
Research Article

Software Modeling Technique and its Prototype Tool
for Behavior of Multiple Objects Using Extended
Place/Transition Nets with Attributed Tokens

Tomohiko Takagi1,*, Ryo Kurozumi2

1Department of Engineering and Design, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu-shi,
Kagawa 761-0396, Japan
2Division of Reliability-based Information Systems Engineering, Graduate School of Engineering, Kagawa University, 2217-20 Hayashi-cho,
Takamatsu-shi, Kagawa 761-0396, Japan

1.  INTRODUCTION

Extended Place/transition Net (EPN) [1,2] is a formal modeling
language to represent the behavior of software that consists of
multiple objects. The objects mean modules, components, or
subsystems in this study, and they interact each other to provide
expected functionality of the software. EPN enables engineers to
construct unambiguous and executable software specifications
that can be used for systematic skeleton code and test case gen-
eration. However, in software modeling using EPN, objects need
to be defined individually even if they have the same behavior,
which causes an increase in model size. A large model that includes
redundant definitions often leads to additional cost for design,
implementation, test, and maintenance, due to its poor readability.

This paper shows a novel language called EPN with Attributed
Tokens (EPNAT) and a modeling technique using it in order to
address this problem. In EPNAT, objects are expressed as attributed
tokens that are classified into types, and also the states and events
of objects of the same type are expressed as places and transitions,
respectively. Attributed tokens can pass through places and tran-
sitions that belong to the same types as theirs. EPNAT models are
converted to VDM++ specifications, and allow engineers to refine
software specifications, create programs and test cases. We have
developed a prototype tool to support the modeling technique, and
thus this paper includes a discussion about it.

The rest of this paper is organized as follows. Section 2 shows software
modeling using EPN and its problem. In Section 3, we propose EPNAT
and a modeling technique using it. Section 4 gives the overview of our
prototype tool. In Section 5, we discuss the effectiveness of the pro-
posed technique and prototype tool, and then show our future work.

2.  RELATED WORK

2.1.  Software Modeling Using EPN

Petri net including PN has been used in traditional software
modeling and testing [3–5]. In previous study, we extended the PN
by introducing VDM++ [a formal modeling language in vienna
development method (VDM)] [6] in order to enhance its represen-
tation power, and generate test cases systematically. The extended
PN, that is, EPN [1,2] consists of the following four kinds of struc-
tural elements.

•• Places to express states of each object.

•• Transitions to express events of each object.

•• Tokens to express a current state of each object.

•• Arcs to specify the flow of tokens between places and transitions.

Details that cannot be represented in PN, such as the actions and
pre-conditions (guards) of transitions, are formally written in
VDM++.

A RT I C L E I N F O
Article History

Received 10 November 2019
Accepted 01 June 2020

Keywords

Software modeling
behavioral model
place/transition net
VDM

A B S T R AC T
This paper shows Extended Place/transition Net with Attributed Tokens (EPNAT) and a modeling technique using it in order
to address the problem of EPN. In software modeling using EPN, objects of which the software consists need to be defined
individually as sub-EPN models, even if they have the same behavior. On the other hand, in software modeling using EPNAT,
objects that have the same behavior can be integrated into one sub-EPNAT model, and therefore EPNAT models would be
smaller than EPN models. EPNAT models are converted to VDM++ specifications, and allow engineers to refine software
specifications, create programs and test cases. A prototype tool has been developed to support the modeling technique.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: takagi@eng.kagawa-u.ac.jp

Journal of Robotics, Networking and Artificial Life
Vol. 7(3); December (2020), pp. 194–198

DOI: https://doi.org/10.2991/jrnal.k.200909.011; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

http://http://creativecommons.org/licenses/by-nc/4.0/
mailto:takagi%40eng.kagawa-u.ac.jp?subject=
https://doi.org/10.2991/jrnal.k.200909.011
https://www.atlantis-press.com/journals/jrnal

	 T. Takagi and R. Kurozumi / Journal of Robotics, Networking and Artificial Life 7(3) 194–198	 195

In an EPN model, a transition becomes fireable, if its pre-condition
is satisfied and also all the places that are connected by its incoming
arcs contain tokens. When a transition is fired, tokens are moved
according to its incoming and outgoing arcs, and also the values
of variables that are defined for each object can be changed by its
actions. The variables can be referred in pre-conditions.

An EPN model consists of multiple sub-EPN models that represent
the behavior of objects, and the sub-EPN models are connected by
glue transitions that play an important role to specify the interac-
tion among the objects. In an EPN model, the execution traces of
software, that is, test cases are described as the sequences of succes-
sive markings (distribution of tokens on places), transitions, and
values of variables. An EPN model that gives engineers the over-
view of the behavior of software can be converted to a VDM++
specification that is used to refine the specification of the software.

2.2.  Problem

In software modeling using EPN, objects need to be defined indi-
vidually as sub-EPN models even if they have the same behavior,
which causes an increase in model size. In general, a large model
that includes redundant definitions often leads to additional cost
for design, implementation, test, and maintenance, due to its poor
readability.

We introduce an example given in Figure 1 in order to discuss this
problem. This Simple Load Balancer (hereinafter, referred to as
SLB) contains multiple servers and requests as objects. All server
objects have the same behavior, and also all request objects have
the same behavior. However, when the behavior of SLB is defined
as an EPN model, each object is defined as a sub-EPN model that
represents the behavior of each object. That is, if ns and nr are the
maximum numbers of servers and requests that can be handled at
the same time by SLB, an EPN model of SLB will contain ns and

Figure 1 | Software requirements of a simple load balancer.

nr sub-EPN models for server and request objects, respectively.
There are interaction between the server objects and the request
objects. If ng is the number of glue transitions to specify the inter-
action between one server object and one request object (that is, to
connect between two sub-EPN models that represent the behavior
of one server object and one request object, respectively), the EPN
model of SLB will have ng × ns × nr glue transitions. Additionally,
if there are interaction among the server objects and/or among the
request objects, a larger number of glue transitions is needed.

The objects that have the same behavior cannot be easily integrated
into one sub-EPN model, since the variables for each object are
defined as attributes of an EPN model or each sub-EPN model.

3.  EPNAT AND A MODELING TECHNIQUE

In this section, we propose EPNAT and a modeling technique
using it in order to address the above-mentioned problem.

3.1. � Extended Place/transition Net
with Attributed Tokens

Similar to EPN, EPNAT that is the extension of PN consists of
places, transitions, tokens, and arcs, and details that cannot be rep-
resented in PN are formally written in VDM++. The most obvious
difference is that tokens in EPNAT correspond to objects that are
classified into types, and they have variables for the objects. In this
paper, tokens that have variables for objects are called attributed
tokens. For example, in SLB of Figure 1, the server objects (that is,
objects of server type) need to have variables such as ID and capac-
ity, and thus attributed tokens of server type (that is, attributed
tokens that correspond to the server objects) have those variables.
Attributed tokens of the same type have the same variables but dif-
ferent values. For example, the attributed tokens s1 and s2 that cor-
respond to two server objects in SLB have different values, such as
s1.ID = 1 and s2.ID = 2, respectively. In this context, “a.v” expresses
the variable v of an attributed token a.

Places and transitions that express the states and events of objects
respectively are also classified into types, and they are shared by
attributed tokens of the same type in EPNAT. Attributed tokens can
pass through places and transitions that belong to the same types
as theirs. For example, the attributed tokens of sever type can pass
through the places and transitions of server type. Note that glue
transitions belong to multiple types. Transitions can have actions
for attributed tokens. When a transition is fired, the variables of
attributed tokens that pass through it can be changed by its actions.
Transitions can also have pre- and post-conditions that need to be
satisfied just before and after the fire of the transitions, respectively.
Places can have invariants, that is, a condition that needs to be
always satisfied. The variables of attributed tokens can be referred
in pre-conditions, post-conditions, and invariants.

All structural elements of each sub-EPNAT model belong to the
same type, and each sub-EPNAT model represents the behavior
of all the objects of the type. For example, one sub-EPNAT model
of server type covers all the objects (an arbitrary number of the
objects) of server type. All sub-EPNAT models are connected by
glue transitions in an EPNAT model that represents the behavior
of software. In an EPNAT model, the execution traces of software

196	 T. Takagi and R. Kurozumi / Journal of Robotics, Networking and Artificial Life 7(3) 194–198

Figure 2 | EPNAT model of a simple load balancer. (A) Overview of the EPNAT model. (B) VDM++ codes of the glue transition “allocate”.

are basically described as the sequences of successive markings
and transitions, since the values of variables for each object can be
included in the markings.

3.2.  Example

Figure 2A shows the overview of an EPNAT model of SLB that
is constructed based on Figure 1. It consists of two sub-EPNAT
models that represent the behavior of objects of server type and
request type. There are two places and six transitions in server type,
and two places and three transitions in request type. The transi-
tions “allocate” and “deallocate” are glue transitions, and the two
sub-EPNAT models are connected by them.

The labels “seq” and “set” indicate the collection type of places, that
is, whether the order of arrival of attributed tokens on places should
be kept or not. Either “seq” or “set” should be specified for each
place by engineers. In VDM++ specifications that is discussed later,
places with the labels “seq” and “set” are implemented as instance
variables of sequence type and set type, respectively. The label “inv”
means that a place has an invariant. Details of “inv” are written in
VDM++ by engineers, but they are omitted in the overview of an
EPNAT model for ease of readability.

The label “act” means that actions are given to a transition. In
VDM++ specifications, transitions including their actions, incom-
ing and outgoing arcs are implemented as operations. The labels
“pre” and “post” mean that a transition has a pre-condition and
post-condition respectively, but the latter does not appear in
Figure 2A. Details of the labels “act”, “pre” and “post” are written
in VDM++ by engineers, but they are omitted in the overview of
an EPNAT model for ease of readability.

Attributed tokens of server type and request type have two and
three variables, respectively. The term “nat” means natural number
type in VDM++. In Figure 2A, there are four attributed tokens that
are labeled “s1”, “r1”, “r2”, and “r3”, respectively. Note that it is a snap-
shot, that is, a state of SLB under execution at a certain point in
time, and there should be no attributed tokens in the initial state of
SLB. In VDM++ specifications, attributed tokens are implemented
as record type.

The snapshot can be expressed as a marking. When the places are
labeled “p1”, “p2”, “p3”, and “p4”, and contain attributed tokens as

shown in Figure 2A, its marking is expressed as (p1, p2, p3, p4) =
([r3], {r1, r2}, {}, {s1}). Note that square brackets are used for p1, since
its collection type is “seq”.

Figure 2B shows VDM++ codes of the glue transition “allocate”. The
statement (a) specifies the way of selection of attributed tokens to be
moved. The statements (b) and (d) specify the way of deletion and
addition of attributed tokens on the related places, respectively. Note
that the Yen sign corresponds to a backslash. The statements (c) spec-
ify the actions to be executed on the transition, and they correspond
to the label “act” that is pointed by “a ” in Figure 2A. The statement (e)
specifies the pre-condition that needs to be satisfied just before the fire
of the transition, and it corresponds to the label “pre” that is pointed
by “b ” in Figure 2A. In Figure 2B, the codes that are pointed by “g  ”
need to be considered and written based on software requirements by
engineers, but the others can be generated from Figure 2A.

In this paper, the details of the other structural elements in
Figure 2A are omitted because of limitations of space. Many
VDM++ codes for them can be generated by our coding pattern
that is discussed in Section 3.3.

3.3.  Modeling Technique

The modeling technique using EPNAT consists of the following
four steps. Note that these steps are not always separated clearly.
If engineers find any problems in a current step, they can return to
a previous step. Also, engineers can incrementally and iteratively
proceed with these steps. The product that has been constructed
in each step is executable, and thus should be tested in the end of
each step.

Step 1: Construction of sub-PN models

Objects are identified and classified into types, and then the
abstracted behavior of an object of each type is defined as a sub-PN
model, as shown in Figure 3.

Step 2: Integration of sub-PN models

All the sub-PN models are connected by glue transitions in order
to complete a PN model that represents the abstracted behavior of
software. Note that there is only one object for each type in the
PN model.

A B

	 T. Takagi and R. Kurozumi / Journal of Robotics, Networking and Artificial Life 7(3) 194–198	 197

Figure 3 | Construction of sub-PN models.

Figure 4 | Coding pattern to convert an EPNAT model to a VDM++
specification.

Step 3: Addition of details to a PN model

The following definitions, which are written in VDM++, are added
to the PN model in order to complete an EPNAT model. The mul-
tiplicity of objects on each type is considered in this step.

•• Variables of attributed tokens.

•• Collection type of places (“seq” or “set”).

•• Invariants for places.

•• Actions to be executed on transitions.

•• Pre-conditions and post-conditions for transitions.

•• Conditions to select attributed tokens to be moved on transitions.

Step 4: Conversion to a VDM++ Specification

The EPNAT model is converted to a VDM++ specification. Figure 4
shows our coding pattern to perform this conversion systemati-
cally. The codes shown in the form of <terms> mean that actual
VDM++ codes are extracted from the EPNAT model, or are written
by engineers. Also, “#a - b” means the bth element (such as a vari-
able and a place) of object type #a.

The VDM++ specification is used to refine software specifications,
create programs and test cases.

4.  PROTOTYPE TOOL

The proposed modeling technique should be supported by a tool,
since engineers will need to spend a certain amount of time and
effort to construct EPNAT models and VDM++ specifications.
Therefore, we have developed a prototype tool in this study. This
section shows the overview of our prototype tool that consists of
an EPNAT model editor and a VDM++ specification editor.

Figure 5A shows a screen shot of the EPNAT model editor that allows
an engineer to construct EPNAT models. Its GUI consists of an over-
view pane and a detail pane. An engineer can put structural elements
of PN on the overview pane, and then can specify their details on the
detail pane. The contents of the detail pane are changed based on the
kind of structural elements that have been selected on the overview
pane. For example, if an engineer has selected a transition on the
overview pane, he/she can specify its name, list of argument types,
list of argument names, actions, pre-conditions, and post-conditions
on the detail pane. If actions, pre-conditions, and post-conditions
have been specified for a transition, the labels “act”, “pre”, and “post”
appear beside the transition on the overview pane, respectively.

The EPNAT model editor includes a converter based on the
coding pattern proposed in the previous section. Therefore, when
an engineer has finished constructing an EPNAT model, he/she
can automatically convert it to a VDM++ specification. The suc-
cessfully converted VDM++ specification is sent to the VDM++
specification editor.

Figure 5B shows a screen shot of the VDM++ specification editor.
If an EPNAT model has no errors, the VDM++ specification con-
verted from it will be executable on an existing VDM++ interpreter,
but can be further developed on the VDM++ specification editor
by an engineer.

198	 T. Takagi and R. Kurozumi / Journal of Robotics, Networking and Artificial Life 7(3) 194–198

5.  DISCUSSION AND FUTURE WORK

We have proposed EPNAT and a modeling technique using it in
order to address the problem of EPN. In software modeling using
EPN, objects need to be defined individually as sub-EPN models
even if they are the same type, which causes an increase in model
size. On the other hand, in software modeling using EPNAT, the
objects of the same type can be integrated into one sub-EPNAT
model, and therefore EPNAT models would be smaller than EPN
models. We discussed the problem and effectiveness by using an
example of SLB.

EPNAT models can be converted to VDM++ specifications by
using our coding pattern, and allow engineers to refine software
specifications, create programs and test cases. However, the coding
pattern will not be suitable for extremely large and complex soft-
ware requirements, since they are defined as one class in a VDM++
specification. For example, each sub-EPNAT model may be defined
as a class in order to address this problem, which will be discussed
in our future study.

A prototype tool that consists of an EPNAT model editor and a
VDM++ specification editor has been developed to support our
modeling technique. It allows an engineer to construct his/her
EPNAT models by using GUI, and automatically convert them to
VDM++ specifications. If the EPNAT models have no errors, the
converted VDM++ specifications will be executable on an exist-
ing VDM++ interpreter. It is expected that the prototype tool will

be useful to reduce engineer’s effort, but there is still room for
improvement. For example, engineers would feel the need for some
advanced functions to automatically convert their VDM++ speci-
fications to EPNAT models, to automatically find errors on their
EPNAT models, to visualize the execution of their EPNAT models,
and to generate test cases systematically. We plan to improve the
prototype tool, and apply it to non-trivial software requirements to
evaluate the effectiveness of our technique further.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number
JP17K00103.

REFERENCES

  [1]	 T. Takagi, R. Kurozumi, Prototype of a modeling tool to convert
between extended place/transition nets and VDM++ specifica-
tions, Proceedings of 2019 International Conference on Artificial
Life and Robotics, ALife Robotics, Oita, Japan, 2019, pp. 157–160.

  [2]	 T. Takagi, R. Kurozumi, T. Katayama, State transition tuple cover-
age criterion for extended place/transition net-based testing,
Proceedings of 2019 24th Pacific Rim International Symposium
on Dependable Computing, IEEE, Kyoto, Japan, 2019, pp. 29–30.

  [3]	 N.G. Leveson, J.L. Stolzy, Safety analysis using petri nets, IEEE
Trans. Softw. Eng. SE-13 (1987), pp. 386–397.

  [4]	 I. Ho, J.C. Lin, Generating test cases for real-time software by time
petri nets model, Proceedings of Eighth Asian Test Symposium,
IEEE, Shanghai, China, 1999, pp. 295–300.

  [5]	 H. Li, X.m. Ye, C.y. Wu, L. Liu, L.l. Wang, Modeling interac-
tive property of MIPv6 with petri net for interoperability test-
ing, Proceedings of 2009 Second International Conference on
Information and Computing Science, IEEE, Manchester, UK,
2009, pp. 313–316.

  [6]	 J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, M. Verhoef,
Validated designs for object-oriented systems, Springer-Verlag
London, 2005.

AUTHORS INTRODUCTION

Dr. Tomohiko Takagi

He received the B.S., M.S. and PhD
degrees from Kagawa University in 2002,
2004 and 2007, respectively. He became
an Assistant Professor in 2008, and a lec-
turer in 2013 in the Faculty of Engineering
at Kagawa University. Since 2018 he has
been an Associate Professor in the Faculty
of Engineering and Design at Kagawa
University. His research interests are in

software engineering, particularly software testing.

Mr. Ryo Kurozumi

He received the B.S. degree from Kagawa
University in 2019. He is a Master’s student
in the Graduate School of Engineering at
Kagawa University. His research interests
are in software engineering, particularly
software design.

Figure 5 | Screen shot of our prototype tool. (A) EPNAT model editor.
(B) VDM++ specification editor.

A B

https://doi.org/10.5954/icarob.2019.os6-2
https://doi.org/10.5954/icarob.2019.os6-2
https://doi.org/10.5954/icarob.2019.os6-2
https://doi.org/10.5954/icarob.2019.os6-2
https://doi.org/10.1109/PRDC47002.2019.00018
https://doi.org/10.1109/PRDC47002.2019.00018
https://doi.org/10.1109/PRDC47002.2019.00018
https://doi.org/10.1109/PRDC47002.2019.00018
https://doi.org/10.1109/TSE.1987.233170
https://doi.org/10.1109/TSE.1987.233170
https://doi.org/10.1109/ATS.1999.810766
https://doi.org/10.1109/ATS.1999.810766
https://doi.org/10.1109/ATS.1999.810766
https://doi.org/10.1109/ICIC.2009.190
https://doi.org/10.1109/ICIC.2009.190
https://doi.org/10.1109/ICIC.2009.190
https://doi.org/10.1109/ICIC.2009.190
https://doi.org/10.1109/ICIC.2009.190

