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ABSTRACT
The inverse exponential distribution is widely used in the field of reliability. In this article, we present a generalization of the
inverse exponential distribution in formation of Topp-Leone odd log-logistic inverse exponential distribution. We provide a
comprehensive account of some mathematical properties of the Topp-Leone odd log-logistic inverse exponential distribution.
The possible shapes of the corresponding probability density function and hazard function are obtained and graphical demon-
stration are presented. The distribution is found to be unimodal. The results for moment, moment-generating function, and
probability-generating function are computed. The residual and reversed residual functions are also obtained. The proposed
method of maximum likelihood is used for the estimation of model parameters. The performance of the parameters is investi-
gated through simulation. The usefulness of the proposed model is illustrated by means of a real data set.

© 2020 The Authors. Published by Atlantis Press B.V.
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1. INTRODUCTION

Keller and Kamath [1] introduced the inverse exponential (IEx) distribution to study the reliability of computer control (CNC) machine
tools. Lin et al. [2] discussed the IEx distribution in term of different causes of failure for the machines. They obtained the maximum
likelihood estimator and confidence limits for the parameter and the reliability function using complete samples. They also compared this
model with the inverted Gaussian and log-normal distributions based on a maintenance data set. Sanku Dey [3] and Gyan Prakash [4]
studied the IEx distribution according to Bayesian point of view. Abouammoh and Alshingiti [5] worked on the addition of an extra shape
parameter to obtain the generalized IEx distribution. It is to be noted that this distribution originated from the exponentiated Frechet
distribution studied by Nadarajah and Kotz [6].

Several interesting generalizations of the IEx distribution have been derived including transmuted-generalized IEx distribution by Elbatal
[7], the Kumaraswamy IEx distribution by Oguntunde et al. [8], the transmuted IEx distribution by Oguntunde and Adejumo [9],
the exponentiated-generalized IEx distribution by Oguntunde et al. [10], and the beta-generalized IEx distribution by Bakoban and
Abu-Zinadah [11].

The most common exhibition of hazard rates appeared in practice is the bathtub shaped. A simple model form bathtub-shaped hazard rates
is the Topp-Leone distribution introduced by Topp and Leone [12]. The quantile function of this model has closed-form and the model is
also very flexible to generate the data.

We start by defining the class of probability distribution introduced by Alizadeh et al. [13] using the cumulative distribution function (cdf)
of the odd log-logistic (OLL) distribution as a generator and named as the Topp-Leone odd log-logistic (TLOLL-G) family of distributions.
The proposed family has two additional shape parameters. The distribution function (cdf) of the proposed class of distributions is given as
follows:

F(x) = [1 −
(

1 − G(x; 𝜉)a
G(x ∶ 𝜉)a + (x𝜉)a

)2

]
b

, (1.1)
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and the corresponding density function (pdf) of the proposed family is given as

f(x) = 2abg(x; 𝜉)G(x, 𝜉)a−1(x; 𝜉)2a−1

[G(x; 𝜉)a + (x; 𝜉)a]3 [1 −
(

1 − G(x; 𝜉)a
G(x ∶ 𝜉)a + (x𝜉)a

)2

]
b−1

, (1.2)

where a > 0 and b > 0 are the shape parameters, 𝜉 is the vector parameter of the parent G(x), g(x) is the derivative of G(x), and G(x) =
1 − G(x).

In this study, we introduce a generalization of the IEx distribution named as the Topp-Leone odd log-logistic inverse exponential (TLOLL-
IEx) distribution. The motivation of this generalization of IEx distribution is to enhance its applicability and adaptability. The addition of
two shape parameters makes it more compatible for modeling the real life scenarios.

The organization of this article is as follows: The proposed TLOLL-IEx distribution and its properties are given in Section 2. Estimation of
the model parameters is computed in Section 3. The performance of the parameters is investigated through simulation in Section 4. The
application of the proposed model is illustrated in Section 5. The discussion ends with some concluding remarks in Section 6.

2. TOLL-IEx DISTRIBUTION AND ITS PROPERTIES

In this section, we derive the density function of the TLOLL-IEx distribution. For this aim, we consider the cdf of IEx distribution as

G(x) = e
−
𝜆
x , x > 0, 𝜆 > 0, (2.1)

and the pdf is given by

g(x) = 𝜆
x2 e

−
𝜆
x , x > 0, 𝜆 > 0. (2.2)

Using (2.1) in (1.1), we have the cdf of TLOLL-IEx distribution as

F(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −

⎛⎜⎜⎜⎜⎜⎝
1 − e

−
𝜆
x

e
−
𝜆
x +

(
1 − e

−
𝜆
x

)a

⎞⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

b

, x > 0, a, b, 𝜆 > 0. (2.3)

The corresponding density of the TLOLL-IEx distribution is obtained by differentiating Eq. (2.1) and given as

f(x) =
2ab 𝜆

x2 e
−

a𝜆
x

(
1 − e

−
𝜆
x

)2a−1

[e−
a𝜆
x +

(
1 − e

−
𝜆
x

)a

]
3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −

⎛⎜⎜⎜⎜⎜⎝
1 − e

−
𝜆
x

e
−
𝜆
x +

(
1 − e

−
𝜆
x

)a

⎞⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

b−1

, x > 0, a, b, 𝜆 > 0. (2.4)

We study some useful and important properties of the new distribution. The distributional properties of the proposed distribution is
obtained for real values of a and b.

2.1. Shape

The density function TLOLL-IEx distribution as form (2.1) is given as

f(x) =
2ab 𝜆

x2 e
−

a𝜆
x

(
1 − e

−
𝜆
x

)2a−1

[e−
a𝜆
x +

(
1 − e

−
𝜆
x

)a

]
3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −

⎛⎜⎜⎜⎜⎜⎝
1 − e

−
𝜆
x

e
−
𝜆
x +

(
1 − e

−
𝜆
x

)a

⎞⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

b−1

.
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For real b, we use following series representation given by Prudnikov et al. (1986) as

(1 + x)𝛼 =
∞
∑
j=0

Γ(𝛼 + 1)
j! (𝛼 + 1 − j) c

j, 𝛼 > 0.

Then, the pdf of TLOLL-IEx distribution is written as

f(x) =
∞
∑
k−0

dk+1𝛾𝜆x−2

(
e
−
𝜆
x

)𝛾

. (2.5)

Here, dk is given by

dk =
∞
∑
i=0

2i

∑
j=0

(−1)i+j
(
b
i

)(
2i
j

)
ck,j.

We define ck,j as

ck,j =
1
b0,j

(
ak,j −

1
b0,j

k

∑
r=1

bk,jck−r,j

)
,

where bk,j = hk(a, j) and ak,j = ∑∞
l=k(−1)l+k

(
ja
l

)(
l
k

)
. Hence, in (2.5) a and b are real numbers. The density of TLOLL-IEx distribution is

a weighted sum of infinite IEx distribution or it can also be termed specifically as non-central IEx distribution. Figure 1 demonstrates some
of the possible shapes of the density function for the selected values of a, b, and 𝜆.

Figure 1 The density function for the Topp-Leone odd log-logistic inverse
exponential (TLOLL-IEx) distribution for several values of parameters.
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Quantile Function and Various Relevant Measures

The quantile function of TLOLL-IE distribution corresponding to (2.1) is given by

x = Q(u) = 1
𝜆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢
⎢
⎣

1 −
(

1 − u
1
b

)−
1
2 ⎤
⎥
⎥
⎦

1
a

1 +
⎡
⎢
⎢
⎣

1 −
(

1 − u
1
b

)−
1
2 ⎤
⎥
⎥
⎦

1
a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 0 < u < 1. (1)

The above expression concede us to extract the following form of statistical measures for the proposed model i. The first quartile Q1, the
second quartile Q2(median), and the third quartile Q3 of the TLOLL-IE distribution correspond to the values u = 0.25, 0.50, and 0.75,
respectively. ii. The skewness and kurtosis can be calculated by using the following relations, respectively. Bowleys skewness is based on
quartiles in Kenney and Keeping (1962) calculated by

sk3 = Q3 − 2Q2 + Q1
Q3 − Q1

. (2)

Moors kurtosis (Moors, 1988) is based on octiles via the form

sk4 =
q
(

7
8

)
− q

(
5
8

)
− q

(
3
8

)
+ q

(
1
8

)
q
(

6
8

)
− q

(
2
8

) , (3)

where q(.) is the quantile function explain in (3.2).

Asymptotics

Corollary 3.1: Let c = inf(x|G(x)) > 0. Then, the asymptotics of F(x), f(x) and h(x) when x → c are, respectively, given as follows:

F(x) ∼ [2ae
−
𝜆
x ]

b

as x ⟶ c,

f(x) ∼ b(2a)𝜆 𝜆x2

(
e
−
𝜆
x

)b

as x ⟶ c,

h(x) ∼ b (2a)𝜆 𝜆
x2 (e

−
𝜆
x )b as x ⟶ c.

Corollary 3.2: The asymptotics of F(x), f(x) and h(x) when x →∞ are, respectively, given by

1 − F(x) ∼ b

(
1 − e

−
𝜆
x

)2a

as x ⟶ 0,

f(x) ∼ 2ab 𝜆x2 e
−
𝜆
x

(
1 − e

−
𝜆
x

)2a−1

as x ⟶ 0,

h(x) ∼
2a 𝜆

x2 e
−
𝜆
x

1 − e
−
𝜆
x

as x ⟶ 0.

2.2. Moment

The rth noncentral moment, 𝜇′r = E(Xr) of the TLOLL family is given as

𝜇′r = E[xr] =
∞
∑
k=0

dk+1 ∫
∞

0
xr𝜋k+1(x),
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where 𝜋k+1(x) = 𝛾g(x)G(x)𝛾−1. After some calculation, the rth moments of the TLLOL-IE distribution are derived as

𝜇′r =
∞
∑
k=0

dk+1(𝛾𝜆)rΓ(1 − r). (2.6)

One can see, (2.6) is an infinite weighted sum of moments of the IEx distribution. The higher-order moments can be obtained by substituting
r < 0 in (2.6). The variance, skewness, and kurtosis measures can be calculated using the relations given by

Var(x) = E(x2) − [E(x)]2,

Skewness(x) = E(x3) − 3E(x)E(x2) + 2E3(x)

Var
3
2 (x)

,

kurtosis(x) = E(x4) − 4E(x)E(x3) + 6E(x2)E2(x) − E3(x)
Var2(x) .

2.3. Moment-Generating Function and Probability-Generating Function

The moment-generating function (mgf) of the TLOLL-IEx distribution is obtained by

Mx(t) = ∫
∞

−∞
etxf(x),

where etx =∑∞
h=0

txxh
h! . Using the pdf (2.4), the mgf of the TLOLL-IEx distribution is given as follows:

Mx(t) =
∞
∑
k,h=0

tm
h! dk+1(𝛾𝜆)1−hΓ(1 − h),

Similarly, the probability-generating function (pgf) of the TLOLL-IEx distribution is defined as follows:

𝛿x(t) = ∫
∞

0
tx

∞
∑
k=0

dk+1𝛾
𝜆
x2

(
e
−
𝜆
x

)𝛾

dt,

where tm =∑∞
m=0

(ln t)mxm
m! , by solving the above expression, the pgf of the TLOLL-IEx distribution is given as follows:

𝜌x(t) =
∞
∑

k,m=0

(ln t)m
m! dk+1(𝛾𝜆)1−mΓ(1 −m).

Some reliability measure including hazard rate function also known as reliability function rf, residual life function, and reversed residual
life function. The expression of survival function of the TLOLL-IEx distribution is given as follows:

R(x) = 1 −
∞
∑
i,k=0

2i

∑
j=0

dk

(
e
−
𝜆
x

)𝛾

, x > 0, a, b, 𝜆 > 0, (4)

2.4. Hazard Function

The hazard function for any probability distribution is given as

h(x) = f(x)
1 − f(x)

.
Pdf_Folio:401
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For TLLOL-IE distribution, the hazard function is obtained by

h(x) =

∞
∑
k−0

dk+1𝛾𝜆x−2e
−
𝜆
x

(
e
−
𝜆
x

)𝛾−1

1 −
∞
∑
i,k=0

2i

∑
j=0

dk

(
e
−
𝜆
x

)𝛾 , x > 0, a, b, 𝜆 > 0,

Figure 2 presents, the plots of the hazard function for TLOLL-IEx distribution with several values of parameters. As seen in Figure 2, the
hazard function of the TLOLL-IEx distribution is very flexible. The reversed hazard function is obtained as follows:

r(x) =
2ab 𝜆

x2 e
−

a𝜆
x

(
1 − e

−
𝜆
x

)2a−1

[e−
a𝜆
x +

(
1 − e

−
𝜆
x

)a

]
3
⎛⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎝
1 − e

−
𝜆
x

e
−
𝜆
x +

⎛⎜⎜⎜⎝1−e
−
𝜆
x
⎞⎟⎟⎟⎠
a

⎞⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎠
and the cumulative hazard function is given by

H(x) = − log

⎛⎜⎜⎜⎜⎜⎜⎝
1 −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −

⎛⎜⎜⎜⎜⎜⎝
1 − e

−
𝜆
x

e
−
𝜆
x +

(
1 − e

−
𝜆
x

)a

⎞⎟⎟⎟⎟⎟⎠

2
⎤
⎥
⎥
⎥
⎥
⎥
⎦

b⎞⎟⎟⎟⎟⎟⎟⎠
.

2.5. Moments for Residual and Reversed Residual Life

The s− th moment of the residual life, says ms(t) = E[(x− y)n|X > y|], n = 1, 2, .... is unusually obtained using cdf. The s− th moment of
the residual life for X is given by

ms(t) =
1

R(y) ∫
∞

y
(x − y)sdF(x),

Figure 2 Plots for the hazard function of Topp-Leone odd log-logistic inverse
exponential (TLOLL-IEx) distribution for several values of parameters.
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the final expression of the moment of the residual life is given by

ms(y) =
1

R(y)

∞
∑
k,r=0

(−y)s−ryk
( s
r

)
∫
∞

y
xr𝜋k+1(x)

= 1
R(y)

∞
∑
k,r=0

(−y)s−ryk
( s
r

)
dk+1𝛾

(
(1 − r), 𝛾𝜆y

)
.

The mean residual life of X shows the expectation of additional life length for a unit which survive at age y. It can be easily computed by
setting the value s = 1. The p − th moment of the reversed residual life says Mp(t) = E[(y − 1)n|X ≤ y|], for y > 0 and p = 1, 2, .... is
uniquely computed using F(y) and given by

Mp(y) =
1

F(y)
∫ y

0
(y − x)ndF(x). (2.7)

The p − th moment of the reversed residual life is determine as

Mp(Y) =
1

F(y)

∞
∑
k,r=0

(−1)yk
(n
r

)
tp−r ∫

∞

y
xr𝜋k+1(x),

= 1
F(y)

∞
∑
k.r=0

(−1)yk
(p
r

)
yp−rdk+1𝛾

(
(1 − r), 𝛾𝜆y

)
. (2.8)

3. INFERENCE

In this section, the method of maximum likelihood is considered for the estimation of parameters of TLOLL-IEx distribution. Let, x1, ...., xn
be the random sample from the TLOLL-IEx distribution with shape parameters a, b, and p ∗ 1 is baseline vector parameter 𝜆. The log-
likelihood function for Θ = (a, b, 𝜆T)T, say L = L(Θ), is obtained by

L = n log(2) + n log(a) + n log(b) +
n

∑
i=0

𝜆 log

(
e
−
𝜆
x

)
x2 + (a − 1)

n

∑
i=0

log

(
e
−
𝜆
x

)

+(2a − 1)
n

∑
i=0

log

(
1 − e

−
𝜆
x

)
− 3

n

∑
i=0

log

((
e
−
𝜆
x

)a

+
(

1 − e
−
𝜆
x

)a)

+(b − 1)
n

∑
i=1

log

⎛⎜⎜⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎜⎝
1 −

(
e
−
𝜆
x

)a

(
e
−
𝜆
x

)a

+
(

1 − e
−
𝜆
x

)a

⎞⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎟⎠
. (3.1)

We can maximize the above equation using R (optim function), SAS (PROCNLMIXED), and Ox program (MaxBFGS sub-routine) or by

solving the nonlinear likelihood equations by differentiation. The score vector components, say I (Θ) =
(

𝜕L
𝜕a
, 𝜕L
𝜕b
, 𝜕L𝜕𝜆

T
)T

=
(
Ia, Ib, IT𝜆

)T
,

are given as follows:

Ia =
n
a +

n

∑
i=0

log (w) + 2
n

∑
i=0

log (1 − w) − 3
n

∑
i=0

(w)a log (w) + (1 − w)a log (1 − w)
(w)a + (1 − w)a

+ (b − 1)

×
n

∑
i=1

−
2
(

1 − (w)a

(w)a+(1−w)a

)( (w)a((w)a log(w)+(1−w)a log(1−w))
((w)a+(1−w)a)2 − (w)a log(w)

(w)a+(1−w)a

)
1 −

(
1 − (w)a

(w)a+(1−w)a

)2

Ib =
n
b
+

n

∑
i=1

log

(
1 −

(
1 − (w)a

(w)a + (1 − w)a

)2)
Pdf_Folio:403
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I𝜆 = −3
n

∑
i=0

aw(1−w)a−1

x
− a(w)a

x

(w)a + (1 − w)a
+ (2a − 1)

n

∑
i=0

w
x (1 − w) − (a − 1)

n

∑
i=0

1
x −

𝜆
n

∑
i=0

1
x

x2 +

n

∑
i=0

log (w)

x2 + (b − 1)

×
n

∑
i=1

−

2
(

1 − (w)a

(w)a+(1−w)a

) ⎛⎜⎜⎜⎝
(
aw(1−w)a−1

x
−

a(w)a

x

)
(w)a

((w)a+(1−w)a)2 + a(w)a

x((w)a+(1−w)a)

⎞⎟⎟⎟⎠
1 −

(
1 − (w)a

(w)a+(1−w)a

)2 .

Here, w = e
−
𝜆
x . We can find the maximum likelihood estimations (MLEs) by setting the above equations equal to 0 and solving them

iteratively. The Fisher information matrix for the parameters of the TLOLL-IEx distribution is obtained by

⎛⎜⎜⎝
â
b̂
̂𝜆

⎞⎟⎟⎠ ∼ N
⎛⎜⎜⎝
⎛⎜⎜⎝
a
b
𝜆

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
̂Jaa ̂Jab ̂Ja𝜆

̂Jbb ̂Jb𝜆
̂J𝜆𝜆

⎞⎟⎟⎠
⎞⎟⎟⎠

1
J = −E

⎛⎜⎜⎝
Jaa Jab Ja𝜆

Jbb Jb𝜆
J𝜆𝜆

⎞⎟⎟⎠ .

By determining the inverse dispersion matrix, the asymptotic variances and covariances of the MLEs for a, b, and 𝜆 can be obtained. Using
above equations, approximate 100(1 − 𝜆)% confidence intervals for a, b, and 𝜆 are, respectively, obtained as

â ± Z𝛾
2
√ aa, b̂ ± Z𝛾

2
√ bb, ̂𝜆 ± Z𝛾

2
√ 𝜆𝜆,

where Z𝛾 is the upper 100𝛾th quantile of the standard normal distribution.

4. SIMULATION STUDY

In this section, we conduct a simulation study. We generate 10,000 samples of size, n = 50, 100, 250, 500 and n = 1000 of the TLOLL-IEx
model. The evaluation of estimates is based on the mean, the mean squared error (MSE), and We use R software for computation. The
results in Table 1 show that the estimates are closer to the true values of the parameters from all sample size which clearly indicates that
estimate are quite suitable. As the value of n increases, we can see that the estimates tend to move toward their true values which justifies
the fact of asymptotic normality.

5. APPLICATION

In this part, we discuss the applicability of TLOLL-IEx model in real-life phenomena. We consider the data of the tensile strength, measured
in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20 mm given by Chwastiak et al. [14 ]. The data is given in Table 2.
Then, fitted distributions and their abbreviations are presented in Table 3.

The unknown parameters of each distribution are estimated using the maximum likelihood method. AIC (Akaike Information Criterion),
CAIC (Consistent Akaike Information Criterion), and BIC (Bayesian Information Criterion) are used as goodness of fit measure. The esti-
mated parameters of the fitted models, AIC, CAIC, and BIC are presented in Table 4. The values in this table clearly justify that the TLOLL-
IEx distribution provides better fits than other models.

We also obtain a visual comment with histogram given in Figure 3 for the best model.

6. CONCLUSION

In this paper, the discussion has been carried out through the generalization of the IEx distribution. We motivate from the TLOLL family
of distributions and named the proposed model as TLOLL-IEx distribution. Several structural characteristics of the proposed distribution
are derived and discussed. The maximum likelihood method is employed for estimating the model parameters. For effectiveness of the
derived model, we consider a real-life data set and the results are compared with some well-known existing distributions. The TLOLL-IEx
distribution is found unimodal. We hope that this generalization will applicable in the fields of reliability and lifetime analysis.Pdf_Folio:404
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Table 1 Estimated biases, mean squared errors (MSEs), average lenghts(ALS) for the several parameter values.

b=1 Mean MSE AL

𝜆 a n 𝜆 b a 𝜆 b a 𝜆 b a

50 0.661 1.321 0.783 0.312 0.215 1.315 0.831 0.737 0.749
100 0.601 1.135 0.632 0.234 0.177 1.103 0.557 0.811 0.861

0.5 0.5 250 0.549 1.075 0.554 0.133 0.121 0.311 0.313 0.853 0.882
500 0.531 1.041 0.516 0.031 0.037 0.108 0.104 0.873 0.931

1000 0.503 1.009 0.505 0.011 0.015 0.036 0.023 0.941 0.953
50 0.537 1.319 2.417 0.578 0.315 2.112 1.731 0.821 0.886

100 0.522 1.217 2.313 0.441 0.257 1.011 1.335 0.851 0.922
0.5 2 250 0.519 1.033 2.139 0.361 0.113 0.713 0.716 0.885 0.936

500 0.509 1.015 2.101 0.131 0.057 0.317 0.318 0.911 0.948
1000 0.501 1.003 2.011 0.053 0.013 0.103 0.107 0.942 0.953

50 0.631 1.353 1.619 0.485 0.553 0.972 2.538 0.831 0.841
100 0.539 1.172 1.761 0.349 0.331 0.609 1.549 0.866 0.883

3 2.5 250 0.526 1.105 1.837 0.111 0.145 0.363 0.649 0.913 0.914
500 0.513 1.051 1.935 0.018 0.051 0.131 0.341 0.937 0.938

1000 0.501 1.011 1.992 0.001 0.012 0.015 0.131 0.944 0.948

Table 2 Carbon fiber data.

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006,
2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274,
2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535,
2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773,
2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128,
3.233, 3.433, 3.585, 3.585

Table 3 Fitted distributions and their abbreviations.

Distribution Abbreviation References

Topp-Leone OLL IEx TLOLL-IEx Proposed
IEx IE [7]
Exponential E [15]
Lindley L [9]
Generalized Lindley GL [9]
Generalized Gamma GG [9]
Exponential Power EP [15]
Power Quasi Lindley PQL [16]
Weibull W [17]
Sujatha S [10]
Generalized Sujatha GS [10]

Table 4 MLEs and the values of AIC, CAIC, and BIC statistics.

Distribution Estimated Parameters AIC CAIC BIC

TLOLL(a,b,𝜆) 6.4855 0.5668 2.0404 103.8239 104.1931 110.5262
IE(𝜆) 2.343 264.0296 264.0893 266.2637
E(𝛽) 2.4513 263.7352 263.7949 265.9693
L(𝜃) 0.6545 240.3805 240.4402 242.6146
GL(𝜃,𝛼,𝛽)* 9.3907 22.7198 4.771 106.0848 106.454 112.7871
GG(𝜃,𝛼,𝛽)* 3.5861 2.6483 0.3044 103.9877 104.3569 110.69
EP(𝛼,𝛽)* 2.992 3.7061 111.204 111.3858 115.6722

(continued)
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Table 4 MLEs and the values of AIC, CAIC, and BIC statistics. (Continued)

Distribution Estimated Parameters AIC CAIC BIC

W(𝛼,𝜆)* 3.843 0.088 275.8682 276.05 280.3364
S(𝜃)* 0.0956 243.5 243.63 244.93
GS(𝜃,𝛼)* 0.0972 14.473 244.54 244.68 243.97
MLE, maximum likelihood estimation; AIC, Akaike information criterion; CAIC, consistent Akaike information cri-
terion; BIC, Bayesian information criterion.
*Estimated parameter values are obtained from related references.

Figure 3 Graph for fitted distributions to the data set.
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