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ABSTRACT
In this paper, we introduce a first-order nonnegative integer-valuedmoving average process with power series innovations based
on a Poisson thinning operator (PINMAPS(1)) formodeling overdispersed, equidispersed and underdispersed count time series.
This process contains the PINMA process with geometric, Bernoulli, Poisson, binomial, negative binomial and logarithmic
innovations which some of them are studied in details. Some statistical properties of the process are obtained. The unknown
parameters of the model are estimated using the Yule-Walker, conditional least squares and least squares feasible generalized
methods. Also, the performance of estimators is evaluated using a simulation study. Finally, we apply the model to three real
data set and show the ability of the model for predicting data compared to competing models.
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1. INTRODUCTION

In recent decades, the integer-valued time series have been played an important role in research. This type of time series are extensively used
in different science such as natural, social, agricultural, medical and health science. For example, the number of chromosome interchanges
in cells, the number of bases of DNA sequences, the number of births in a hospital in successive months, the number of customers in an
internet server in a period of time and the number of shares sold in the stock market.

Many models have been proposed by researchers for modeling the integer-valued time series, such as the first-order integer-valued autore-
gressive (INAR(1)) process (Al-Osh and Alzaid [1]), integer-valued moving average process (INMA(1)) (McKenzie [2]) and (Al-Osh and
Alzaid [3]), estimation in INMAmodels (Brännäs andHall [4]), bivariate time series modeling of financial count data (Quoreshi [5]), a new
geometric INAR(1)) process based on the negative binomial thinning operator (Ristíc et al. [6]), integer-valued moving average modeling
of the number of transactions in stocks (Brännäs and Quoreshi [7]), acombined geometric INAR(p) model based on the negative binomial
thinning (Nastíc et al. [8]), a bivariate INAR(1) time series model with geometric marginals (Ristíc et al. [9]), compound Poisson INAR(1)
processes (Schweer andWei [10]), INMAmodels with structural changes (Yu et al. [11]), INAR(1) processes with power series innovations
(Bourguinon and Vasconcellos [12]), the combined Poisson INMA(q) models for time series of counts (Yu and Zou [13]) and INAR(1)
model with Poisson–Lindley marginal distribution (Mohammadpour et al. [14]).

One important characteristic of the count data time series is the overdispersion, equidispersion and underdispersion property. The INAR
models, are the most widely used integer-valued time series for dealing with this type of data. But INAR models, sometimes, are no more
the best choice when data have a very short-run autocorrelation. In this case, the INMA models work better, because in general case for
INMA(q), the correlation between Yt and Yt−k for k > q is zero, whereas, in the INAR models, this correlation gradually decreases with k
increase, thus we need to introduce a newmodel based on the INMA for modeling overdispersed, equidispersed and underdispersed count
data that have a very short-run autocorrelation.

The aim of this paper is to introduce a new INMA(1) process with power series innovations based on a Poisson thinning operator. In this
process, we use the Poisson thinning operator, which contains Poisson counting series. Unlike the binomial thinning operator (Steutel and
van Harn [15]) which counting series can take only 0 or 1 value and is appropriate for modeling the number of random events which
could only survive or disappear after a time period, the counting series of the Poisson thinning operator like the negative binomial thinning
operator (Ristíc et al. [6]) can take any nonnegative integer values and is appropriate for modeling the number of random events capable
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of replication themselves. The main reason for using the Poisson thinning operator instead of the negative binomial thinning operator in
this model is that INMA(1) process based on the Poisson thinning operator produced more dependence between the time series variables
in comparing with INMA(1) process based on the negative binomial thinning operator under same assumptions.

To clear up the reason why the proposed model in this paper has been used, paying attention to the below points is essential.

i. This model is suitable for modeling time series count data with overdispersion, equidispersion and underdispersion that have a very
short-run autocorrelation.

ii. In this model, we use of innovations that come from the power series family of distributions. This family of distributions has the
functional form of parameters. Also, it is useful for modeling overdispersed, equidispersed and underdispersed count data. Moreover,
the power series family of distributions includes many of the important discrete distributions such as Poisson, geometric, Bernoulli,
binomial, negative binomial and logarithmic that are flexible and extensively used distributions for fitting count data.

The paper is organized as follows:

The INMA(1) model with power series innovations based on the Poisson thinning operator is defined in Section 2 and some of its statistical
properties are presented. In Section 3, the estimators of the model parameters are obtained using the Yule-Walker (YW), conditional least
squares (CLS) and feasible generalized least squares (FGLS)methods. In Section 4, four special cases of themodel are given. Some simulation
results of the estimators are provided in Section 5. Section 6 deals with three real applications of the proposed model. Finally, we conclude
the paper in Section 7.

2. CONSTRUCTION OF THE MODEL

In this section, we introduce an INMA model of the first order generated by the Poisson thinning operator and with the power series
innovations. Therefore, we first introduce the Poisson thinning operator.

The Poisson thinning operator, denoted by⊝, is defined by

𝛼 ⊝ X =
X

∑
i=1

Zi,

where {Zi}Xi=1 is a sequence of independent and identically distributed (i.i.d.) Poisson random variables with mean 𝛼 and Z0
a.s.= 0. For a

given random variableX, the random variable 𝛼⊝X has the Poisson distribution withmean 𝛼X. This implies that the conditional mean and
variance of the random variable 𝛼⊝X givenX are given as E(𝛼⊝X|X) = 𝛼X andVar(𝛼⊝X|X) = 𝛼X, respectively. Then, the unconditional
mean and variance of the random variable 𝛼 ⊝ X are, respectively, given by E(𝛼 ⊝ X) = 𝛼E(X) and Var(𝛼 ⊝ X) = 𝛼E(X) + 𝛼2Var(X).
Since the counting series are Poisson distributed random variables, the probability generating function (pgf) of the random variable 𝛼 ⊝ X
is given by 𝜑(s) = 𝜑X(e𝛼(s−1)).

As we mention above, we consider a model which innovations have distributed according to the power series family of distributions, so we
review some properties of this family of distributions. A nonnegative integer-valued random variable X is said to have a power series family
of distributions, if its probability mass function is given by

P(X = x) = a(x)𝜃x
C(𝜃) , x ∈ T, (1)

where T is a subset of the nonnegative integers, a(x) ≥ 0, 𝜃 > 0 and C(𝜃) is a function defined as C(𝜃) = ∑x∈T a(x)𝜃
x.

This family of distributions contains some well-known distributions such are Bernoulli, binomial, Poisson, geometric, negative binomial
and logarithmic distribution. This is shown in Table 1.

Table 1 Special cases of power series distribution.

Distribution 𝜃 C(𝜃) a(x) T

Bernoulli with parameter p p/(1− p) 1+ 𝜃 1 {0, 1}
Binomial with parameters n, p p/(1− p) (1+ 𝜃)n

( n
x
)

{0, 1, … , n}
Poisson with parameter 𝜆 𝜆 e𝜃 1/x! {0, 1, … }
Geometric with parameter p 1− p (1− 𝜃)−1 1 {0, 1, … }
Negative binomial with parameter r, p 1− p (1− 𝜃)−r

( x+r−1
r−1

)
{0, 1, … }

Logarithmic with parameter p p −log(1− 𝜃) x−1 {1, 2, … }
Pdf_Folio:416
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The pgf of a random variable X with power series family of distributions is given by 𝜑X(s) = C(𝜃s)
C(𝜃) . Using this fact, the expectation and

variance of the random variable X are given by E(X) = 𝜃G′(𝜃) and Var(X) = 𝜃2G′′(𝜃) + 𝜃G′(𝜃), respectively, where G(𝜃) = logC(𝜃) and
G′ and G′′ are the first two derivatives of function G(𝜃). The dispersion index is given by

Ix =
𝜃2G′′(𝜃) + 𝜃G′(𝜃)

𝜃G′(𝜃) .

Thus, this distribution is overdispersed ifC(𝜃) = (1−𝜃)−1,C(𝜃) = (1−𝜃)−r andC(𝜃) = −log(1−𝜃)where−log(1−𝜃) > 1, underdispersed
if C(𝜃) = 1 + 𝜃, C(𝜃) = (1 + 𝜃)n and C(𝜃) = −log(1 − 𝜃) where 0 < −log(1 − 𝜃) < 1, and equidispersed if C(𝜃) = e𝜃.

Definition 2.1. A time series model {Yt} given by

Yt = 𝛼 ⊝ 𝜀t−1 + 𝜀t, t ∈ {0, ±1, ±2, … }, (2)

is called the integer-valued moving average model with power series innovations based on the Poisson thinning operator (PINMAPS(1)) if
the following conditions are satisfied:

i. {𝜀t} is a sequence of i.i.d. random variables with a power series distribution given by (1).

ii. The counting series {Z(t)
i } incorporated in 𝛼 ⊝ 𝜀t have the Poisson distribution with the parameter 𝛼 ∈ (0, 1) for all t and i.

iii. All the counting series incorporated in 𝛼 ⊝ 𝜀s and 𝛼 ⊝ 𝜀t are independent for all s ≠ t.

iv. The counting series {Z(s)
i } are independent of the random variables 𝜀t for all t, s and i.

Under the above assumptions, we obtain the expectation and variance of the random variable Yt, respectively, as follows:

E(Yt) = (1 + 𝛼)𝜃G′(𝜃),
Var(Yt) = 𝛼𝜃G′(𝜃) + (1 + 𝛼2)[𝜃2G′′(𝜃) + 𝜃G′(𝜃)].

Thus, the dispersion index is given by IYt = 1+ 𝜃G′′(𝜃)
G′(𝜃) +𝛼

2[𝜃G′′(𝜃)
G′(𝜃) +1]

1+𝛼 .

Remark 2.1

i. If C(𝜃) = (1 − 𝜃)−1, C(𝜃) = (1 − 𝜃)−r and C(𝜃) = e𝜃, the first-order nonnegative integer-valued moving average process with power
series innovations based on a Poisson thinning operator (PINMAPS(1)) process is overdispersed.

ii. If C(𝜃) = 1 + 𝜃 and C(𝜃) = (1 + 𝜃)n, this process is overdispersed when 𝜃 < 𝛼2; underdispersed when 𝜃 > 𝛼2 and equidispersed
when 𝜃 = 𝛼2.

iii. If C(𝜃) = −log(1 − 𝜃), this process is overdispersed when −log(1 − 𝜃) > 1 and underdispersed when 0 < −log(1 − 𝜃) < 1.

The covariance between the random variables Yt and Yt−1 is Cov(Yt,Yt−1) = 𝛼[𝜃2G′′(𝜃) + 𝜃G′(𝜃)], which implies that the lag 1 serial
correlation of PINMAPS(1) model is

𝜌(1) = 𝛼𝜎2
𝜀

𝛼𝜇𝜀 + (1 + 𝛼2)𝜎2
𝜀
= 𝛼[𝜃2G′′(𝜃) + 𝜃G′(𝜃)]
𝛼𝜃G′(𝜃) + (1 + 𝛼2)[𝜃2G′′(𝜃) + 𝜃G′(𝜃)] ,

where 𝜇𝜀 and 𝜎2
𝜀 are the expectation and variance of the innovation 𝜀t. All other lag k ≥ 2 serial correlations are equal to 0. We can see that

𝜌(1) is nonnegative value and bounded above by 1/2, which is the same as for the INMA(1) model introduced by Al-Osh and Alzaid [3].

Theorem 2.1. Let Yt be the process defined in (2), then Yt is covariance stationary.

Proof. Since the expectation and variance of the process are constant and autocovariance function does not depend on time, the process
(2) is covariance stationary.

Theorem 2.2. The PINMAPS(1) process is ergodic in the mean and autocovariance function.

Proof. The proof is similar to the proof of theorem 7 from Yu and Zou [13] and omitted.

Using the pgf of the power series distribution and the independency of the counting series and the random variables 𝜀t−1 and 𝜀t, we obtain
that the pgf of the random variable Yt is given by

𝜑Yt (s) = E(s𝛼⊝𝜀t−1 )E(s𝜀t ) = 𝜑𝜀t (e
𝛼(s−1))𝜑𝜀t (s) =

C(e𝛼(s−1)𝜃)
C(𝜃) × C(s𝜃)

C(𝜃) .
Pdf_Folio:417
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Using the series expansion of the function C, we obtain

C(e𝛼(s−1)𝜃) = a(0)
C(𝜃) +

T

∑
x=1

a(x)𝜃x
C(𝜃) e𝛼x(s−1),

which implies that the random variable Yt is distributed as a random variable X+S𝛼W, where the random variables X and S𝛼W are indepen-
dent random variables, X andW have the power series distributions given by (1) and the random variable S𝛼W for givenW ≥ 1 has Poisson
distribution with the mean parameter 𝛼W and S0

a.s.= 0. Then, from the last result, we can easily obtain the probability mass function of the
random variable yt as

P(Yt = y) =
min(y,T)
∑
x=0

a(x)𝜃x
C(𝜃) [ a(0)C(𝜃) I{x=y} +

T

∑
w=1

a(w)(𝛼w)y−x𝜃we−𝛼w
C(𝜃)(y − x)! ] , y ≥ 0.

Unlike the power series innovations which can take values on set {0, 1, … ,T}, the random variable Yt always takes values on the set of
nonnegative integers. This is a consequence of using the Poisson thinning operator.

Al-Osh and Alzaid [3] have shown that the Poisson INMA(1) process is the only INMA(1) process that has a linear regression. An example
of the INMA(1) process with a nonlinear regression is the geometric INMA(1) process introduced by Alzaid and Al-Osh [16]. Now, we will
consider the regression of the proposed model. In this sense, we first derive the joint pgf of the random variables Yt−1 and Yt. It is given by

𝜑Yt−1,Yt (s1, s2) =
C(𝜃s2)
C(𝜃) × C(𝜃e𝛼(s1−1))

C(𝜃) × C(𝜃s1e𝛼(s2−1))
C(𝜃) .

The joint pgf can be used for derivation of the conditional pgf of the random variable Yt given Yt−1, which the expression is given in the
following theorem.

Theorem 2.3. The conditional pgf of the random variable Yt given Yt−1 = x, x ∈ {0, 1, 2, … }, is given as

𝜑Yt|Yt−1=x(s) =
C(𝜃s)∑x

j=0∑
j
i=1

(
x
j

)
𝛼jaji𝜃i+x−je−i𝛼+𝛼(x−j)(s−1)C(i)(𝜃e−𝛼)C(x−j)(0)

C(𝜃)∑x
j=0∑

j
i=1

(
x
j

)
𝛼jaji𝜃i+x−je−i𝛼C(i)(𝜃e−𝛼)C(x−j)(0)

,

where the coefficients aji are given recurrently as aji = iaj−1,i + aj−1,i−1, i ∈ {2, 3, … , j − 1} and aj1 = ajj = 1.

Proof.According to Theorem 1.3.1 fromKocherlakota and Kocherlakota [17], the conditional pgf of the random variable Yt given Yt−1 = x
can be derived from the joint pgf of the random variables Yt−1 and Yt as

𝜑Yt|Yt−1=x(s) =
𝜕x𝜑Yt−1 ,Yt (0,s)

𝜕sx1
𝜕x𝜑Yt−1 ,Yt (0,1)

𝜕sx1

. (3)

Let us first consider the partial derivative 𝜕x𝜑Yt−1 ,Yt (s1,s2)
𝜕sx1

. By the Leibniz’s rule, we have

𝜕x𝜑Yt−1,Yt (s1, s2)
𝜕sx1

= C(𝜃s2)
C3(𝜃)

x

∑
j=0

(
x
j

)
𝜕jC(𝜃e𝛼(s1−1))

𝜕sj1
𝜕x−jC(𝜃s1e𝛼(s2−1))

𝜕sx−j1
. (4)

It is easy to derive the partial derivatives of the function C(𝜃s1e𝛼(s2−1)) as

𝜕kC(𝜃s1e𝛼(s2−1))
𝜕sk1

= 𝜃kek𝛼(s2−1)C(k)(𝜃s1e𝛼(s2−1)), k = 0, 1,⋯ , x. (5)

On the other hand and after some calculations, we obtain that the partial derivatives of the function C(𝜃e𝛼(s1−1)) are given by

𝜕kC(𝜃e𝛼(s1−1))
𝜕sk1

= 𝛼k
k

∑
i=1

aki𝜃iei𝛼(s1−1)C(k)(𝜃e𝛼(s1−1)), k = 0, 1,⋯ , x, (6)

where the coefficients aki are given in the statement of theorem. Finally, replacing (5) and (6) in (4) with s1 = 0 and s2 = s, we obtain the
numerator of (3). In a similar way, we obtain the denominator of (3) which proves the theorem.

Now, we are able to derive regression of our introduced model. It is given as follows:Pdf_Folio:418



E. Mahmoudi and A. Rostami / Journal of Statistical Theory and Applications 19(3) 415–431 419

Corollary 2.1. The regression of Yt given Yt−1 = x is a nonlinear function given by

E(Yt|Yt−1 = x) =
∑x

j=0∑
j
i=1

(
x
j

)
𝛼jaji𝜃i+x−je−i𝛼C(i)(𝜃e−𝛼)C(x−j)(0) [𝜃C′(𝜃) + 𝛼(x − j)C(𝜃)]

C(𝜃)∑x
j=0∑

j
i=1

(
x
j

)
𝛼jaji𝜃i+x−je−i𝛼C(i)(𝜃e−𝛼)C(x−j)(0)

.

Proof. The proof follows from Corollary 1.3.1 (Kocherlakota and Kocherlakota [17]) and the previous theorem.

The conditional mean and conditional variance of Yt given t−1 are obtained as follows:

E(Yt|t−1) = 𝛼𝜀t−1 + 𝜇𝜀, (7)

Var(Yt|t−1) = 𝛼𝜀t−1 + 𝜎2
𝜀 , (8)

where t−1 is the information set at time t − 1.

3. ESTIMATION OF THE UNKNOWN PARAMETERS

In this section, we derive the estimators of the unknown parameters 𝛼 and 𝜃 using the YW, CLS and FGLS methods. Let Y1,⋯ ,YT,T ∈ N
be a random sample of size T from the PINMAPS(1) process.

3.1. The YW Method

The YW estimators of the parameters 𝛼 and 𝜃 are obtained via solving the following equations:

Ȳ − (1 + 𝛼)𝜃G′(𝜃) = 0,

S2 − 𝛼𝜃G′(𝜃) − (1 + 𝛼2)(𝜃2G′′(𝜃) + 𝜃G′(𝜃)) = 0,

r1S2 − 𝛼(𝜃2G′′(𝜃) + 𝜃G′(𝜃)) = 0,

where Ȳ, S2 and r1 are the sample mean, variance and autocorrelation function at lag one, respectively.

Theorem 3.1. The YW estimators of the parameters 𝛼 and 𝜃 are consistent.

Proof. According to Theorem 2.2, we have Ȳ
p→ 𝜇Y, S2

p→ 𝜎2
Y and r1

p→ 𝜌(1) where 𝜇Y ∶= E(Yt), 𝜎2
Y ∶= Var(Yt). Thus, using the properties

of convergence in probability, the consistency of the YW estimators is resulted.

3.2. The CLS Method

The CLS estimators of the parameters 𝛼 and 𝜃 are given by minimizing the following function with respect to parameter 𝜇𝜀

SCLS =
T

∑
t=2

e21t,

where 𝜇𝜀 ∶= E(𝜀t) and e1t = Yt − E(Yt|t−1).
According to the Section 3 from Brännäs and Quoreshi [7], and Equation 7, e1t is given by

e1t = 𝜀t − 𝜇𝜀,

so, the CLS estimator of 𝜇𝜀 is given by

𝜇̂𝜀(CLS) =
∑T

t=2 𝜀t
T − 1

.

The CLS estimators of 𝛼 and 𝜃 are obtained by replacing 𝜇̂𝜀(CLS) in equations,

Ȳ = (1 + 𝛼̂CLS)𝜇̂𝜀(CLS),
𝜇̂𝜀(CLS) = ̂𝜃CLSG′( ̂𝜃CLS).Pdf_Folio:419
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3.3. The FGLS Method

This method includes three stages:

Stage 1: Obtaining the CLS estimator of the parameters.

Stage 2: Minimizing the function

S =
T

∑
t=2

e22t,

with respect to parameter 𝜎2
𝜀 , where 𝜎2

𝜀 ∶= Var(𝜀t) and e2t = (Yt − E(Yt|t−1))2 − Var(Yt|t−1).

Thus, we have

̂𝜎2
𝜀 =

∑T
t=2((𝜀t − 𝜇̂𝜀(CLS))2 − 𝛼̂CLS𝜀t−1)

(T − 2)
.

Stage 3: Minimizing the function

SFGLS =
T

∑
t=2

e21t
̂Var(Yt|t−1)

,

with respect to parameter 𝜇𝜀 and obtaining FGLS estimators of 𝛼 and 𝜃. By minimizing the function SFGLS with respect to 𝜇𝜀, the FGLS
estimator of 𝜇𝜀 is given by

𝜇̂𝜀(FGLS) =
∑T

t=2
𝜀t

̂Var(Yt|t−1)

∑T
t=2

1
̂Var(Yt|t−1)

.

So, the FGLS estimators of 𝛼 and 𝜃 are given by replacing 𝜇̂𝜀(FGLS) in equations,

Ȳ = (1 + 𝛼̂FLGS)𝜇̂𝜀(FGLS),
𝜇̂𝜀(FGLS) = ̂𝜃FGLSG′( ̂𝜃FGLS).

4. SPECIAL CASES OF THE PINMAPS(1) PROCESS

In this section, we consider four special cases of the PINMAPS(1) process.

4.1. First-Order Integer-Valued Moving Average Process with Geometric Innovations

If C(𝜃) = 1
1−𝜃 (𝜃 ∈ (0, 1)), 𝜀t has geometric distribution, then Yt is called first-order integer-valued moving average process with geometric

innovations (PINMAG(1)) process.

The mean, variance and pgf of this process are given by

E(Yt) = (1 + 𝛼) 𝜃
1 − 𝜃 ,

Var(Yt) = (𝛼) 𝜃
1 − 𝜃 + (1 + 𝛼2) 𝜃

(1 − 𝜃)2 ,

𝜑Yt (s) =
C(e𝛼(s−1)𝜃)

C(𝜃)
C(s𝜃)
C(𝜃) = (1 − 𝜃)2

(1 − s𝜃)(1 − e𝛼(s−1)𝜃) .

The autocovariance function, conditional mean and variance of Yt are given, respectively, by

𝛾Yt (1) = 𝛼 𝜃
(1 − 𝜃)2 ,

E(Yt|t−1) = 𝛼𝜀t−1 +
𝜃

1 − 𝜃 ,

Var(Yt|t−1) = 𝛼𝜀t−1 +
𝜃

(1 − 𝜃)2 .
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The YW estimators of 𝛼 and 𝜃 are obtained via solving the following equations:

Y − (1 + 𝛼)𝜃
1 − 𝜃 = 0, (9)

S2 − 𝛼𝜃
1 − 𝜃 −

(1 + 𝛼2)𝜃
(1 − 𝜃)2 = 0, (10)

r1S2 − 𝛼𝜃
(1 − 𝜃)2 = 0. (11)

To facilitate obtaining the estimator of 𝜃, the auxiliary parameter 𝜈 = 𝜃
1−𝜃 may be used. Therefore, Equations (9–11) can bewritten as follows:

Y − (1 + 𝛼)𝜈 = 0,

S2 − 𝛼𝜈 − (1 + 𝛼2)(𝜈 + 𝜈2) = 0,

r1S2 − 𝛼(𝜈 + 𝜈2) = 0.

So, the YW estimators of 𝜈 and 𝛼 are given by

̂𝜈YW =
(Y − 1) +√(1 − Y)2 − 4(r1S2 − Y)

2
,

𝛼̂YW = Y − ̂𝜈YW
̂𝜈YW

.

The YW estimator for 𝜃 is

̂𝜃YW = ̂𝜈YW
1 + ̂𝜈YW

.

According to the previous section, the CLS and FGLS estimators of 𝛼 and 𝜃 are obtained, respectively, by

̂𝜃CLS =
∑T

t=2 𝜀t
T−1

1 + ∑T
t=2 𝜀t
T−1

, 𝛼̂CLS =
Ȳ − ∑T

t=2 𝜀t
T−1

∑T
t=2 𝜀t
T−1

,

and

𝛼̂FGLS =

Ȳ −
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

, ̂𝜃FGLS =

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

1 +
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

,

4.2. First-Order Integer-Valued Moving Average Process with Poisson Innovations

If C(𝜃) = e𝜃(𝜃 > 0), 𝜀t has Poisson distribution, then Yt is called first-order integer-valued moving average process with Poisson innova-
tions (PINMAP(1)) process.

The mean, variance and pgf of this process are given by

E(Yt) = (1 + 𝛼)𝜃,
Var(Yt) = 𝛼𝜃 + (1 + 𝛼2)𝜃,

𝜑Yt (s) =
C(e𝛼(s−1)𝜃)

C(𝜃)
C(s𝜃)
C(𝜃) = ee

𝛼(s−1)𝜃es𝜃

e2𝜃
.
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The autocovariance function, conditional mean and variance of Yt are given, respectively, by

𝛾Yt (1) = 𝛼𝜃,

E(Yt|t−1) = 𝛼𝜀t−1 + 𝜃,

Var(Yt|t−1) = 𝛼𝜀t−1 + 𝜃.

Since in this process the conditional mean is the same as the conditiona variance, it can be concluded that Yt given t−1 has Poisson
distribution with mean 𝛼𝜀t−1 + 𝜃.
The YW estimators of 𝛼 and 𝜃 are obtained via solving the following equations:

Ȳ − (1 + 𝛼)𝜃 = 0,

S2 − 𝛼𝜃 − (1 + 𝛼2)𝜃 = 0,

r1S2 − 𝛼𝜃 = 0.

Thus, the YW estimators of 𝜃 and 𝛼 are

̂𝜃YW = Ȳ − r1S2,

𝛼̂YW = r1S2
̂𝜃YW
.

According to the previous section, the CLS and FGLS estimators of 𝛼 and 𝜃 are obtained, respectively, by

𝛼̂CLS =
Ȳ − ∑T

t=2 𝜀t
T−1

∑T
t=2 𝜀t
T−1

, ̂𝜃CLS =
∑T

t=2 𝜀t
T − 1

,

and

𝛼̂FGLS =

Ȳ −
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

, ̂𝜃FGLS =
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

,

4.3. First-Order Integer-Valued Moving Average Process with Binomial Innovations

If C(𝜃) = (1 + 𝜃)n(𝜃 > 0), 𝜀t has binomial distribution, then Yt is called first-order integer-valued moving average process with binomial
innovations (PINMAB(1)) process.

The mean, variance and pgf of this process are given by

E(Yt) = (1 + 𝛼) n𝜃
1 + 𝜃 ,

Var(Yt) = 𝛼 n𝜃
1 + 𝜃 + (1 + 𝛼2) n𝜃

(1 + 𝜃)2 ,

𝜑Yt (s) =
C(e𝛼(s−1)𝜃)

C(𝜃)
C(s𝜃)
C(𝜃) = (1 + e𝛼(s−1)𝜃)n(1 + s𝜃)n

(1 + 𝜃)2n .

The autocovariance function, conditional mean and conditional variance of Yt are given, respectively, by

𝛾Yt (1) = 𝛼 n𝜃
(1 + 𝜃)2 ,

E(Yt|t−1) = 𝛼𝜀t−1 +
n𝜃

1 + 𝜃 ,

Var(Yt|t−1) = 𝛼𝜀t−1 +
n𝜃

(1 + 𝜃)2 .
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Assuming n is known, the estimators of the parameter 𝛼 and 𝜃 are obtained. The YW estimators of 𝛼 and 𝜃 are obtained via solving the
following equations:

Ȳ − (1 + 𝛼)n𝜃
1 + 𝜃 = 0, (12)

S2 − 𝛼n𝜃
1 + 𝜃 −

(1 + 𝛼2)n𝜃
(1 + 𝜃)2 = 0, (13)

r1S2 − 𝛼n𝜃
(1 + 𝜃)2 = 0. (14)

To facilitate obtaining the YW estimator of 𝜃, the auxiliary parameter 𝜏 = 𝜃
1+𝜃 may be used. Therefore, Equations (12–14) can be written as

follows:

Y − (1 + 𝛼)n𝜏 = 0,

S2 − 𝛼n𝜏 − n(1 + 𝛼2)(𝜏 − 𝜏2) = 0,

r1S2 − n𝛼(𝜏 − 𝜏2) = 0.

So, the YW estimators of 𝜏 and 𝛼 are

̂𝜏YW =
(n + Y) −√(n + Y)2 − 4n(Y − r1S2)

2n ,

𝛼̂YW = Y − n ̂𝜏YW
n ̂𝜏YW

.

The YW estimator for parameter 𝜃 is given by

̂𝜃YW = ̂𝜏YW
1 − ̂𝜏YW

.

According to the previous section, the CLS and FGLS estimators of 𝛼 and 𝜃 are obtained, respectively, by

𝛼̂CLS =
Ȳ − ∑T

t=2 𝜀t
T−1

∑T
t=2 𝜀t
T−1

, ̂𝜃CLS =
∑T

t=2 𝜀t
T−1

n − ∑T
t=2 𝜀t
T−1

,

and

𝛼̂FGLS =

Ȳ −
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

, ̂𝜃FGLS =

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

n −
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

,

4.4. First-Order Integer-Valued Moving Average Process with Negative Binomial Innovations

For C(𝜃) = (1 − 𝜃)−r(𝜃 ∈ (0, 1)), 𝜀t has geometric distribution, then Yt is called first-order integer-valued moving average process with
negative binomial innovations (PINMANB(1)) process.

The mean, variance and pgf of this process are given by

E(Yt) = (1 + 𝛼) r𝜃
1 − 𝜃 ,

Var(Yt) = (𝛼) r𝜃
1 − 𝜃 + (1 + 𝛼2) r𝜃

(1 − 𝜃)2 ,

𝜑Yt (s) =
C(e𝛼(s−1)𝜃)

C(𝜃)
C(s𝜃)
C(𝜃) = (1 − 𝜃)2r

(1 − s𝜃)r(1 − e𝛼(s−1)𝜃)r .
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Also, the autocovariance function, conditional mean and variance of Yt are given, respectively, by

𝛾Yt (1) = 𝛼 r𝜃
(1 − 𝜃)2 ,

E(Yt|t−1) = 𝛼𝜀t−1 +
r𝜃

1 − 𝜃 ,

Var(Yt|t−1) = 𝛼𝜀t−1 +
r𝜃

(1 − 𝜃)2 .

Assuming r is known, the estimators of the parameters 𝛼 and 𝜃 are obtained. The YW estimators of 𝛼 and 𝜃 are obtained via solving the
following equations:

Ȳ − (1 + 𝛼)r𝜃
1 − 𝜃 = 0, (15)

S2 − 𝛼r𝜃
1 − 𝜃 −

(1 + 𝛼2)r𝜃
(1 − 𝜃)2 = 0, (16)

r1S2 − 𝛼r𝜃
(1 − 𝜃)2 = 0. (17)

To facilitate obtaining the YW estimator of 𝜃, the auxiliary parameter 𝛿 = 𝜃
1−𝜃 may be used. Therefore, Equations (15–17) can be written

as follows:

Ȳ − (1 + 𝛼)r𝛿 = 0,

S2 − 𝛼r𝛿 − r(1 + 𝛼2)(𝛿 + 𝛿2) = 0,

r1S2 − r𝛼(𝛿 + 𝛿2) = 0.

So, the YW estimators of 𝛿 and 𝛼 are

̂𝛿YW = (Ȳ − r) + √(r − Ȳ)2 − 4r(r1S2 − Ȳ)
2r ,

𝛼̂YW = Ȳ − r ̂𝛿YW
r ̂𝛿YW

.

The YW estimator for parameter 𝜃 is given by

̂𝜃YW =
̂𝛿YW

1 + ̂𝛿YW
.

According to the previous section, the CLS and FGLS estimators of 𝛼 and 𝜃 are obtained, respectively, by

𝛼̂CLS =
Y − ∑T

t=2 𝜀t
T−1

∑T
t=2 𝜀t
T−1

, ̂𝜃CLS =
∑T

t=2 𝜀t
T−1

r + ∑T
t=2 𝜀t
T−1

,

and

𝛼̂FGLS =

Y −
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

, ̂𝜃FGLS =

∑T
t=2

𝜀t
V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

r +
∑T

t=2
𝜀t

V̂ar(Yt|t−1)

∑T
t=2

1
V̂ar(Yt|t−1)

,
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Table 2 Estimated parameters, Bias and RMS (in parentheses) for the PINMAP(1) model.

YW CLS FGLS

T 𝛼̂YW ̂𝜃YW 𝛼̂CLS ̂𝜃CLS 𝛼̂FGLS ̂𝜃FGLS

𝛼 = 0.4, 𝜃 = 1
100 0.2058(0.2655) 1.3060(0.3669) 0.5478(0.1681) 1.0005(0.0960) 0.5491(0.1926) 1.0026(0.1087)
Bias −0.1942 0.3060 0.1478 0.0005 0.1491 0.0026
200 0.2004(0.2350) 1.3007(0.3332) 0.5455(0.1568) 1.0020(0.0697) 0.5460(0.1671) 1.0030(0.0792)
Bias −0.1996 0.3007 0.1455 0.0020 0.1460 0.0030
300 0.1989(0.2232) 1.3003(0.3219) 0.5474(0.1547) 1.0023(0.0590) 0.5475(0.1621) 1.0032(0.0664)
Bias −0.2011 0.3003 0.1474 0.0023 0.1475 0.0032

𝛼 = 0.7, 𝜃 = 3
100 0.7173(0.5780) 3.2053(0.7794) 0.7061(0.0497) 3.0069(0.1721) 0.6932(0.3595) 2.9924(0.4516)
Bias 0.0173 0.2053 0.0061 0.0069 −0.0068 −0.0076
200 0.6639(0.3392) 3.1806(0.5663) 0.7096(0.0355) 2.9997(0.1270) 0.7101(0.0563) 3.0009(0.1469)
Bias −0.0361 0.1806 0.0096 −0.0003 0.0101 0.0009
300 0.6734(0.2483) 3.1216(0.4439) 0.7104(0.0294) 2.9963(0.1027) 0.7124(0.0451) 2.9939(0.1181)
Bias −0.0265 0.1216 0.0104 −0.0037 0.0124 −0.0061

𝛼 = 0.8, 𝜃 = 4
100 0.8993(1.2971) 4.2544(1.1438) 0.7987(0.0449) 3.9985(0.1972) 0.7934(0.1754) 3.9904(0.8252)
Bias 0.0993 0.2544 −0.0012 −0.0015 −0.0065 −0.0095
200 0.8141(0.4376) 4.1525(0.8417) 0.8002(0.0315) 3.9978(0.1434) 0.7741(0.5837) 3.9803(0.8145)
Bias 0.0141 0.1525 0.0002 −0.0022 −0.0259 −0.0197
300 0.8147(0.3147) 4.0835(0.6595) 0.8006(0.0249) 4.0064(0.1200) 0.8007(0.0599) 4.0122(0.2408)
Bias 0.0147 0.0835 0.0006 0.0064 0.0007 0.0122

Table 3 Estimated parameters, Bias and RMS (in parentheses) for the PINMAB(1) model.

YW CLS FGLS

T 𝛼̂YW ̂𝜃YW 𝛼̂CLS ̂𝜃CLS 𝛼̂FGLS ̂𝜃FGLS

𝛼 = 0.3, 𝜃 = 0.5, n = 5
100 0.2466(0.1740) 0.5716(0.1371) 0.3222(0.0506) 0.5015(0.0495) 0.3224(0.0601) 0.5020(0.0523)
Bias −0.0534 0.0716 0.0222 0.0015 0.0224 0.0020
200 0.2269(0.1451) 0.5762(0.1247) 0.3251(0.0410) 0.5001(0.0341) 0.3251(0.0464) 0.5004(0.0364)
Bias −0.0730 0.0762 0.0251 0.0001 0.0251 0.0004
300 0.2314(0.1226) 0.5683(0.1036) 0.3231(0.0350) 0.5016(0.0286) 0.3232(0.0392) 0.5017(0.0303)
Bias −0.0686 0.0684 0.0231 0.0016 0.0232 0.0017

𝛼 = 0.4, 𝜃 = 0.8, n = 5
100 0.3604(0.2118) 0.9178(0.2833) 0.4063(0.0422) 0.8005(0.0737) 0.3933(0.5406) 0.8035(0.1715)
Bias −0.0396 0.1178 0.0063 0.0005 −0.0067 0.0035
200 0.3559(0.1488) 0.8952(0.2148) 0.4099(0.0328) 0.8028(0.0518) 0.4102(0.0611) 0.8052(0.0694)
Bias −0.0441 0.0953 0.0099 0.0028 0.0102 0.0052
300 0.3563(0.1271) 0.8787(0.1682) 0.4077(0.0265) 0.8006(0.0424) 0.4082(0.0378) 0.8009(0.0495)
Bias −0.0437 0.0787 0.0077 0.0006 0.0082 0.0009

𝛼 = 0.7, 𝜃 = 0.9, n = 5
100 0.6523(0.3188) 1.1090(0.5563) 0.7081(0.0569) 0.9034(0.0816) 0.6860(1.2838) 0.8839(0.5572)
Bias −0.0477 0.2089 0.0082 0.0034 −0.0140 −0.0161
200 0.6485(0.2197) 1.0316(0.3248) 0.7092(0.0390) 0.9033(0.0557) 0.7184(0.3054) 0.9151(0.2037)
Bias −0.0514 0.1315 0.0092 0.0033 0.0184 0.0151
300 0.6426(0.1837) 1.0162(0.2531) 0.7097(0.0332) 0.9009(0.0475) 0.7149(0.0777) 0.9009(0.0827)
Bias −0.0574 0.1162 0.0097 0.0009 0.0149 0.0009
Note: RMS, rootmean square; PINMAP(1), first-order nonnegative integer-valuedmoving average process with power series innovations based on a Poisson
thinning operator; YW, Yule-Walker; CLS, conditional least squares; FGLS, feasible generalized least squares� Reply

5. SIMULATION STUDY

In this section, the performance of the YW, CLS and FGLS estimators is evaluated. For this purpose, we simulate 1000 samples of size
T = 100, 200, 300 from the PINMAP(1), PINMAB(1) and PINMANB(1)models for different values of 𝛼 and 𝜃 and estimate the parameters
using the three methods. Tables 2–4 present the estimates, biases and root mean square (RMS) errors of the estimators. As we see from
Tables 2–4, in each of the three models, estimates converge to the true value and the bias and RMS of the CLS estimators are smaller than
the bias and RMS of the other two methods, thus the CLS estimators present more performance.Pdf_Folio:425
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Table 4 Estimated parameters, Bias and RMS (in parentheses) for the PINMANB(1) model.

YW CLS FGLS

T 𝛼̂YW ̂𝜃YW 𝛼̂CLS ̂𝜃CLS 𝛼̂FGLS ̂𝜃FGLS

𝛼 = 0.2, 𝜃 = 0.3, r = 10
100 0.2106(0.1986) 0.3017(0.0328) 0.1992(0.0229) 0.3002(0.0123) 0.1986(0.0234) 0.3003(0.0124)
Bias 0.0106 0.0017 −0.0008 0.0002 −0.0013 0.00034
200 0.1993(0.1259) 0.3016(0.0225) 0.1999(0.01601) 0.2999(0.0084) 0.1996(0.0165) 0.30004(0.0084)
Bias −0.0007 0.0016 0.0001 −0.00001 −0.0003 0.00004
300 0.1917(0.0949) 0.3023(0.0174) 0.1997(0.0129) 0.3000(0.0071) 0.1996(0.0132) 0.30003(0.0071)
Bias −0.0083 0.0023 −0.0002 −0.00001 −0.0004 0.00003

𝛼 = 0.3, 𝜃 = 0.3, r = 10
100 0.2911(0.4048) 0.3046(0.0387) 0.3003(0.0277) 0.3004(0.0122) 0.2990(0.0288) 0.3006(0.0123)
Bias −0.0089 0.0046 0.0003 0.0004 −0.0009 0.0006
200 0.3024(0.1770) 0.3019(0.0253) 0.2999(0.01967) 0.3002(0.0085) 0.2997(0.0207) 0.3002(0.0085)
Bias 0.0024 0.0019 −0.0001 0.0002 −0.0003 0.0002
300 0.3031(0.1367) 0.3006(0.0217) 0.3010(0.0153) 0.2994(0.0068) 0.3010(0.0161) 0.2995(0.0069)
Bias 0.0031 0.0006 0.0010 −0.0005 0.0010 −0.0005

𝛼 = 0.5, 𝜃 = 0.4, r = 10
100 0.5859(0.6263) 0.3997(0.0611) 0.4954(0.0296) 0.4001(0.0122) 0.4936(0.0313) 0.4004(0.0123)
Bias 0.0859 −0.0003 −0.0045 0.0001 −0.0063 0.0003
200 0.5589(0.4651) 0.3972(0.0441) 0.4966(0.0197) 0.4003(0.0086) 0.4959(0.0209) 0.4004(0.0087)
Bias 0.0589 −0.0028 −0.0033 0.0003 −0.0040 0.0004
300 0.5257(0.2669) 0.3996(0.0351) 0.4995(0.0157) 0.4000(0.0070) 0.4992(0.0167) 0.4001(0.0071)
Bias 0.0257 −0.0004 −0.0004 0.00003 −0.0008 0.0001
Note: RMS, rootmean square; PINMAP(1), first-order nonnegative integer-valuedmoving average process with power series innovations based on a Poisson
thinning operator; YW, Yule-Walker; CLS, conditional least squares; FGLS, feasible generalized least squares

6. APPLICATION

In this section, we fit PINMAPS(1) model to three real data sets and obtain the model that gives a better fit to count data. For this purposes,
we compare PINMAP(1), PINMAG(1), PINMABE(1) (INMA(1) with Bernoulli innovations based on the Poisson thinning operator),
PINMA(1) (INMA(1) with Poisson innovations based on the binomial thinning operator), proposed by Al-Osh and Alzaid [3], GINMA(1)
(INMA(1) with geometric innovations based on the binomial thinning operator), proposed by Alzaid and Al-Osh [16], NBINMAP(1)
(INMA(1) with Poisson innovations based on the negative binomial thinning operator), NBINMAG(1) (INMA(1) with geometric innova-
tions based on the negative binomial thinning operator) and NBINMABE(1) (INMA(1) with Bernoulli innovations based on the negative
binomial thinning operator) models.

6.1. Number of Polio Cases

The first example assumes the number of polio cases, monthly from Jan 1980 to Dec 1983 in the United States A (https://books.
google.com/books/about/Multivariate_Statistical_Modelling_Based.html). The sample path, autocorrelation and partial autocorrelation
functions are shown in Figure 1. According to Figure 1, we observe that an INMA(1) process can be suitable for modeling the polio series
since there exists a cut-off after lag 1 in the sample autocorrelation. The samplemean, variance and empirical index of dispersion are, respec-
tively, 0.7708, 1.2868 and 1.6693. Since the index of dispersion exceeds 1, the polio series is overdispersed. Thus, an overdispersed model
must be assumed for modeling the series. We fit the PINMAP(1), PINMAG(1), PINMA(1), GINMA(1), NBINMAP(1) and NBINMAG(1)
models to this data set. For the INMA(1) models mentioned, we obtain the YW estimates of the unknown parameters (since the CLS and
FGLS estimates are dependent on innovations and we do not observe their values) and the RMS of differences of observations and predicted
values (RMS). The results are presented in Table 5. According to this table, we observed that the PINMAG(1) model gives the lowest RMS
value compared to the other models. Thus, it can be concluded that the PINMAG(1) model presents the best forecasting for the polio series.
Figure 2 shows the plots of the polio data series and their predicted values based on the PINMAG(1) model.

6.2. Number of Rubella Cases

The second example assumes the number of rubella cases, monthly from Jan 2013 to Jul 2017 in Spain (https://www.
ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/measles-rubella-monitoring-jan-(2013-2018).pdf). The sample path,
autocorrelation and partial autocorrelation functions are shown in Figure 3. According to Figure 3, we observe that an INMA(1) process can
be appropriate for modeling the rubella series since there exists a cut-off after lag 1 in the sample autocorrelation. The sample mean, vari-
ance and empirical index of dispersion are, respectively, 0.291, 0.321 and 1.104. Since the index of dispersion exceeds 1, the rubella series isPdf_Folio:426
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Figure 1 The sample path, Autocorrelation function (ACF) and Partial autocorrelation
functions (PACF) plots of the number of polio cases, monthly from Jan 1980 to Dec 1983 in
the United States.

Table 5 YW estimates of the parameters and RMS for the polio series.

Model YW Estimates RMS
𝛼̂ ̂𝜆 ̂p

PINMAP(1) 0.221 1.014 − 1.156
PINMAG(1) 0.201 − 0.609 1.085
PINMA(1) 0.210 1.063 − 1.175
GINMA(1) 0.196 − 0.608 1.103
NBINMAP(1) 0.466 0.479 − 1.112
NBINMAG(1) 0.207 − 0.610 1.183
RMS, root mean square; PINMAP(1), first-order nonnegative integer-
valued moving average process with power series innovations based on a
Poisson thinning operator; YW, Yule-Walker

overdispersed. Thus, the series must be modeled by an overdispersed model. We fit the PINMAP(1), PINMAG(1), PINMA(1), GINMA(1),
NBINMAP(1) and NBINMAG(1) models to this data set. For each model, we obtain the YW estimates of the unknown parameters and
RMS. The results are reported in Table 6. As we can see from Table 6, the PINMAP(1) has the lowest RMS compared to the other models,
which indicates that the PINMAP(1) provides the best forecasting for the rubella series. Figure 4 shows the plots of the rubella data series
and their predicted values based on the PINMAP(1) model.

6.3. Number of Earthquakes Magnitude 8.0 to 9.9

The third example assumes the number of earthquakes magnitude 8.0 to 9.9, annually from 1977 to 2006 in the world
(http://www.johnstonsarchive.net/other/quake1.html). The sample path, autocorrelation and partial autocorrelation functions are shown
in Figure 5. According to Figure 5, we observe that an INMA(1) process can be suitable for modeling this data set since there exists a cut-offPdf_Folio:427
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Figure 2 Polio data and their predicted values.

Figure 3 The sample path, ACF and PACF plots of the number of rubella cases, monthly from
Jan 2013 to Jul 2017 in Spain.

Pdf_Folio:428
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Table 6 YW estimates of the parameters and RMS for the rubella series.

Model YW Estimates RMS
𝛼̂ ̂𝜆 ̂p

PINMAP(1) 0.178 0.265 − 0.5586
PINMAG(1) 0.175 − 0.802 0.5588
PINMA(1) 0.172 0.274 − 0.5595
GINMA(1) 0.170 − 0.801 0.5594
NBINMAP(1) 0.368 0.128 − 0.5663
NBINMAG(1) 0.182 − 0.802 0.6111
RMS, root mean square; PINMAP(1), first-order nonnegative integer-
valued moving average process with power series innovations based on a
Poisson thinning operator; YW, Yule-Walker

Figure 4 Rubella data and their predicted values.

Table 7 YW estimates of the parameters and RMS for the
earthquakes series.

Model YW Estimates RMS
𝛼̂ ̂p

PINMABE(1) 0.234 0.54 0.704
NBINMABE(1) 0.271 0.52 0.719
RMS, root mean square; YW, Yule-Walker

after lag 1 in the sample autocorrelation. The sample mean, variance and empirical index of dispersion are, respectively, 0.67, 0.57 and 0.86.
Since the index of dispersion lower than 1, the earthquakes series is underdispersed. Thus, an underdispersed model must be assumed for
modeling the series. So we fit the PINMABE(1) and NBINMABE(1) models to this data set. For both models, we obtain the YW estimates
and RMS. The results are shown in Table 7. According to the values of Table 7, we conclude that the PINMABE(1) model gives better fore-
casting than the NBINMABE(1) model for the earthquakes series because its RMS is smaller. Figure 6 shows the plots of the earthquakes
data series and their predicted values based on the PINMABE(1) model.Pdf_Folio:429
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Figure 5 The sample path, ACF and PACF plots of the number of earthquakes magnitude
8.0 to 9.9, annually from 1977 to 2006 in the world.

Figure 6 Earthquakes data and their predicted values.
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7. CONCLUSION

In this paper, we consider a PINMAPS(1). Some statistical properties of the process are obtained. The stationary and ergodicity of the process
are investigated. The parameters of the model are estimated using three methods contain YW, CLS and FGLS; also their performance is
evaluated via simulation. Some sub-models are studied in detail. Finally, the model is applied to three real data sets and is shown the better
performance of the model for predicting future values of overdispersed and underdispersed count data.
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