
Research Article

Self-repairing Control against Actuator Failures  
Using a Spiking Neuron Model

Masanori Takahashi*

Department of Electrical Engineering & Computer Science, Tokai University, 9-1-1 Toroku Kumamoto, 862-8652, Japan

1.  INTRODUCTION

In the previous works [1,2], several types of the Self-repairing 
Control Systems (SRCSs) have been developed as one of active 
Fault-tolerant Control Systems (FTCSs). The SRCS can automat-
ically detect a failure and replace the failed component with the 
healthy backup so as to recover the stability of the control system. 
Compared with existing active FTCSs, the SRCS has the following 
advantages: (1) the maximum time of detection can be prescribed 
arbitrarily in advance, and (2) the structure of the control system 
does not depend on the mathematical model of the plant. Thus, 
early and robust FTC can be accomplished even if the plants have 
uncertainties.

Unfortunately, the conventional SRCSs have utilized an unstable 
detection filter [1] which is not suitable for the concept of the strong 
stability [3]. Recently, as a remedy, the well-known Izhikevich spik-
ing neuron model [4] is used as a fault detector. A faulty signal in 
the control loop excites the neuron model. Hence, just counting 
up the number of spiking waves makes it possible to find failures. 
Because the boundedness of all the signals in the neuron model 
is always guaranteed, the requirement of the strong stability can 
be satisfied. Of course, the advantages of the original SRCSs are 
retained. Moreover, by utilizing the spiking neuron model, setting a 
threshold for fault detection is no longer needed. However, only an 
issue of sensor failure has been considered. A problem of actuator 
failure has not been solved.

In this paper, the SRCS using the spiking neuron model is modified 
to tolerate actuator failure. Furthermore, the theoretical analysis on 
stability and the mechanism for fault detection are shown. In addition,  

the effectiveness of the SRCS is confirmed through numerical  
simulation.

Throughout this paper, let , + and  denote the sets of real num-
bers, nonnegative real numbers and natural numbers including zero, 
respectively. In addition, with x ∈, define the “sgn” function by
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2.  PROBLEM STATEMENT

Consider a linear time invariant system of the form:
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where, y ∈ is the output, u : + ®  is the actual control input, 
z ∈ n-1  is the state, and n ∈ is the order of the plant. Here, 
assume that the high frequency gain b ∈ is positive. Moreover, 
F Î ´ ( )n n- -1 ( 1) is supposed to be a stable matrix (i.e., all eigenvalues 
lie in the left half complex plane).

For occasion of failure, the two actuators are prepared. One is the 
primary actuator #1, and the other is the backup #2. Then, the 
actual control input can be expressed as follows.
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where, tD Î
+  is the detection time, and its detail will be dis-

cussed later. Each u ii ∈ ∈, 1, 2{ }  is the output of the actuator #i.  
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Obviously, in healthy case, we have ui = uc, where uc :  + ®  
is the designed control input. Based on dynamic redundancy (2), 
the primary actuator #1 is usually utilized, but it is switched to the 
backup when the failure is detected.

The failure scenario to be considered here, is expressed as follows:

		        u t = , t t1 F( ) j ³ � (3)

where, tF Î
+  is the unknown failure time, and jÎ is the unknown 

stuck value. Such a failure occurs when the actuator gets stuck.

The problem is to design the SRCS, which can replace the failed 
actuator with the backup so as to maintain the stability and guaran-
tee the convergence property of y:

			   limsup ( )
t

y t
®¥

£ l � (4)

for arbitrarily given l Î + .

3. � A CONTROL SYSTEM WITH A  
DETECTION FILTER

First of all, the detection filter is introduced based on the spiking 
neuron model [4,5]
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where, q q q g g0 1 2 0 1Î Î Î Î Î+R � R R R � R�, , ,,  and h Î +  are desig
ned parameters, whose details will be discussed in the next section. 
Also, vT Î

+  is the threshold for the “auxiliary resetting” (for spik-
ing). To avoid degradation of stability by spikes, the resetting rule 
(6) should be invalid before the steady state.

Next, the high-gain feedback controller is designed by

		  åC c
3 3u = p

b
y + v + y + v:

2

- ( ) � (7)

where, pÎ +  is the feedback gain to stabilize both the plant and 
the detection filter.

Then, the following lemma stands.

Lemma 1. Consider the control system constructed by (1)–(7). But, 
the resetting rule (6) is supposed to be invalid. If there is no failure, 
then all of the signals in the control system are bounded. Furthermore, 
regarding convergence of the plant output, the inequality (4) holds.

Proof. Suppose that there is no failure, i.e., u = uc. Now, define the 
new variable: s :  + ® by

			   s = y + v: � (8)

From (1), (5), (7) and (8), it is shown that

	 
�s = p p a s p s p a v pv

+ p p s v p p sv +
+

T

- - - - - - -
- - -

( ) ( )
( ) ( )

2 2 3 3

2 2 2 23 3
sg

h z
nn sgn sgn2

2
1 0[ ] [ ] [ ]y v + + y y wq q q - h �

� (9)

	   �z = Fz + gs gv- � (10)

		

�v = pv pv + y v + v
+ y y w
+ ps + ps ps v +

- - q q
q - h
-

3
2

2
1

0
3 2

sgn
sgn sgn

3 3

[ ]
[ ] [ ]

ppsv2

� (11)

Consider the positive definite function V :  + +®  as,

		  V s + + v + wT:= 1
2

2
1

2
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where, P Î ´( ) ( )n n- -1 1  is the positive definite matrix which satisfies 
FT P + PT F = −2Q for any positive definite QÎ - ´ -( ) ( )n n1 1 . Also, 
d 1 Î

+  and d 2 Î
+  are small positive constants. Taking the time 

derivative of V gives
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Assume that p is chosen so that

			   p p a >2 0- - � (14)

Then, the time derivative of V can be evaluated as
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where, d 3 Î
+  is a small positive constant, and

a - - - -
d

-
q
d
-
q
d
- h
d e
-
d1

2

1

2=
2

3
4

3
4

3
4

2 3
4

1
2

3

0
2

3

2

2 1

p p a a || ||| ||| | h Pg ||

= p p

= p a + ||||

2

2
2 2

3 min

4
2

2 1

1
4 4

= 1

2
3

4 1

3

a - -
q

a l -

a -
d

- q - q - q
[ ]
| |
Q

Pg 00
2

3

2

2
2 1

2

5 2

4
2 2

= 1
4

d
- h
d e
- d eg

a - qp

Choose sufficiently large p. Then, ai > 0∀i. Hence, from (15), it 
follows that
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Solving the differential inequality (16), the following inequality can 
be obtained.
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Therefore, if no failure occurs, that is, tF = ∞, then all the signals in 
the control system are bounded. Moreover, taking |y| ≤ |s| + |v| into 
consideration, it follows that

	       lim sup lim sup 2 2 2
t t

y t V t
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It is clear that 2 2 / <b a l  for sufficiently small d2 and d3. This 
means that the inequality (4) holds if no failure occurs. The proof 
is completed.

Regarding the filtered signal v, from (18), it follows that
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Enable the resetting rule (6) with the threshold vT greater than 
λ, in the steady state. Then, as long as the actuator is healthy, no 
spike occurs and so the stability and convergence property (4) can 
be ensured.

4.  ACTUATOR FAILURE DETECTION

In this section, the real-time failure detection is shown using the 
detection filter constructed by (5) and (6).

For preparation, refer to the Izhikevich neuron model [4] of the 
same scale and parameters as (5):

		      �
�
v = v + v + w
w = v + w

0

1 0

q q q - h
e g g -

2
2

1

( )
� (21)

where, q0, q1, q2, g0, g1 and h are supposed to be chosen such that the 
bursting appears as shown in Figure 1.

In the figure, tB Î
+  represents the bursting time, and it can be 

arbitrarily shortened by setting the parameters. Furthermore, 
nR Î  is the number of spikes in the pattern, and it also can be 
prescribed by parameters. The figure shows an example of hR = 5.

Now, consider the case when the actuator gets stuck. Assume that tB 
is set so small that there exists a finite time tE ≥ tF defined by

      t = T t | y s = y T , T s <T + tE F Binf sgn sgn{ [ ( )] [ ( )] }³ £ � (22)

Figure 1 | The bursting pattern of the spiking neuron model.

Because of continuity of y and boundedness of y on a finite time 
interval, the sign of y does not change in a neighborhood of the 
failure time tF. This implies that tE = tF for sufficiently small tB.

In the case of sgn [y(tE)] = 1, from (5), the behaviors of the signals 
in the detection filter obey
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In the above equations, the effect of the control input uc gets lost 
because the actuator fails. Hence, the bursting occurs in the signal v.

By comparing (21) with (23), it is regarded that the term p(y + y3) > 0 
is additionally injected to the spiking model (21). Generally, a larger 
stimulus causes more spikes. Therefore, the bursting becomes more 
frequently than the pattern of (21) on the time period [tE, tE + tB).

In the case of sgn [y(tE)] = −1, the negative spikes of the same burst-
ing pattern as above is induced.

Next, consider the case when there is no failure. Then the spiking 
of detection filter does not occur because the filtered signal v is 
suppressed smaller than vT .

Consequently, from the above discussion, the bursting pattern 
appears only when the actuator fails. Thus, by just counting the 
number of the spikes, the failure can be found. Specifically, the 
detection time tD is defined by

		      t t|c t nD R R:= min ( ) ≥{ } � (24)

where, cR Î  is the counted number of the spikes in the filtered 
signal v.

From (24), it follows that tD ≤ tE + tB. Hence, by setting tB small, the 
maximum detection time can be shortened arbitrarily.

After replacing the failed actuator, the boundedness of all the signals 
in the control system are guaranteed again, and the plant output can 
converge to the small region, that is, the inequality (4) holds.

The overall control system is illustrated in Figure 2.

Remark. If there does not exist finite tE, that is, tE = ∞, then the fail-
ure may not be found theoretically. As a remedy, it is recommended 

.

Figure 2 | Block diagram of the SRCS against actuator failures.
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to monitor the plant output y for checking the convergence prop-
erty. As long as the inequality (4) holds, the control objective can be 
achieved regardless of presence of failures.

5.  NUMERICAL EXAMPLES

To confirm the effectiveness of the proposed method, the numeri-
cal simulation is explored.

Consider the following unstable plant.

		    
�
�
y = y + u + z, y =
z = z + y, z =
-
- -
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The failure scenario is supposed that

		      t = s , = u tF F25[ ] ( )j � (25)

For the above plant, the parameters for the detection filter 
are selected as q0 = −0.06, q1 = −0.6, q2 = 4, g  = d = 1, e = 0.02,  
g0  = −6, g1  = 20. Also, the parameters for resetting are vT = 1, vR = 
0.2, wR = 2. The prespecified number of the spikes in the bursting 
pattern is supposed to be five per second, that is, nR =  5 within 
almost tB = 1 [s]. At last, the controller gain is chosen as p = 6.

The simulation results are shown in Figure 3 where the plant 
output y (top), the filtered signal v (middle), and the actual input u 
(bottom) are shown.

Figure 3 | Simulation results: the plant output (top), the filtered signal 
(middle) and the actual input (bottom).

From the simulation results, the failed actuator can be replaced at 
the detection time tD ≅ 26 [s]. Also, the plant output y converges to 
a very small ball before and after the failure.

6.  CONCLUSION

This paper has presented the new SRCS that can find actuator fail-
ure by using the Izhikevich neuron model. From theoretical and 
numerical analysis, it is shown that fault-tolerant control can be 
accomplished.

In the previous work [5], the basic idea of the SRCS using the spik-
ing neuron model has already been proposed for plants with sensor 
failures. The main differences from the previous version are as 
follows: the actuator failures can be tolerated, and in constructing 
the detection filter, the time derivative of the plant output y is not 
utilized. Thus, the control system not only becomes simple but also 
has more robustness with respect to component failures and noises 
in the plant output.
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