − e−x) , x ≥ 0.

3.3.1. A specific exponential–exponential mixture

The mixture model of a specific exponential mixture of shifted exponential random variables is

X|Y ∼ e−(x−Y), x ≥ Y

Y ∼ e−y, y ≥ 0
} ⇒ X ∼ Gamma(2, 1), x ≥ 0. (14)
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Proof. The mgf for X|Y is given by

MX|Y(t) = EX|Y [etX] =
etY
1 − t , (15)

where a1(t) =
1

1−t
and a2(t) = t. Now by Eq. (4),

MY(t) =
1

1 − tMy(t) =
1

1 − t ×
1

1 − t =
1

(1 − t)2 . (16)

Eq. (16) confirms that X ∼ Gamma(2, 1).

3.3.2. The exponential–normal mixture

The mixture model of the exponential mixture of normal random variables is

X|Y ∼ 1
√2𝜋

e
−

1
2
(x−Y)2 , −∞ < x < ∞

Y ∼ e−y, y ≥ 0

⎫
⎬
⎭
⇒ X ∼ Convolution ofY and an independentZ ∼ N(0, 1), (17)

Proof. The mgf for X|Y is given by

MX|Y(t) = EX|Y [etX] = eYt+t2/2, (18)

where a1(t) = et
2/2 and a2(t) = t. Now by Eq. (4),

MX(t) = et
2/2MY(t) =

et
2/2

(1 − t) , (19)

which is the mgf of the convolution of Y and an independent Z ∼ N(0, 1). Thus, X follows the distribution of the convolution of Y and an
independent Z ∼ N(0, 1).

3.4. The Poisson–Chi-square Mixture

The mixture model of the Poisson mixture of Chi-square random variables is

X|Y ∼ 𝜒2
n+2Y, x ≥ Y

Y ∼ POI(𝜆)
} ⇒ X ∼ 𝜒2

n;2𝜆. (20)

Proof. The mgf for X|Y is given by

MX|Y(t) = EX|Y [etX] = (1 − 2t)−(n+2Y)/2 = (1 − 2t)−n/2e− ln(1−2t)Y, (21)

where a1(t) = (1 − 2t)−n/2 and a2(t) = − ln(1 − 2t). Now by Eq. (4),

MX(t) = (1 − 2t)−n/2MY [− ln(1 − 2t)]

= (1 − 2t)−n/2e𝜆(e
− ln(1−2t)−1)

= (1 − 2t)−n/2e2t𝜆/(1−2t), (22)

which is an mgf of a noncentral chi-square distribution that has a noncentrality parameter 2𝜆. It follows from (22) that X has the noncentral
chi-square distribution with the noncentrality parameter 2𝜆.Pdf_Folio:386
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3.5. The Geometric–Gamma Mixture

The mixture model of the Geometric mixture of Gamma random variables is

X|Y ∼ Gamma(Y, 𝛽)

Y ∼ Geometric(𝜃)
} ⇒ X ∼ EXP(𝛽/𝜃). (23)

Proof. The mgf for X|Y is given by

MX|Y(t) = EX|Y [etX] = (1 − 𝛽t)−Y = e−Y ln(1−𝛽t), (24)

where a1(t) = 1 and a2(t) = − ln(1 − 𝛽t). Now by the Eq. (4),

MX(t) =MY [ln(1 − 𝛽t)−1] = 𝜃eln(1−𝛽t)−1

1 − (1 − 𝜃)eln(1−𝛽t)−1

= 𝜃(1 − 𝛽t)−1

1 − (1 − 𝜃)(1 − 𝛽t)−1 =
𝜃

𝜃 − 𝛽t =
1

1 − (𝛽/𝜃)t , (25)

which is an mgf of an exponential distribution with shape parameter 𝛽/𝜃. Thus, X ∼ EXP(𝛽/𝜃).

4. EXTENSION TO MIXTURES THAT DO NOT HAVE AN mgf

When mgfs do not exist for the mixture distribution, one uses the characteristic function (cf) for the mixture distributions.

The cf of an r.v. X is defined by 𝜙X(t) = E
(
eitX

)
, where t ∈ R and i = √−1. The conditional characteristic of X|Y is denoted and defined by

𝜙X|Y(t) = E
(
eitX|Y

)
.

The Chi-square–Normal Mixture

X|Y ∼ N(0, 1/Y)

Y ∼ 𝜒2
1

} ⇒ X ∼ Cauchy(0, 1). (26)

Proof. The cf of X|Y is

𝜙X|Y(t) = E
(
eitX|Y

)
= e−t2/2Y. (27)

The cf of X can be obtained from the Eq. (27) as

𝜙X(t) = E [𝜙X|Y(t)] = E [e−t2/2Y] = ∫
∞

0
e−t2/2y 1

√2𝜋
y1/2−1e−y/2dy. (28)

Now with the transformation |t|z = y and simplifying (28), we have

𝜙X(t) =√
2|t|
𝜋 × 1

2 ∫
∞

0
z1/2−1e−|t|/2(z+1/z)dz =√

2|t|
𝜋 × K1/2

(
|t|
)
, (29)

where, Ku(v) is the modified Bessel function of third kind defined by

Ku(v) =
1
2 ∫

∞

0
zu−1e

−
v
2
(z+1/z)

dz, −∞ < u < ∞. (30)

It should be noted that asymptotic form for the modified Bessel function of the third kind is

K𝛼(z) ∼√
𝜋
2z e

−z

(
1 + 4𝛼2 − 1

8z +
(
4𝛼2 − 1

) (
4𝛼2 − 9

)
2! (8z)2 +

(
4𝛼2 − 1

) (
4𝛼2 − 9

) (
4𝛼2 − 25

)
3! (8z)3 +⋯

)
. (31)

Therefore, by Eq. (31), we have

K1/2(v) =√
𝜋
2z e

−z. (32)
Pdf_Folio:387
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Now by Eqs. (29) and (32), we obtain the cf X as

𝜙X(t) =√
2|t|
𝜋 ×√

𝜋
2|t| e

−|t| = e−|t|, (33)

which is the cf of the standard Cauchy distribution. Thus, we conclude that X ∼ Cauchy(0, 1).

Remarks.. The F distribution arises from themixture of chi-square and Gamma distribution and it has nomgf. In this case, one may derive
the cf of this mixture distribution. The t-distribution arises from themixture of chi-square and normal distribution and it has nomgf, Hurst
[18]. Similarly, Pareto distribution is a mixture of distributions and has no mgf. In all these cases, a cf can be used in the derivation of the
mixture distributions.

5. CONCLUDING REMARKS

Mixture models play vital roles in statistics. They are used in modeling actuarial applications, biological spatial data, “accident proneness,”
plant data on sedge Carex flacca, and applied in many other areas of statistics. Because of the high importance of mixture distributions,
students should be exposed tomixture distributions as soon as they have familiarity with conditional expectations. In the current textbooks,
mixture distributions are derived from the joint distribution that originated from hierarchical mixture models as a marginal distribution.

This article finds mixture distributions using mgf method. The derivation of mixture distribution using mgfs is, in general, more straight-
forward and shorter than an origin of the marginal density of mixture random variable from a joint density. It is because, in the present
method, one relies on mgfs that have already been derived or available. However, there are examples where the derivation of the marginal
density of the mixture r.v. from a joint density is much simpler.

On the other hand, there are two difficulties in the mgf methods. First, one cannot get a1(t) and a2(t) as given in Eq. (3), for all mfsMX|Y(t)
of the conditional distributions of X|Y. Second, sometimes it is hard to map the derived mgf MX(t) with a distribution. It requires good
knowledge with familiarization of various distributions and corresponding mgfs. The mixtures that do not have an mfg, one can extend the
mgfs method to cfs method.

As pointed out by [17], the idea of using mgf method for mixture distribution can be introduced in senior mathematical statistics courses at
the level of Wackerly et al. [19] and Larsen and Marx [20] for students who are exposed to conditional expectations and mgfs. This article
is directed to first-year graduate students in the mathematical statistics course at the level of Casella and Berger [1]. The mgf technique
is underexposed in the current textbooks. From a pedagogical standpoint, mgf techniques can be used as a useful tool to derive mixture
distributions. For mixtures that do not have anmgf, students with a background in complex analysis may use the cfs to extend the approach.
Finally, the techniques learned here can be profitably used in the study of Bayes’ procedures.
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APPENDIX

Table A.1 Examples of other mixture distributions that have moment-generating functions (mgfs) [17].

Conditional Mixing Marginal

X|Y ∼ f(x|Y) Y ∼ g(y) X ∼ fX(x)
BIN (Y, p) POI (𝜆) POI (p𝜆)
POI (Y) GAM (𝛼,𝛽) NEGBIN (𝛼, 1/(1+ 𝛽))

NOR (Y, 𝜍2) NOR (𝜇, 𝜏2) NOR(𝜇,𝜍2 + 𝜏2)
POI (Y) 𝜙 POI (𝛼) Neyman-A (𝜆,𝜙)

POI (Y) GIG (𝛾,𝜒,𝜓) SICHEL
(
𝛾, 2

𝜓+2
, √𝜒(𝜓 + 2)

)
LEV (Y, 𝜍) 𝜍 SEV (𝜉, 1) LOGIS(𝜇,𝜍), 𝜇 = 𝜉𝜍

∑Y

1
Xi,Xi ∼iid LOGSER (p) POI (𝜆) NEGBIN

(
− 𝜆

ln p
, p
)

Table A.2 List of probability density functions or probability mass functions and corresponding moment-generating functions (mgfs) [17].

Distribution Pdf/pmff(x) mgf

BIN (n, p)
(
n
k

)
pk(1− p)n−k, k = 0, 1,⋯ , n

(
1− p+ pet

)n
CHISQ(n) –

(
𝜒2

n
) 1

Γ(
n

2
)2

n

2

x
n

2
−1
e
−
x

2 , x ≥ 0 1

(−2t)n/2
, t < 1

2

CHISQ –noncentral
(
𝜒2

n;𝜆
) 1

2
e−(x+𝜆)/2

( x
𝜆
)k/4−1/2 Ik/2−1 (√𝜆x) exp

( 𝜆t
1−2t

)
(1− 2t)−k/2, t < 1/2

EXP (𝜆) 𝜆e−𝜆x, x ≥ 0 𝜆
𝜆−t

, t < 𝜆

GAM (𝛼,𝛽) 1
Γ(𝛼)𝛽𝛼 x

𝛼−1e−x/𝛽, x ≥ 0 1

(1−𝛽t)
𝛼 , t < 1/𝛽

GEO (p) p(1− p)k−1, k = 1, 2,⋯ p exp(t)

1−(1−p) exp(t)
, t < − ln(1− p)

GIG (𝛾,𝜒,𝜓) (𝜓/𝜒)𝛾/2x𝛾−1

2K𝛾
(
√𝜒𝜓

) exp [− 1

2

(𝜒
x
+𝜓x

)
], x > 0 K𝛾[√𝜒(𝜓−2t)]

(1−2t/𝜓)𝛾/2K𝛾
(
√𝜒𝜓

) , t < 𝜓/2

LEV (𝜇,𝜍) 1
𝜍𝜙lev

( x−𝜇
𝜍

) , x ∈ R exp(𝜇t)Γ(1−𝜍t), t < 1/𝜍

LOGIS (𝜇,𝜍) 1
𝜍𝜙logis

( x−𝜇
𝜍

) , x ∈ R exp(𝜇t)Γ(1−𝜍t)Γ(1+𝜍t), |t| < 1
𝜍

LOGSER (p) −(1−p)x

x ln p
, x = 1, 2,⋯ ln[1−(1−p) exp(t)]

ln p
, t− ln(1− p)

NEGBIN (𝛼, p)
(𝛼+x−1

x
)
p𝛼(1− p)x, x = 0, 1,⋯ [ p

1−(1−p) exp(t)
]
𝛼
, t < − ln(1− p)

NOR (𝜇,𝜍2) 1
√2𝜋𝜍

e−
1

2𝜍2 (x−𝜇)
2

, x ∈ R exp
(
𝜇t+𝜍2t2/2

)
SEV (𝜇,𝜍) 1

𝜍𝜙logis
( x−𝜇

𝜍
) , x ∈ R exp(𝜇t)Γ(1+𝜍t), t > −1/𝜍

SICHEL (𝛾, 𝜃, 𝛼) (1−𝜍)𝛾/2

K𝜓
(
𝛼√1−𝜍

) (𝜃𝛼/2)xx! Kx+𝜍(𝛼), x ∈ N [ 1−𝜃
1−𝜃 exp(t)

]
𝛾/2

K𝛾[𝛼√1−𝜃 exp(t)]

K𝛾
(
𝛼√1−𝜃

) , t < − ln𝜃
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