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1.  INTRODUCTION

Extended Place/transition Net (EPN) [1,2] is a formal modeling  
language to represent the behavior of software that consists of 
multiple objects. The objects mean modules, components, or 
subsystems in this study, and they interact each other to provide 
expected functionality of the software. EPN enables engineers to 
construct unambiguous and executable software specifications 
that can be used for systematic skeleton code and test case gen-
eration. However, in software modeling using EPN, objects need 
to be defined individually even if they have the same behavior, 
which causes an increase in model size. A large model that includes 
redundant definitions often leads to additional cost for design, 
implementation, test, and maintenance, due to its poor readability.

This paper shows a novel language called EPN with Attributed 
Tokens (EPNAT) and a modeling technique using it in order to 
address this problem. In EPNAT, objects are expressed as attributed 
tokens that are classified into types, and also the states and events 
of objects of the same type are expressed as places and transitions, 
respectively. Attributed tokens can pass through places and tran-
sitions that belong to the same types as theirs. EPNAT models are 
converted to VDM++ specifications, and allow engineers to refine 
software specifications, create programs and test cases. We have 
developed a prototype tool to support the modeling technique, and 
thus this paper includes a discussion about it.

The rest of this paper is organized as follows. Section 2 shows software 
modeling using EPN and its problem. In Section 3, we propose EPNAT 
and a modeling technique using it. Section 4 gives the overview of our 
prototype tool. In Section 5, we discuss the effectiveness of the pro-
posed technique and prototype tool, and then show our future work.

2.  RELATED WORK

2.1.  Software Modeling Using EPN

Petri net including PN has been used in traditional software  
modeling and testing [3–5]. In previous study, we extended the PN 
by introducing VDM++ [a formal modeling language in vienna 
development method (VDM)] [6] in order to enhance its represen-
tation power, and generate test cases systematically. The extended 
PN, that is, EPN [1,2] consists of the following four kinds of struc-
tural elements.

•• Places to express states of each object.

•• Transitions to express events of each object.

•• Tokens to express a current state of each object.

•• Arcs to specify the flow of tokens between places and transitions.

Details that cannot be represented in PN, such as the actions and 
pre-conditions (guards) of transitions, are formally written in 
VDM++.
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In an EPN model, a transition becomes fireable, if its pre-condition 
is satisfied and also all the places that are connected by its incoming 
arcs contain tokens. When a transition is fired, tokens are moved 
according to its incoming and outgoing arcs, and also the values 
of variables that are defined for each object can be changed by its 
actions. The variables can be referred in pre-conditions.

An EPN model consists of multiple sub-EPN models that represent 
the behavior of objects, and the sub-EPN models are connected by 
glue transitions that play an important role to specify the interac-
tion among the objects. In an EPN model, the execution traces of 
software, that is, test cases are described as the sequences of succes-
sive markings (distribution of tokens on places), transitions, and 
values of variables. An EPN model that gives engineers the over-
view of the behavior of software can be converted to a VDM++ 
specification that is used to refine the specification of the software.

2.2.  Problem

In software modeling using EPN, objects need to be defined indi-
vidually as sub-EPN models even if they have the same behavior, 
which causes an increase in model size. In general, a large model 
that includes redundant definitions often leads to additional cost 
for design, implementation, test, and maintenance, due to its poor 
readability.

We introduce an example given in Figure 1 in order to discuss this 
problem. This Simple Load Balancer (hereinafter, referred to as 
SLB) contains multiple servers and requests as objects. All server 
objects have the same behavior, and also all request objects have 
the same behavior. However, when the behavior of SLB is defined 
as an EPN model, each object is defined as a sub-EPN model that 
represents the behavior of each object. That is, if ns and nr are the 
maximum numbers of servers and requests that can be handled at 
the same time by SLB, an EPN model of SLB will contain ns and 

Figure 1 | Software requirements of a simple load balancer.

nr sub-EPN models for server and request objects, respectively. 
There are interaction between the server objects and the request 
objects. If ng is the number of glue transitions to specify the inter-
action between one server object and one request object (that is, to 
connect between two sub-EPN models that represent the behavior 
of one server object and one request object, respectively), the EPN 
model of SLB will have ng × ns × nr glue transitions. Additionally, 
if there are interaction among the server objects and/or among the 
request objects, a larger number of glue transitions is needed.

The objects that have the same behavior cannot be easily integrated 
into one sub-EPN model, since the variables for each object are 
defined as attributes of an EPN model or each sub-EPN model.

3.  EPNAT AND A MODELING TECHNIQUE

In this section, we propose EPNAT and a modeling technique  
using it in order to address the above-mentioned problem.

3.1. � Extended Place/transition Net  
with Attributed Tokens

Similar to EPN, EPNAT that is the extension of PN consists of 
places, transitions, tokens, and arcs, and details that cannot be rep-
resented in PN are formally written in VDM++. The most obvious 
difference is that tokens in EPNAT correspond to objects that are 
classified into types, and they have variables for the objects. In this 
paper, tokens that have variables for objects are called attributed 
tokens. For example, in SLB of Figure 1, the server objects (that is, 
objects of server type) need to have variables such as ID and capac-
ity, and thus attributed tokens of server type (that is, attributed 
tokens that correspond to the server objects) have those variables. 
Attributed tokens of the same type have the same variables but dif-
ferent values. For example, the attributed tokens s1 and s2 that cor-
respond to two server objects in SLB have different values, such as 
s1.ID = 1 and s2.ID = 2, respectively. In this context, “a.v” expresses 
the variable v of an attributed token a.

Places and transitions that express the states and events of objects 
respectively are also classified into types, and they are shared by 
attributed tokens of the same type in EPNAT. Attributed tokens can 
pass through places and transitions that belong to the same types 
as theirs. For example, the attributed tokens of sever type can pass 
through the places and transitions of server type. Note that glue 
transitions belong to multiple types. Transitions can have actions 
for attributed tokens. When a transition is fired, the variables of 
attributed tokens that pass through it can be changed by its actions. 
Transitions can also have pre- and post-conditions that need to be 
satisfied just before and after the fire of the transitions, respectively. 
Places can have invariants, that is, a condition that needs to be 
always satisfied. The variables of attributed tokens can be referred 
in pre-conditions, post-conditions, and invariants.

All structural elements of each sub-EPNAT model belong to the 
same type, and each sub-EPNAT model represents the behavior 
of all the objects of the type. For example, one sub-EPNAT model 
of server type covers all the objects (an arbitrary number of the 
objects) of server type. All sub-EPNAT models are connected by 
glue transitions in an EPNAT model that represents the behavior 
of software. In an EPNAT model, the execution traces of software 
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Figure 2 | EPNAT model of a simple load balancer. (A) Overview of the EPNAT model. (B) VDM++ codes of the glue transition “allocate”.

are basically described as the sequences of successive markings 
and transitions, since the values of variables for each object can be 
included in the markings.

3.2.  Example

Figure 2A shows the overview of an EPNAT model of SLB that 
is constructed based on Figure 1. It consists of two sub-EPNAT 
models that represent the behavior of objects of server type and 
request type. There are two places and six transitions in server type, 
and two places and three transitions in request type. The transi-
tions “allocate” and “deallocate” are glue transitions, and the two 
sub-EPNAT models are connected by them.

The labels “seq” and “set” indicate the collection type of places, that 
is, whether the order of arrival of attributed tokens on places should 
be kept or not. Either “seq” or “set” should be specified for each 
place by engineers. In VDM++ specifications that is discussed later, 
places with the labels “seq” and “set” are implemented as instance 
variables of sequence type and set type, respectively. The label “inv” 
means that a place has an invariant. Details of “inv” are written in 
VDM++ by engineers, but they are omitted in the overview of an 
EPNAT model for ease of readability.

The label “act” means that actions are given to a transition. In 
VDM++ specifications, transitions including their actions, incom-
ing and outgoing arcs are implemented as operations. The labels 
“pre” and “post” mean that a transition has a pre-condition and 
post-condition respectively, but the latter does not appear in 
Figure 2A. Details of the labels “act”, “pre” and “post” are written  
in VDM++ by engineers, but they are omitted in the overview of  
an EPNAT model for ease of readability.

Attributed tokens of server type and request type have two and 
three variables, respectively. The term “nat” means natural number 
type in VDM++. In Figure 2A, there are four attributed tokens that 
are labeled “s1”, “r1”, “r2”, and “r3”, respectively. Note that it is a snap-
shot, that is, a state of SLB under execution at a certain point in 
time, and there should be no attributed tokens in the initial state of 
SLB. In VDM++ specifications, attributed tokens are implemented 
as record type.

The snapshot can be expressed as a marking. When the places are 
labeled “p1”, “p2”, “p3”, and “p4”, and contain attributed tokens as 

shown in Figure 2A, its marking is expressed as (p1, p2, p3, p4) = 
([r3], {r1, r2}, {}, {s1}). Note that square brackets are used for p1, since 
its collection type is “seq”.

Figure 2B shows VDM++ codes of the glue transition “allocate”. The 
statement (a) specifies the way of selection of attributed tokens to be 
moved. The statements (b) and (d) specify the way of deletion and 
addition of attributed tokens on the related places, respectively. Note 
that the Yen sign corresponds to a backslash. The statements (c) spec-
ify the actions to be executed on the transition, and they correspond 
to the label “act” that is pointed by “a ” in Figure 2A. The statement (e) 
specifies the pre-condition that needs to be satisfied just before the fire 
of the transition, and it corresponds to the label “pre” that is pointed 
by “b ” in Figure 2A. In Figure 2B, the codes that are pointed by “g  ” 
need to be considered and written based on software requirements by 
engineers, but the others can be generated from Figure 2A.

In this paper, the details of the other structural elements in 
Figure 2A are omitted because of limitations of space. Many 
VDM++ codes for them can be generated by our coding pattern 
that is discussed in Section 3.3.

3.3.  Modeling Technique

The modeling technique using EPNAT consists of the following 
four steps. Note that these steps are not always separated clearly. 
If engineers find any problems in a current step, they can return to 
a previous step. Also, engineers can incrementally and iteratively 
proceed with these steps. The product that has been constructed 
in each step is executable, and thus should be tested in the end of 
each step.

Step 1: Construction of sub-PN models

Objects are identified and classified into types, and then the 
abstracted behavior of an object of each type is defined as a sub-PN 
model, as shown in Figure 3.

Step 2: Integration of sub-PN models

All the sub-PN models are connected by glue transitions in order 
to complete a PN model that represents the abstracted behavior of 
software. Note that there is only one object for each type in the  
PN model.

A B
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Figure 3 | Construction of sub-PN models.

Figure 4 | Coding pattern to convert an EPNAT model to a VDM++ 
specification.

Step 3: Addition of details to a PN model

The following definitions, which are written in VDM++, are added 
to the PN model in order to complete an EPNAT model. The mul-
tiplicity of objects on each type is considered in this step.

•• Variables of attributed tokens.

•• Collection type of places (“seq” or “set”).

•• Invariants for places.

•• Actions to be executed on transitions.

•• Pre-conditions and post-conditions for transitions.

•• Conditions to select attributed tokens to be moved on transitions.

Step 4: Conversion to a VDM++ Specification

The EPNAT model is converted to a VDM++ specification. Figure 4  
shows our coding pattern to perform this conversion systemati-
cally. The codes shown in the form of <terms> mean that actual 
VDM++ codes are extracted from the EPNAT model, or are written 
by engineers. Also, “#a - b” means the bth element (such as a vari-
able and a place) of object type #a.

The VDM++ specification is used to refine software specifications, 
create programs and test cases.

4.  PROTOTYPE TOOL

The proposed modeling technique should be supported by a tool, 
since engineers will need to spend a certain amount of time and 
effort to construct EPNAT models and VDM++ specifications. 
Therefore, we have developed a prototype tool in this study. This 
section shows the overview of our prototype tool that consists of  
an EPNAT model editor and a VDM++ specification editor.

Figure 5A shows a screen shot of the EPNAT model editor that allows 
an engineer to construct EPNAT models. Its GUI consists of an over-
view pane and a detail pane. An engineer can put structural elements 
of PN on the overview pane, and then can specify their details on the 
detail pane. The contents of the detail pane are changed based on the 
kind of structural elements that have been selected on the overview 
pane. For example, if an engineer has selected a transition on the 
overview pane, he/she can specify its name, list of argument types, 
list of argument names, actions, pre-conditions, and post-conditions 
on the detail pane. If actions, pre-conditions, and post-conditions 
have been specified for a transition, the labels “act”, “pre”, and “post” 
appear beside the transition on the overview pane, respectively.

The EPNAT model editor includes a converter based on the 
coding pattern proposed in the previous section. Therefore, when 
an engineer has finished constructing an EPNAT model, he/she 
can automatically convert it to a VDM++ specification. The suc-
cessfully converted VDM++ specification is sent to the VDM++ 
specification editor.

Figure 5B shows a screen shot of the VDM++ specification editor. 
If an EPNAT model has no errors, the VDM++ specification con-
verted from it will be executable on an existing VDM++ interpreter, 
but can be further developed on the VDM++ specification editor 
by an engineer.
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5.  DISCUSSION AND FUTURE WORK

We have proposed EPNAT and a modeling technique using it in 
order to address the problem of EPN. In software modeling using 
EPN, objects need to be defined individually as sub-EPN models 
even if they are the same type, which causes an increase in model 
size. On the other hand, in software modeling using EPNAT, the 
objects of the same type can be integrated into one sub-EPNAT 
model, and therefore EPNAT models would be smaller than EPN 
models. We discussed the problem and effectiveness by using an 
example of SLB.

EPNAT models can be converted to VDM++ specifications by 
using our coding pattern, and allow engineers to refine software 
specifications, create programs and test cases. However, the coding 
pattern will not be suitable for extremely large and complex soft-
ware requirements, since they are defined as one class in a VDM++ 
specification. For example, each sub-EPNAT model may be defined 
as a class in order to address this problem, which will be discussed 
in our future study.

A prototype tool that consists of an EPNAT model editor and a 
VDM++ specification editor has been developed to support our 
modeling technique. It allows an engineer to construct his/her 
EPNAT models by using GUI, and automatically convert them to 
VDM++ specifications. If the EPNAT models have no errors, the 
converted VDM++ specifications will be executable on an exist-
ing VDM++ interpreter. It is expected that the prototype tool will 

be useful to reduce engineer’s effort, but there is still room for 
improvement. For example, engineers would feel the need for some 
advanced functions to automatically convert their VDM++ speci-
fications to EPNAT models, to automatically find errors on their 
EPNAT models, to visualize the execution of their EPNAT models, 
and to generate test cases systematically. We plan to improve the 
prototype tool, and apply it to non-trivial software requirements to 
evaluate the effectiveness of our technique further.
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