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ABSTRACT
Some threshold-based classification rules in case of two classes are defined. In assumption, that a learning sample is obtained
from amixture with varying concentration, the empirical-Bayesian classification (EBC)-estimator ofmultidimensional Bayesian
threshold is constructed. The conditions of convergence in probability of estimator are found.
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1. INTRODUCTION

Themodel of amixture of several probability distributions wasmentioned for the first time byNewcomb [1] and Pearson [2]. Suchmixtures
naturally arise inmany areas. In particular, in the theory of reliability and time of life,mixtures of gammadistributions [3] are used. Examples
of the use of mixtures of normal distributions in the processing of biological and physiological data are given in [4]. In Slud [5], a mixture
of two exponential distributions is used to describe the debugging process of the software. Some applications of the model of mixtures in
medical diagnostics were given in [6,7].

The technique of a nonparametric analysis of mixtures where concentrations changes from observation to observation develops, actively.
The problem of distributions estimating in case at known concentrations is considered in the works of Maiboroda [8,9]. Estimates of con-
centrations in two-component mixtures in work [10]. Works by Sugakova [11] and Ivanko [12] are devoted to the evaluation of component
distribution densities. The correction algorithms for weighted empirical distribution functions are proposed in [13].

For the theoretical study of problems of nonparametric regression the nonhomogeneous weighted empirical distribution functions used
by Stoune [14]. These were applied by Maiboroda in the tasks of analyzing the mixture. In particular, in Maiboroda [8] found conditions
under which the weighted empirical distribution functions are unbiased and minimal estimators of unknown distribution functions of
components of the mixture.

Object classification by its numerical characteristic is an important theoretical problem and has practical significance, for example, the
definition of a person as “not healthy,” if the temperature of its body exceeds 37°C. To solve this problem we consider the threshold-based
rule of type

gt(𝜉) = { 1, 𝜉 ≤ t,
2, 𝜉 > t.

According to this rule, an object is classified to the first class if its characteristic does not exceed a threshold t = 37°C; otherwise, an object is
classified to belong to the second class. The empirical-Bayesian classification (EBC) [15,16] and minimization of the empirical risk (MER)
[17,18] are widely used methods to estimate the best threshold. The case when the learning sample is obtained from a mixture with varying
concentrations is considered in [19] and the asymptotic of both methods of estimating is investigated.
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However, it is often necessary to classify an object in case of more than one threshold, for example, the definition of a person as “not healthy,”
if the temperature of its body exceeds 37°C or lower than 36°C. Another example: the person is sick, if the level of its hemoglobin exceeds
84 units or lower than 72 units. Accordingly, one can apply the classifiers of type

g1t1,t2 (𝜉) = { 1, 𝜉 ∈ [t1, t2] ,
2, 𝜉 ∉ [t1, t2]

or

g2t1,t2 (𝜉) = { 1, 𝜉 ∉ [t1, t2] ,
2, 𝜉 ∈ [t1, t2] .

In particular, this problem is discussed in [20,21].

The case of two thresholds and three prescribed classes deserves special attention. An example is the classification of the disease stages. Thus,
during the diagnosis of breast cancer a tumor marker CA 15-3 is used. If the value is less than 22 IU/mL, then the person is healthy; if its
level is in the range from 22 to 30 IU/mL—precancerous conditions can be diagnosed; if the index is above 30 IU/mL—patient has cancer.
When solving some technical problems it is needed to consider the substance in its various aggregate forms: gaseous, liquid, solid. The
transition from state to state occurs at a specific temperature. According to this, a boiling point and a melting point are used. Accordingly,
6 classifiers of forms

gt1,t2 (𝜉) = {
1, 𝜉 < t1,
2, t1 ≤ 𝜉 ≤ t2,
3, 𝜉 > t2

can be applied. This partial case was studied in [22].

2. SETTING OF THE PROBLEM

The problem of classification of an object O from the observation of its numerical characteristic 𝜉 = 𝜉(O) is studied. We assume that the
object may belong to one of two prescribed classes. An unknown class number containing O is denoted by ind(O). A classification rule
(briefly, classifier) is a function g : ℝn → {1, 2} that assigns a value to ind(O) by using characteristic 𝜉. In general, classification rule is
defined as a general measurable function, but we restrict the consideration in this paper to the so-called threshold-based classification rules
of the forms

g12m−1,t(𝜉) =
⎧⎪
⎨⎪
⎩

1, 𝜉 ∈ {
m−1, m >1

∪
k=1

[t2k, t2k+1]} ∪ {(−∞, t1]} ,

2, 𝜉 ∈ {
m−1, m >1

∪
k=1

(t2k−1, t2k)} ∪ {(t2m−1, +∞)} ,

g22m−1,t(𝜉) =
⎧⎪
⎨⎪
⎩

1, 𝜉 ∈ {
m−1, m >1

∪
k=1

(t2k−1, t2k)} ∪ {(t2m−1, +∞)} ,

2, 𝜉 ∈ {
m−1, m >1

∪
k=1

[t2k, t2k+1]} ∪ {(−∞, t1)} ,

if n = 2m − 1, m ∈ ℕ and

g12m,t(𝜉) =
⎧⎪
⎨⎪
⎩

1, 𝜉 ∈ {
m−1, m >1

∪
k=1

(
t2k, t2k+1

)
} ∪ {(−∞, t1)} ∪ {(t2m, +∞)} ,

2, 𝜉 ∈ {
m
∪
k=1

[t2k−1, t2k]} ,

g22m,t(𝜉) =
⎧⎪
⎨⎪
⎩

1, 𝜉 ∈ {
m
∪
k=1

[t2k−1, t2k]} ,

2, 𝜉 ∈ {
m−1, m >1

∪
k=1

(
t2k, t2k+1

)
} ∪ {(−∞, t1)} ∪ {(t2m, +∞)} ,

if n = 2m, m ∈ ℕ, where t = (t1, t2, … tn) is the multidimensional threshold.Pdf_Folio:343
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The a priori probabilities pi = P(ind(O) = i), i = 1, 2 are assumed to be known. The characteristic 𝜉 is assumed to be random, and its
distribution depends on ind(O) : P(𝜉(O) < x|ind(O) = i) = Hi(x), i = 1, 2. The distributions Hi are unknown, but they have continuous
densities hi with respect to the Lebesgue measure.

The family of classifiers is denoted by G = {gt : t ∈ ℝn}.
Let, n = 2m − 1, m ∈ ℕ then the probability of error of such a classification rules are given by

L
(
g12m−1,t

)
= L12m−1(t) = P {g1t (𝜉(O)) ≠ ind(O)} =

2

∑
i=1

P{ind(O) = i}P{g1t (𝜉(O)) = 3 − i|ind(O) = i}

= p1
m

∑
k=1

(
H1(t2k) −H1(t2k−1)

)
+ p1

(
1 −H1

(
t2m+1

))
+ p2

m

∑
k=1

(
H2(t2k+1) −H2(t2k)

)
+ p2H2 (t1)

L
(
g22m−1,t

)
= L22m−1(t) = P {g2t (𝜉(O)) ≠ ind(O)} =

2

∑
i=1

P{ind(O) = i}P{g2t (𝜉(O)) = 3 − i|ind(O) = i}

= p1
m

∑
k=1

(
H1(t2k+1) −H1(t2k)

)
+ p1H1 (t1) + p2

m

∑
k=1

(
H2(t2k) −H2(t2k−1)

)
+ p2

(
1 −H2

(
t2m+1

))
.

Analogically, for n = 2m, m ∈ ℕ:

L
(
g12m,t

)
= L12m(t) = P {g12m,t(𝜉(O)) ≠ ind(O)} =

2

∑
i=1

P{ind(O) = i}P{g12m,t(𝜉(O)) = 3 − i|ind(O) = i}

= p1
m

∑
k=1

(
H1(t2k) −H1(t2k−1)

)
+ p2 (1 −H2 (t2m)) + p2

m−1, m >1
∑
k=1

(
H2(t2k+1) −H2(t2k)

)
+ p2H2 (t1)

L
(
g22m,t

)
= L22m(t) = P {g22m,t(𝜉(O)) ≠ ind(O)} =

2

∑
i=1

P{ind(O) = i}P{g22m,t(𝜉(O)) = 3 − i|ind(O) = i}

= p2
m

∑
k=1

(
H2(t2k) −H2(t2k−1)

)
+ p1H1 (t1) + p1

m

∑
k=1

(
H1(t2k+1) −H1(t2k)

)
+ p1 (1 −H1 (t2m))

A classification rule gB ∈ G is called a Bayesian classification rule in the class G, if L(g) attains its minimum at gB
(
gB = argmin

g∈G
L(gt)

)
.

The threshold tB for a Bayesian classification rule is called the Bayesian threshold:

tB = argmin
t∈ℝn

L(t) (1)

Let,

ti = argmin
t∈ℝ

L1i,2m−1(t), t1 < t2 < ... < t2m−1

Denote Bayesian threshold for classifier g12m−1,t:

t1B2m−1 = argmin
t∈ℝ2m−1

L12m−1(t) = (t1, t2, ..., t2m−1) ,

where

L1i,2m−1(t) = (−1)i
(
p1H1(t) − p2H2(t)

)
, i = 1, ..., 2m − 2, m ∈ ℕ, and

L12m−1,2m−1(t) = p1 −
(
p1H1(t) − p2H2(t)

)
.

Analogically, let

ti = argmin
t∈ℝ

L2i,2m−1(t), t1 < t2 < ... < t2m−1
Pdf_Folio:344
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For g22m−1,t:

t2B2m−1 = argmin
t∈ℝ2m−1

L22m−1(t) = (t1, t2, ..., t2m−1) ,

where

L2i,2m−1(t) = (−1)i
(
−p1H1(t) + p2H2(t)

)
, i = 1, ..., 2m − 2, m ∈ ℕ, and

L22m−1,2m−1(t) = p2 +
(
p1H1(t) − p2H2(t)

)
.

Let,

ti = argmin
t∈ℝ

L1i,2m(t), t1 < t2 < ... < t2m

For g12m,t:

t1B2m = argmin
t∈ℝ2m

L12m(t) = (t1, t2, ..., t2m) ,

where

L1i,2m(t) = (−1)i
(
p1H1(t) − p2H2(t)

)
, i = 1, ..., 2m − 1, m ∈ ℕ, and

L12m,2m (t2) = p2 +
(
p1H1(t2m) − p2H2(t2m)

)
Let,

ti = argmin
t∈ℝ

L2i,2m(t), t1 < t2 < ... < t2m

For g22m,t:

t2B2m = argmin
t∈ℝ2m

L22m(t) = (t1, t2, ..., t2m) ,

where

L2i,2m(t) = (−1)i
(
−p1H1(t) + p2H2(t)

)
, i = 1, ..., 2m − 1, m ∈ ℕ

L22m,2m(t) = p1 −
(
p1H1(t) − p2H2(t)

)
.

Denote

L1n(t) = L11,n (t1) + L12,n (t2) + ... + L1n,n (tn) ,

L2n(t) = L21,n (t1) + L22,n (t2) + ... + L2n,n (tn) ,

where n = 2m − 1, m ∈ ℕ or n = 2m, m ∈ ℕ.
When determining the best threshold, one faces the problem of estimating the threshold by using a learning sample, whose members are
classified correctly. We consider the Bayesian empirical classification method, in assumption, that a learning sample is obtained from a
mixture with varying concentration.

The distribution functions Hs (and, of course, densities hs) are assumed to be unknown. One can estimate these functions from the data
ΞN = {𝜉j: N}

N

j=1
being a sample from a mixture with varying concentration, where 𝜉j: N are independent if N is fixed and

P {𝜉j: N < x} = wj: NH1(x) +
(
1 − wj: N

)
H2(x).

Here wj : N is a known concentration in the mixture of objects of the first class at the moment when an observation j is made [23].
Pdf_Folio:345
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To estimate the distribution functions Hs, we use weighted empirical distribution functions

⌢
H

N
s (x) =

1
N

N

∑
j=1

asj : N1 {𝜉j < x} (2)

where 1 {A} is the indicator an event A and asj : N are known weight coefficients:

a1j : N =
1
ΔN

((
1 − S1N

)
wj : N +

(
S2N − S1N

))
, a2j : N =

1
ΔN

(
S2N − S1Nwj : N

)
,

SkN =
1
N

N

∑
j=1

(
wj : N

)k , k = 1, 2, ΔN = S2N −
(
S1N

)2
(see [23]).

One can apply kernel estimators to estimate the densities of distributions:

⌢
h
N

s (x) =
1

NkN

N

∑
j=1

asj : NK

(
x − 𝜉j : N

kN

)
,

where K is a kernel (the density of some probability distribution) and kN is a smoothing parameter [11,24].

The empirical-Bayesian estimator is constructed as follows. At first, one determines the set TN of all solutions of the equation

p1
⌢
h
N

1 (t) − p2
⌢
h
N

2 (t) = 0, t1 < t2 < ... < tn, (3)

where n = 2m − 1, m ∈ ℕ or n = 2m, m ∈ ℕ for every N.

Second, one chooses

⌢
t
1EBC
N,n =

(
argmin

t∈TN

L1N,1,n(t), argmin
t∈TN

L1N,2,n(t), ..., argmin
t∈TN

L1N,n,n(t)

)
as an estimator for tB, where

L1N,i,2m−1(t) = (−1)i
(
p1HN

1 (t) − p2HN
2 (t)

)
, i = 1, ..., 2m − 2, m ∈ ℕ,

L1N,2m−1,2m−1(t) = p1 −
(
p1HN

1 (t) − p2HN
2 (t)

)
;

L1N,i,2m(t) = (−1)i
(
p1HN

1 (t) − p2HN
2 (t)

)
, i = 1, ..., 2m − 1, m ∈ ℕ,

L1N,2m,2m(t) = p2 +
(
p1HN

1 (t) − p2HN
2 (t)

)
,

⌢
t
1EBC
N,i,n = argmin

t∈TN

N,i,n
L (t), i = 1, ..., n, n = 2m(n = 2m − 1),

therefore
⌢
t
1EBC
N,n =

(
⌢
t
1EBC

N,1,n,
⌢
t
1EBC

N,2,n, ...,
⌢
t
1EBC

N,n,n

)
;

L1N,n(t) = L1N,1,n (t1) + L1N,2,n (t2) + ... + L1N,n,n (tn) ,

where n = 2m − 1, m ∈ ℕ or n = 2m, m ∈ ℕ,
or

⌢
t
2EBC
N,n =

(
argmin

t∈TN

L2N,1,n(t), argmin
t∈TN

L2N,2,n(t), ..., argmin
t∈TN

L2N,n,n(t)

)
,
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where

L2N,i,2m−1(t) = (−1)i
(
−p1HN

1 (t) + p2HN
2 (t)

)
, i = 1, ..., 2m − 2, m ∈ ℕ,

L2N,2m−1,2m−1(t) = p2 +
(
p1HN

1 (t) − p2HN
2 (t)

)
;

L2N,i,2m(t) = (−1)i
(
−p1HN

1 (t) + p2HN
2 (t)

)
, i = 1, ..., 2m − 1, m ∈ ℕ,

L2N,2m,2m(t) = p1 −
(
p1HN

1 (t) − p2HN
2 (t)

)
,

⌢
t
1EBC
N,i,n = argmin

t∈TN

L1N,i,n(t), i = 1, ..., n, n = 2m(n = 2m − 1),

and

⌢
t
1EBC
N,n =

(
⌢
t
1EBC

N,1,n,
⌢
t
1EBC

N,2,n, ...,
⌢
t
1EBC

N,n,n

)
.

L2N,n(t) = L2N,1,n (t1) + L2N,2,n (t2) + ... + L2N,n,n (tn) ,

where n = 2m − 1, m ∈ ℕ or n = 2m, m ∈ ℕ.
An example of multidimensional threshold in case of two classes is shown on Figures 1 and 2 (Mathcad v.13 was used).

3. MAIN RESULTS

3.1. Choice of Classifier

The choice of the classifier g12m−1,t

(
g12m,t

)
or g22m−1,t

(
g22m,t

)
depends on the smallest root of the equation

p1h1 − p2h2 = 0. (4)

Theorem 3.1.1. If root of (4) minimizes L11,2m−1

(
L11,2m

)
, then the classifier g12m−1,t

(
g12m,t

)
is selected, but if it minimizes L21,2m−1

(
L21,2m

)
,

then it is selected g22m−1,t

(
g22m,t

)
.

Proof. The statement follows from the properties L1i,2m−1 = −L2i,2m−1, i = 1, ..., 2m − 2 and L1i,2m = −L2i,2m, i = 1, ..., 2m − 1.

Figure 1 Three-dimensional threshold: h1 = 0.5N(0,1) + 0.5N(4,1),
h2 = 0.4N(2,1) + 0.6N(6,1), p1 = 0.3, p2 = 0.7.

Pdf_Folio:347
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Figure 2 Two-dimensional threshold: h1 = 0.5N(0,1) + 0.5N(4,1), h2
= N(2.5,1), p1 = 0.3, p2 = 0.7.

Remark 3.1.1. L12m−1,2m−1 = −L22m−1,2m−1 + p1 + p2 and L12m,2m = −L22m,2m + p1 + p2.

The next theorem can be proved analogically to Theorem 3.1.1.

Theorem 3.1.2. If root of (3) minimizes L1N,1,2m−1

(
L1N,1,2m

)
, then the

⌢
t
1EBC
N,n is selected, but if it minimizes L2N,1,2m−1

(
L2N,1,2m

)
, then it is

selected
⌢
t
2EBC
N,n .

Proof. The statement follows from the properties L1N,i,2m−1 = −L2N,i,2m−1, i = 1, ..., 2m − 2 and L1N,i,2m = −L2N,i,2m, i = 1, ..., 2m − 1.

Remark 3.1.2. L1N,2m−1,2m−1 = −L2N,2m−1,2m−1 + p1 + p2 and L1N,2m,2m = −L2N,2m,2m + p1 + p2.

Remark 3.1.3. As follows from [25–28], we can use the improved weighted distribution function if some coefficients are negative in (2).

3.2. The Convergence in Probability of EBC-Estimator

In what follows we assume that

(A). The threshold tB ∈ ℝn, n = 2m − 1(n = 2m),m ∈ ℕ exists, is a unique of the global minimum of L1n(t), n = 2m − 1(n = 2m),m ∈ ℕ
or L2n(t), n = 2m − 1(n = 2m),m ∈ ℕ (tBi,n is a global minimum point of L1i,n (ti) , i = 1, ..., n, n = 2m − 1(n = 2m),m ∈ ℕ or
L2i,n (ti) , i = 1, ..., n, n = 2m − 1(n = 2m),m ∈ ℕ).

(Bk). The limits Sl = limn→∞ SlN, l = 1, 2, ...k, exists and Δ = S2 −
(
Sl
)2 > 0.

Lemma3.2.1. Let conditions (A) and (Bk) hold. Assume that densities h1 and h2 exist and are continuous, kN → 0, NkN →∞, K is a continuous
function, and

d2 : =
∞

∫
−∞

K2(t)dt < ∞.

Then P (AN (𝛿i)) → 1,N →∞, for 𝛿i > 0, where AN (𝛿i) = {∃ti : |ti − tBi,n| ≤ 𝛿i, uN (ti) = 0} and uN(x) : = p2
⌢
h
N

2 (x) − p1
⌢
h
N

1 (x), i = 1, ..., n.

Proof. According to Theorem 1 of [11], the assumptions of the theorem imply that
⌢
h
N

s (x) → hs (x) , s = 1, 2 in probability at every point
x ∈ ℝ. Therefore,

uN(x) : = p2
⌢
h
N

2 (x) − p1
⌢
h
N

1 (x) → u(x) : = p2h2(x) − p1h1(x)

in probability. For 𝛿 > 0, let

AN (𝛿i) = {∃ti : |ti − tBi,n| ≤ 𝛿i, uN (ti) = 0} .
Pdf_Folio:348
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Now we shall that

P (AN (𝛿i)) → 1,N →∞. (5)

Since, tBi,n is a point of minimum of L1i,n (t)
(
or L2i,n (t)

)
, i = 1, ..., n, n = 2m − 1 (n = 2m), m ∈ ℕ, and L1i,n(t) = u(t) or L1i,n(t) = −u(t)

(similarly, L2i,n(t)), depending on the parity or the oddness of i, is a continuous function, u(t) changes its sign in a neighborhood of the point
tBi,n. This means that there are t−i and t+i such that

tBi,n − 𝛿i < t−i < tBi,n < t+i < tBi,n + 𝛿i, i = 1, ..., n, n = 2m − 1(n = 2m),m ∈ ℕ

and u
(
t−i
)
u
(
t+i
)
< 0.

Thus, P
(
uN

(
t−i
)
uN

(
t+i
)
< 0

)
→ 1. Since uN is a continuous function, {uN

(
t−i
)
uN

(
t+i
)
< 0} ⊆ AN (𝛿i). Therefore (5) is proved.

Lemma 3.2.2. Let assumptions of Lemma 3.2.1 for 𝛿′i > 0, 0 < 𝛿′i < 𝛿i hold. Then

P
(
Bi,N

)
→ 1 asN →∞,

where

Bi,N = { inf
t∉[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L1N,i,n (t) > L1i,n

(
tBi,n

)
+ 𝜀

2 > sup
t∈[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L1N,i,n (t)} , i = 1, ..., n, n ∈ ℕ

for g12m−1,t

(
or g12m,t

)
and

Bi,N = { inf
t∉[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L2N,i,n (t) > L2i,n

(
tBi,n

)
+ 𝜀

2 > sup
t∈[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L2N,i,n (t)} , i = 1, ..., n, n ∈ ℕ

for g22m−1,t

(
or g22m,t

)
.

Proof. Fix 𝛿i, i = 1, ..., n, n ∈ ℕ. Since L1i,n (L2i,n) are continuous functions onℝ, i = 1, ..., n, n ∈ ℕ,

L1i,2m−1 (−∞) = 0, i = 1, ..., 2m − 2
(
L2i,2m−1 (−∞) = 0, i = 1, ..., 2m − 2

)
,

L1i,2m (−∞) = 0, i = 1, ..., 2m − 1
(
L2i,2m (−∞) = 0, i = 1, ..., 2m − 1

)
,

L1i,2m−1 (+∞) = (−1)i
(
p1 − p2

)
, i = 1, ..., 2m − 2

(
L2i,2m−1 (+∞) = (−1)i

(
−p1 + p2

)
, i = 1, ..., 2m − 2

)
,

L1i,2m (+∞) = (−1)i
(
p1 − p2

)
, i = 1, ..., 2m − 1

(
L2i,2m (+∞) = (−1)i

(
−p1 + p2

)
, i = 1, ..., 2m − 1

)
,

L12m−1,2m−1 (−∞) = p1, L12m−1,2m−1 (+∞) = p2, L12m,2m (−∞) = p2, L12m,2m (+∞) = p1,

L22m−1,2m−1 (−∞) = p2, L22m−1,2m−1 (+∞) = p1, L22m,2m (−∞) = p1, L22m,2m (+∞) = p2

and condition (A) holds. Moreover ∀𝛿i > 0 ∃𝜀i such that L1i,n (ti) > L1i,n
(
tBi,n

)
+ 𝜀i, i = 1, ..., n (or L2i,n (ti) > L2i,n

(
tBi,n

)
+ 𝜀i, i = 1, ..., n) for

all ti for which |ti − tBi,n| > 𝛿i.
Choose 0 < 𝛿′i < 𝛿i so that

L1i,n (ti) < L1i,n
(
tBi,n

)
+ 𝜀i

4

(
or L2i,n (ti) < L2i,n

(
tBi,n

)
+ 𝜀i

4

)
, i = 1, ..., n, n ∈ ℕ
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for all ti ∈ [tBi,n − 𝛿′i , tBi,n + 𝛿′i ]. Denote

Bi,N = { inf
t∉[tBi,n−𝛿

′
i ,tBi,n+𝛿

′
i ]
L1N,i,n (t) > L1i,n

(
tBi,n

)
+ 𝜀

2 > sup
t∈[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L1N,i,n (t)} , i = 1, ..., n, n ∈ ℕ

for g12m−1,t

(
g12m,t

)
and

Bi,N = { inf
t∉[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L2N,i,n (t) > L2i,n

(
tBi,n

)
+ 𝜀

2 > sup
t∈[tBi,n−𝛿

′
i , tBi,n+𝛿

′
i ]
L2N,i,n (t)} , i = 1, ..., n, n ∈ ℕ

for g22m−1,t

(
g22m,t

)
.

Fix an arbitrary 𝜆i > 0. Using the uniform convergence of L1N,i,n to L
1
i,n (or L

2
N,i,n to L

2
i,n), we obtain the necessary statement for sufficiently

large N for according Bi,N, p
(
Bi,N

)
> 1 − Ai/2.

Theorem 3.2.1. Assume that conditions of Lemma 3.2.1 hold. Then
⌢
t
1EBC
N,n → tB (or

⌢
t
2EBC

N,n → tB) in probability as N →∞, namely
⌢
t
1EBC
N,i,n → tBi , i = 1, ..., n, n ∈ ℕ (or

⌢
t
2EBC
N,i,n → tBi , i = 1, ..., n, n ∈ ℕ) in probability as N →∞.

Proof. Since (5) P
(
AN

(
𝛿′i
))

> 1 − 𝜆i
2
for sufficiently large N. If the event AN

(
𝛿′i
)
occurs, then there exists

t∗i ∈ TN ∩ [tBi,n − 𝛿′i , tBi,n + 𝛿′i ]

such that L1N,i,n
(
t∗i
)
< L1N,i,n (ti) for all ti ∉ [tBi,n − 𝛿i, tBi,n + 𝛿i] given the event Bi,N occurs (or L2N,i,n

(
t∗i
)
< L2N,i,n (ti) for all ti ∉

[tBi,n − 𝛿i, tBi,n + 𝛿i]). Therefore,

P {|||
⌢
t
1EBC
N,i,n − tBi,n < 𝛿|||} ≥ P

(
AN

(
𝛿′i
)
∩ Bi,N

)
≥ 1 − 𝜆i

2 + 1 − 𝜆i
2 − 1 = 1 − 𝜆i

and

P {|||
⌢
t
2EBC
N,i,n − tBi,n < 𝛿|||} ≥ P

(
AN

(
𝛿′i
)
∩ Bi,N

)
≥ 1 − 𝜆i

2 + 1 − 𝜆i
2 − 1 = 1 − 𝜆i

given the event Bi,N occurs for sufficiently large N, i = 1, ..., n, n ∈ ℕ, taking into account that

P
(
AN

(
𝛿′i
)
∩ Bi,N

)
= P

(
AN

(
𝛿′i
))
+ P

(
Bi,N

)
− P

(
AN

(
𝛿′i
)
∪ Bi,N

)
≥ P

(
AN

(
𝛿′i
))
+ P

(
Bi,N

)
− 1.

This completes the proof of the theorem, since 𝜆i, i = 1, ..., n, n ∈ ℕ are arbitrary.

4. CONCLUSION

In this paper, we found the conditions of convergence in probability of the estimator for the Bayesian threshold constructed by the method
of empirical-Bayesian classification for a sample from a mixture with variable concentrations.
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