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ABSTRACT
The traditional three-stage data envelopment analysis (DEA) model only measures exact input–output indicator data, but
cannot perform efficiency analysis on uncertain data. The interval DEAmethod does not exclude the influence of external envi-
ronmental factors. Therefore, this paper combines the traditional three-stage DEA model with the interval DEA method, and
proposes a three-stage interval DEA efficiency model, which eliminates the impact of external environmental factors and real-
izes the measurement of the efficiency for interval data. From the perspective of the impact of environmental factors, defining
the degree of efficiency change vector, a clustering analysis technique based on the efficiency change degree vector is proposed
to provide improvement benchmark for poorly performing decision-making units. Finally, an example is used to demonstrate
the feasibility and validity of the proposed method in this paper.
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1. INTRODUCTION

Data envelopment analysis (DEA) [1] was first proposed by the
famous American operations researchers Cooper and Rhodes.
The advantage lies in the ability to evaluate the efficiency of
similar decision-making units (DMUs) with multiple input and
output indicators and complex relationships. Since it was pro-
posed, it is a popular approach and has been widely discussed
in the literature [2–5]. The traditional three-stage DEA model
established on the DEA model firstly proposed by Fried et al.
[6], which takes into account the influence of external environ-
ment and random errors on the efficiency calculation based on
Stochastic Frontier Analysis (SFA). It uses the DEA-SFA-DEA
method to build three-stage DEA model [7]. The first stage is
to use the input-oriented A. Charnes, W.W. Cooper, E. Rhodes
(CCR) or R. D. Banker, A. Charnes, W. W. Cooper (BCC) model
to get the efficiency and investment relaxation of each DMU
[8–10]. In the second stage, because the technical efficiency is
affected by external environmental factors, random interference,
and management inefficiency co-effects, so the cost-oriented SFA
model is established with input slack as the dependent variable
and external environmental factors as the independent variables
[11–13], thereby eliminating the impact of external environmental
factors; in the third stage, the newly obtained input–output values
are used for efficiency measurement.

The traditional three-stage DEA model evaluation is to measure
all DMUs whose inputs and outputs are exact data, and only
needs to use linear programming. However, in actual production
activities, it is impossible to obtain certain indicators data due to
the accuracy problems of some measurement methods, technical
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limitations, and lack of information [14–16]. If these uncertain fac-
tors are ignored, the relative effectiveness of theseDMUswill still be
evaluated using the DEA model established on the basis of cer-
tain values, and biased or even wrong information will be obtained,
which will bring some errors to management decisions. Based on
the research results, the traditional three-stage DEA model cannot
achieve the efficiency measurement of uncertain data [17]. There-
fore, it seems convenient and necessary to consider the uncertain
DEA model.

For the uncertain DEA model, Cooper et al.1 introduced the con-
cept of uncertain data to DEA for the first time, and proposed an
evaluation method based on interval efficiency. Since then, a series
of interval DEA methods have emerged, mainly including variable
replacement methods, interval efficiency methods, and integration
methods [18,19]. The interval DEA method for variable replace-
ment was first proposed by Cooper et al.1 The method is to replace
the interval data to exact data for each indicator, and then obtain
the efficiency value of DMU. The interval efficiency method was
first proposed by Despotis and Smirlis [20]. It mainly uses the com-
bination of the maximum and minimum values for the interval
of the unit under evaluation and the reference unit to obtain the
maximum and minimum efficiency of the unit under evaluation.
The variable replacement method can be regarded as a part of the
interval efficiency method [21,22]. The efficiency value of DMU
obtained by the variable replacement method is actually the max-
imum value of DMU efficiency obtained by the interval efficiency
method [23,24]. However, interval DEA method cannot eliminate
the influence of external environmental factors on the efficiency
evaluation. So, there is still a need from the interval DEAmethod to
develop a new model that keeps original advantage and considers
the influence of environmental factors.
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On such motivation basis, this study proposes a new three-stage
interval DEA method, which combines three-stage DEA model
with interval DEA method. Compared with the traditional inter-
val DEA method, the new three-stage interval DEA method takes
into account the influence of external environmental factors. Com-
pared with three-stage DEA model, the new three-stage interval
DEA method can evaluate the input and output of interval data.
The effectiveness is classified based on the interval efficiency by
three-stage interval DEA method. Additionally, for the problem
of DMUs‵ natural differences [21], this paper combines the three-
stage interval DEA efficiencymodel with cluster analysis to classify.
Poorly performing in the same category can select best perform-
ing as reference targets for improvement. Afterward, a study with
numerical example is presented to expose the advantages of the new
proposed methods.

The remainder of this paper is organized as follows. Section 2 briefly
introduces the traditional three-stage DEA model and interval
DEA method in order to make our proposed method understood
easily. Section 3 develops three-stage interval DEAmodel and a new
method to identify benchmarks by cluster analysis. Section 4 con-
ducts numerical example with related comparisons to illustrate the
superiority, validity, and feasibility of the proposed method regard-
ing previous ones. The conclusions and future works are offered in
Section 5.

2. BACKGROUND

In this section, the traditional three-stageDEAmodel and the inter-
val DEA method will be introduced respectively to facilitate unfa-
miliar readers can understand the proposed model more easily
and clearly.

2.1. The Traditional Three-Stage DEA Model

We first introduce the three-stage DEA model proposed by Fried
et al. [6]. In the first stage, the traditional DEA model is used to
analyze efficiency. In the second stage, the SFA method is used to
correct the effects of environmental variable and random error. In
the third stage, the adjusted input data and original output data are
used for DEA efficiency measurement again [25,26].

The first stage: Assumed that there are n DMUs to be evaluated
[27,28], where each DMUcontains m inputs and s outputs. The ith
input factors of jthDMU is xij, and the rth output factors of jthDMU
is yrj. The initialDMUs‵ performance evaluation is conducted using
a traditionalDEAmodel. The traditionalDEAmodel can bewritten
as follows:

max 𝜃jo =
s

∑
r=1

uryrjo

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

m

∑
i=1

vixijo = 1
m

∑
i=1

vixij −
s

∑
r=1

uryrj ≥ 0

j = 1, 2,⋯ n
vi, ur ≥ 𝜀, ∀i, r

(1)

where 𝜀 is a non-Archimedes infinitesimal; vi is the ith input
indicator weight; ur is the rth output indicator weight. 𝜃jo represents
the relative efficiency value of the evaluated DMUjo .

With the addition of slack variable, the dual form of the above
model can be expressed as [24]

min 𝜃jo − 𝜀
(

s

∑
r=1

S+rjo +
m

∑
i=1

S−rjo

)

s.t.

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

n

∑
j=1

𝜆jxij + S−ijo = 𝜃joxijo
n

∑
j=1

𝜆jyrj − S+rjo = yrjo

j = 1, 2,⋯ n; i = 1,⋯ ,m; r = 1,⋯ , s
𝜆j, S−ijo , S

+
rjo
≥ 0, ∀j, i, r

(2)

where S+rjo is the slack variable of the rth output of DMUjo ; S
−
io is

the slack variable of the ithinput of DMUjo ; and 𝜃jo is the relative
efficiency of DMUjo .

The second stage: SFA regression analysis of environmental vari-
ables is used to overcome the shortcomings of the traditional DEA
model [29,30]. The input slack variables corresponding to the first-
stage solution are decomposed into a function with three variables
of environmental impact factor, random error factor, and man-
agement inefficiency factor [31,32]. The model construction of the
SFA regression function is based on the method proposed by Fried
et al. [2] as follows:

Sti = ft
(
Zi; ̂𝛽t

)
+ vti + 𝜇ti;

i = 1, 2,⋯ ,m; t = 1, 2,⋯ , n
(3)

In Eq. (3), Sti represents the slack variables of the tthDMUon the ith
input indicator; Zi represents the environment variables of individ-
ualDMU; ̂𝛽t is the coefficients of environmental variables; ft

(
Zi; ̂𝛽t

)
represents the influence of environmental variables on input slack
variables; vti is the random error;𝜇ti is themanagement inefficiency
of truncated normal distribution; vti + 𝜇ti is the mixed error term.
According to the regression results, adjusting the selected input
variable [33,34] the adjustment formula is following as

XA
ti = Xti + [max(f(Zi; ̂𝛽t))

−f(Zi; ̂𝛽t)] + [max(𝜈ti) − 𝜈ti]
i = 1, 2,⋯ ,m; t = 1, 2,⋯ , n

(4)

where XA
ti is the new input variable values after homogenization;

Xti is the values before adjustment for each DMU. [max(f(Zi; ̂𝛽t))−
f(Zi; ̂𝛽t)] represents the influence of the adjusted environmental
factors; [max(𝜈ti) − 𝜈ti] represents the influence of the adjusted ran-
dom error factors. These two items adjust the external environmen-
tal factors and luck of all DMUs to the same situation.

The third stage: This stage is a repetition of the first stage, the
adjusted input data and the original output data is used to calculate
the efficiency value of each DMU. At this time, the efficiency value
of DMUs is obtained by eliminating environmental variables and
random errors [35,36]. Thus, the efficiency obtained in the third
stage will be more realistic in reflecting the managerial efficiency.
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The traditional three-stage DEAmodel can eliminate the influence
of environmental factors, and it is easy to evaluate the exact data.
However, it has no effective solutionwhen input and output data are
in the form of intervals. Therefore, it seems necessary and conve-
nient to develop a new DEAmethod to overcome such a limitation.

2.2. The Interval DEA Method

Without loss of generality, it is assumed that all the input and output
data xij and yrj cannot be exactly obtained. Due to uncertainty, it is
only known to liewithin the upper and lower bounds represented by
the intervals, where expressed as xij ∈ [xLij, xUij ] and yrj ∈ [yLrj, yUrj].

The interval DEA model is to calculate the maximum efficiency
value and the minimum efficiency value of each evaluated units
[37]. According to the different combinations of the maximum and
minimum values of the input–output interval index of the evalu-
ated DMU and reference unit, and then form an efficiency interval
[38]. This section analyzes the relative effectiveness of each DMU.
Therefore, the interval DEAmodel is obtained by deforming Eq. (1)
as follows:

max 𝜃jo =
s

∑
r=1

ur [yLrjo , y
U
rjo
]

s.t.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

m

∑
i=1

vi [xLijo , x
U
ijo
] = 1

m

∑
i=1

vi [xLij, xUij ] −
s

∑
r=1

ur [yLrj, yUrj] ≥ 0

j = 1, 2,⋯ n
vi, ur ≥ 𝜀, ∀i, r

(5)

In order to solve such an uncertain situation and obtain the inter-
val efficiency value, we firstly consider the best situation forDMUjo .
Using theminimum input value xLijo and themaximumoutput value
yUrjo as the input–output value of DMUjo [39]. The other DMUj(
j = 1, 2,⋯ n, j ≠ jo

)
are opposite, using themaximum input value

and the minimum output value [40]. From this, the model for
solving the highest value of efficiency of DMUjo is

max 𝜃U
jo
=

s

∑
r=1

uryUrjo

s.t.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

m

∑
i=1

vixLijo = 1
m

∑
i=1

vixLijo −
s

∑
r=1

uryUrjo ≥ 0
m

∑
i=1

vixUij −
s

∑
r=1

uryLrj ≥ 0

j = 1, 2,⋯ n, j ≠ 0, vi, ur ≥ 𝜀, ∀i, r

(6)

Secondly, we consider the worst situation for DMUjo . Using
the maximum input value xUijo and the minimum output value
yLrjo as the input–output value of DMUjo . The other DMUj(
j = 1, 2,⋯ n, j ≠ jo

)
are opposite, using the minimum input value

and the maximum output value [41]. From this, the model for solv-
ing the lowest value of efficiency of DMUjo is

max 𝜃L
jo
=

s

∑
r=1

uryLrjo

s.t.

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

m

∑
i=1

vixUijo = 1
m

∑
i=1

vixUijo −
s

∑
r=1

uryLrjo ≥ 0
m

∑
i=1

vixLij −
s

∑
r=1

uryUrj ≥ 0

j = 1, 2,⋯ n, j ≠ 0, vi, ur ≥ 𝜀, ∀i, r

(7)

whereDMUjo is under evaluation, vi and ur are the weights assigned
to the outputs and inputs. Assumed that 𝜃Ujo and 𝜃Ljo is the optimal
value of model (6) and (7) by DMUjo respectively. Thus, 𝜃

U
jo stands

for the best possible relative efficiency, while 𝜃Ljo stands for the worst
possible relative efficiency. The interval [𝜃Ljo , 𝜃

U
jo ] is the interval effi-

ciency value of DMUjo .

The interval DEAmethod can solve the interval input–output data.
However, it cannot eliminate the influence of environmental fac-
tors. Therefore, it seems necessary and convenient to develop a new
method to consider the influence of environmental factors.

3. THE PROPOSED MODEL

Motivated by the limitations pointed out in Introduction previ-
ously, the three-stage interval DEA model is proposed in this
section, which can not only eliminate the influence of environmen-
tal factors, but also deal with interval input–output data. Then, we
combine cluster analysis and three-stage interval DEA model to
identify benchmarks for poorly performing DMUs. The proposed
three-stage interval DEA model and identification of benchmarks
by cluster analysis are introduced as below.

3.1. Three-Stage Interval DEA Model

The first stage: Let the input data xij and output data yrj of DMUj

be interval as defined in Section 2.2, where xij ∈ [xLij, xUij ] and yrj ∈
[yLrj, yUrj]. According to Eqs. (6) and (7), the interval efficiency value
[𝜃Ljo , 𝜃

U
jo ] is obtained.

According to the previous research results [7,26], all DMUs could
be classified in the following three categories:

E+ = {DMUj|𝜃Lj = 1, j ∈ (1, 2,⋯ , n)}

E = {DMUj|𝜃Lj < 1, 𝜃Uj = 1, j ∈ (1, 2,⋯ , n)}

E− = {DMUj|𝜃Uj < 1, j ∈ (1, 2,⋯ , n)}

(8)

DMUj ∈ E+ means that the jth DMU is fully efficient in any case;
DMUj ∈ E means that the jth DMU is efficient in the best situa-
tion, but it is inefficient in the worst situation, which indicates that
this is partially efficient. DMUj ∈ E− means that the jth DMU is
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completely inefficient in any case. The interval efficiencies calcu-
lated in the first stage and the third stage classify theDMUs in three
categories according to the above classification rules.

While calculating the interval efficiency value, xij generates one
input slack variable according to Eqs. (6) and (7) for the best situ-
ation and the worst situation respectively. Further analysis of these
slack variables will be carried out in the second stage.

The second stage: Different from the past, the input–output vari-
ables discussed in this section are interval data. Corresponding to
the best efficiency situation, the input indicator of DMU generates
an input slack variable, which is assumed to be SU

ti
. Corresponding

to the worst efficiency situation, it is assumed to be SL
ti
. Therefore,

we firstly consider placing all DMUs at the best efficiency situation
as follows:

SU
ti
= f tU

(
Zi; ̂𝛽U

t

)
+ vU

ti
+ 𝜇U

ti
;

i = 1, 2,⋯ ,m; t = 1, 2,⋯ , n
(9)

Secondly, we consider placing all DMUs at the worst efficiency
situation as follows:

SL
ti
= f tL

(
Z

i
; ̂𝛽L

t

)
+ vL

ti
+ 𝜇L

ti
;

i = 1, 2,⋯ ,m; t = 1, 2,⋯ , n
(10)

According to the adjustment Eq. (4) and the above two SFA regres-
sion analysis Eqs. (9) and (10), corresponding to each DMUof the
best efficiency situation, its adjustment formula is expressed as

XAU
ti = XU

ti
+ [max(f tU(Zi; ̂𝛽U

t
))

−f(Zi; ̂𝛽U
t
)] + [max(𝜈U

ti
) − 𝜈U

ti
];

i = 1, 2,⋯m; t = 1, 2⋯ n

(11)

whereXAU
ti is the new adjusted input value under the best efficiency,

XU
ti is the original input value under the best efficiency. Similarly,

corresponding to each DMU of the worst efficiency situation, its
adjustment formula is expressed as

XAL
ti = XL

ti
+ [max(f tL (Zi; ̂𝛽L

t
))

−f(Zi; ̂𝛽L
t
)] + [max(𝜈L

ti
) − 𝜈L

ti
];

i = 1, 2,⋯m; t = 1, 2⋯ n

(12)

Therefore, there are two adjustment values corresponding to an
input variable. After adjustment, the maximum and minimum val-
ues of the new input can be obtained, and this is the new interval
input data assumed x∗ij, which is following as

x∗ij ∈ [x L∗
ij , xU∗ij ] ;

xL∗ij = min
(
XAU
ti ,XAL

ti
)
;

xU∗ij = max
(
XAU
ti ,XAL

ti
)

(13)

The third stage: This stage is also a repetition of the first stage,
the adjusted interval input data and the original output data is
used to calculate the interval efficiency value of each DMU by Eqs.
(6) and (7). The interval efficiency of each DMU is the adjusted
efficiency eliminating the influence of environmental factor and
random error. At this time, the interval efficiency value is more fair
and effective compared with the initial interval efficiency value.

3.2. Identification of Benchmarks by Cluster
Analysis

In traditional DEA, the improvement target of an ineffective unit is
the linear combination of effective units in its reference set. These
ineffective units may be naturally different from the units in their
reference set. Some researchers have suggested using cluster analy-
sis, principal components, and multidimensional scaling to classify
DMUsmore accurately into similar groups or clusters [42].

From the perspective of how environmental factors affect the inter-
val efficiency ofDMUs, computing the degree of interval efficiency
change before and after eliminating external environmental factors.
We can obtain the similarity of those DMUs.

Definition 1. The degree of efficiency change vector for DMUj is
the ratio of the jth interval efficiency after eliminating the influence
of external environmental factors to the original interval efficiency,
which can be expressed as(

wL
j ,wU

j

)
, j ∈ {1, 2,⋯ n}

wL
j =

𝜃L∗j
𝜃Lj

wU
j =

𝜃U∗j

𝜃Uj

(14)

where wL
j and wU

j are the degree of change of the minimum and
maximum interval efficiency values; 𝜃L∗j , 𝜃U∗j are theminimum and
maximum values of interval efficiency after eliminating the influ-
ence of external environmental factors; 𝜃Lj , 𝜃Uj are theminimumand
maximum efficiency of the original interval.

Property 1. The degree of efficiency change is strictly positive.

Proof. By Definition 1,

∵0 < 𝜃L∗j , 𝜃Lj , 𝜃U∗j , 𝜃Uj ≤ 1

∴wL
j =

𝜃L∗j
𝜃Lj

> 0,

wU
j =

𝜃U∗j

𝜃Uj
> 0

Property 2. When 0 < wL
j
,wU

j < 1, it indicates that the envi-
ronmental factors have an inhibitory effect on the efficiency value;
when wL

j = 1, it indicates that the environmental factors have no
effect on theminimumefficiency, whenwU

j = 1, it indicates that the
environmental factors have no effect on the maximum efficiency;
when wL

j
,wU

j > 1, indicating that environmental factors play a role
in promoting the efficiency value.

Proof.

∵wL
j =

𝜃L∗
j
𝜃L
j
,wU

j =
𝜃U∗
j
𝜃U
j

∴ when 0 < wL
j
,wU

j < 1, 𝜃L∗j < 𝜃Lj , 𝜃U∗j < 𝜃Uj

∴ whenwL
j
= 1, 𝜃L∗j = 𝜃Lj ;
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whenwU
j = 1, 𝜃U∗j = 𝜃Uj

∴ whenwL
j
,wU

j > 1, 𝜃L∗j > 𝜃Lj , 𝜃U∗j > 𝜃Uj

Property 3. When0 < wL
j
,wU

j < 1, the smaller the wL
j
,wU

j value,
the greater the impact of environmental factor; when wL

j
,wU

j > 1,
the larger the wL

j
,wU

j value, the greater the impact environmental
factor.

Proof. ∵wL
j =

𝜃L∗
j
𝜃L
j
, wU

j =
𝜃U∗
j
𝜃U
j
, ∴𝜃L∗j = wL

j × 𝜃Lj , 𝜃U∗j = wU
j × 𝜃Uj

∴when 0 < wL
j
,wU

j < 1, 𝜃Lj − 𝜃L∗j = 𝜃Lj − wL
j × 𝜃Lj =

(
1 − wL

j

)
𝜃Lj ,

𝜃Uj − 𝜃U∗j = 𝜃Uj − wU
j × 𝜃Uj =

(
1 − wU

j

)
𝜃Uj ,

∴ the smaller the wL
j
,wU

j value，the greater
(
1 − wL

j

)
,

(
1 − wU

j

)
,

∴ the impact of environmental factor is greater;

∴whenwL
j
,wU

j > 1, 𝜃L∗j − 𝜃Lj = wL
j × 𝜃Lj − 𝜃Lj =

(
wL
j − 1

)
𝜃Lj ,

𝜃U∗j − 𝜃Uj = wU
j × 𝜃Uj − 𝜃Uj =

(
wU
j − 1

)
𝜃Uj ,

∴ the larger the wL
j
,wU

j value, the greater
(
wL
j − 1

)
,

(
wU
j − 1

)
,

∴ the impact of environmental factor is greater.

According to Definition 1, by calculating the degree of interval effi-
ciency change vector, it can be found that DMUs have a similar
degree of efficiency change before and after the external environ-
mental factors’ influence. If the changes in efficiency are similarly
affected by the environment betweenDMUs, it means that the rela-
tionship between the input and output of DMUs and the external
environmental factors has a natural similarity. Thus, using these
degrees of interval efficiency change vector as the elements can clus-
ter with inherently similar DMUs. And DMU with the highest col-
umnmean in a given cluster can be used as the primary benchmark
for improvement by other DMUs in that cluster. The specific steps
to identify the benchmark through cluster analysis are following as

Step 1: Calculate the degree of efficiency change vectors according
to Eq. (14).

Step 2: According to the calculated vectors by Step 1 as elements,
the system clustering is performed by the class average method.

Step 3: Find the best efficient DMU in each category obtained by
clustering as an improvement benchmark for other DMUs.

4. NUMERICAL EXAMPLE

This section aims at showing the three-stage interval DEA model
and the improvement benchmarks its superiority, validity, and fea-
sibility. The paper selects all nineteen set of data from reference
[34,43], as shown in Table 1. There are four input indicators, two
output indicators, and three environmental variable indicators to
evaluate the utilization efficiency of power grid equipment [44].

The data we refer to here is exact data. For this set of data, we let
input and output data of eachDMU increase and decrease with ran-
dom size of 0% to 10% its value respectively, forming interval input
and output data, as shown in Table 2.

4.1. Analysis of the Results for Three-Stage
Interval DEA

The first stage uses interval input–output data to evaluate the initial
interval efficiency of all DMUs with the three-stage interval DEA
model described in the Eqs. (6) and (7). The results obtained are
shown in Table 3, which contain several environmental factors and
random errors.

From Table 3, some conclusions can be known. There are two
DMUs belong to category E+, fourteen DMUs belong to cate-
gory E, and three DMUs belong to category E−. We can see that
before excluding environmental factors and random factors, only
DMU2 and DMU15 belong to category E+, which means DMU2
andDMU15 are completely efficient.MeanwhileDMU5,DMU8 and
DMU9 belong to category E− are completely inefficient. The others
are all partial efficient.

At this stage, while calculating the maximum and minimum effi-
ciency of each DMU, it also obtains the slack variable value of each
input. Further results analysis of these slack variables will be carried
out in the second stage.

The dependent variable of the second stage SFA regression analysis
is the slack variable corresponding to the input indicator in the first-
stage DEA interval efficiency analysis. According to Eqs. (9) and
(10), the slack variables are decomposed into a function with three
variables of environmental impact factor, random error factor and
management inefficiency factor. Each input value of eachDMU has
its own corresponding two slack variables SU

ti
and SL

ti
. We have four

input indicators for each DMU, so there are eight regression results.
Since each DMU has to be done once, there are nineteen DMUs,
here we only show the regression results of DMU1, as shown in
Table 4.

It can be seen from Table 4 that the three environment variables
have different effects on the slack variables of the four input indica-
tors. Then adjust the original input value according to Eqs. (11–13),
to obtain DMU‵

1s new input interval data. In the same way, repeat
the above steps to adjust the input of the remaining eighteenDMUs
to obtain complete new input interval data. After the second stage
of SFA regression analysis, allDMUs have been adjusted to the same
external environment and luck level.

In third stage, using the adjusted interval input data and initial out-
put data, the interval DEA efficiencymethod is used tomeasure the
interval efficiency again. The results are shown in Table 5.

After eliminating environmental factors and random errors, from
the perspective of efficiency range, we can see that DMU2, DMU3,
and DMU13 belong to category E+, which means they are com-
plete efficient.WhereDMU7,DMU11,DMU15,DMU16, andDMU17
belong to category E are partial efficient. The others are all
inefficient.

We draw the interval efficiency values of the first stage and the third
stage in Figure 1. It shows the comparison between two sets interval
efficiency obtained by three-stage interval DEAmodel and directly
calculated by the interval DEA method respectively.

From the Figure 1, we can clearly see the overlapping and changing
parts of the interval efficiency between the first and third stages. The
elimination of environment variables and random errors, DMU2 is
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Table 3 First-stage interval efficiency and category.

DMU 1 2 3 4 5 6 7 8 9 10

hL0 0.709 1.000 0.942 0.652 0.576 0.637 0.850 0.624 0.628 0.738

hU0 1.000 1.000 1.000 1.000 0.894 1.000 1.000 0.814 0.933 1.000
Category E E+ E E E− E E E- E- E

DMU 11 12 13 14 15 16 17 18 19

hL0 0.932 0.796 0.829 0.793 1.000 0.807 0.844 0.798 0.785

hU0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Category E E E E E+ E E E E

DMU, decision-making unit.

Table 4 SFA regression results.

Indicator SU11 SU12 SU13 SU14 Indicator SL11 SL12 SL13 SL14
̂𝛽U
0 −212.86 −78.98 0.00 0.00 ̂𝛽L

0 −157.38 −137.50 0.00 0.00
̂𝛽U
1 0.00 0.03 0.00 0.00 ̂𝛽L

1 0.00 0.00 0.00 0.00
̂𝛽U
2 0.15 −0.27 0.00 0.00 ̂𝛽L

2 0.20 0.16 0.00 0.00
̂𝛽U
3 0.01 0.02 0.00 0.00 ̂𝛽L

3 0.00 0.00 0.00 0.00

𝜍2 88526.74 6184.54 0.00 0.00 𝜍2 50818.50 27708.79 0.00 0.00
𝛾 1.00 0.26 0.10 0.10 𝛾 1.00 1.00 0.10 0.10

SFA, Stochastic Frontier Analysis.

Table 5 Third-stage interval efficiency and category.

DMU 1 2 3 4 5 6 7 8 9 10

hL0 0.580 1.000 1.000 0.576 0.700 0.753 0.941 0.604 0.520 0.794

hU0 0.828 1.000 1.000 0.768 0.736 0.832 1.000 0.680 0.624 0.929
Category E− E+ E+ E− E− E− E E− E− E−
Average 0.704 1.000 1.000 0.672 0.718 0.793 0.971 0.642 0.572 0.862
DMU 11 12 13 14 15 16 17 18 19

hL0 0.908 0.491 1.000 0.645 0.633 0.887 0.821 0.934 0.783

hU0 1.000 0.625 1.000 0.777 1.000 1.000 1.000 0.947 0.969
Category E E− E+ E− E E E E− E−
Average 0.954 0.558 1.000 0.711 0.817 0.944 0.911 0.941 0.876

DMU, decision-making unit.

still complete efficient, indicating that it is not affected by environ-
mental factors and luck. DMU15 has changed from complete effi-
cient to partial efficient; DMU1, DMU4, DMU6, DMU10, DMU12,
DMU14, DMU18, and DMU19 has changed from partial efficient
to complete inefficient, indicating that its efficiency before adjust-
ment is overestimated, the reason is that it is greatly affected by
favorable environmental factors and luck. The efficiency value of
the other DMUs has increased, indicating that the efficiency value
is lower before adjustment, the reason is that it is affected by differ-
ent degrees of adverse environmental factors and luck.

At the same time, we rank the interval efficiency values of the
third stage by taking the average of the upper and lower bounds of
the interval as the criterion show in Table 5. The efficiency value
by the traditional three-stage DEA model could be obtained from
reference [34,43]. Comparing the ranking result with three-stage
interval DEA model and the traditional three-stage DEA model in
Table 6. By calculating the correlation coefficient, the fit of these two
sets of rank results reaches 0.875. It shows that the overall trends of
the two rank results are basically consistent.

4.2. Analysis of the Results for
Identification of Benchmarks

Step 1:According to Eq. (14), the degree of efficiency change vector(
wL
j ,wU

j

)
can be obtained, as shown in Table 7.

Step 2: According to the calculated vectors by Step 1 as elements,
the system clustering is carried out according to the class average
method, and the hierarchical diagram of the clustering results for
nineteen DMUs is shown in Figure 2.

Step 3: It can be seen from Figure 2 that a total of five clusters are
identified in this analysis. The best performingDMU in each cluster
is used by the otherDMUs in these clusters as the main benchmark
for improvement. For example, DMU2, DMU3, DMU13, DMU7,
DMU10,DMU11,DMU16,DMU17,DMU18, andDMU19 in the same
cluster, its efficiency value changes similarly to the environmental
impact. Among them,DMU2,DMU3, andDMU13 belong to a com-
plete efficient set, so it is considered to be the best performingDMU
of its cluster. It can be regarded as an improvement benchmark by
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Figure 1 Interval efficiency of the first and third stages.

Table 6 Rank results of nineteen DMUs with different model.

DMU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Traditional three-stage DEA model ranking 16 1 1 15 7 8 1 14 18 9 1 19 5 17 13 11 12 6 10
Three-stage interval DEA model ranking 15 1 1 16 13 12 4 17 18 10 5 19 1 14 11 6 8 7 9

DEA, data envelopment analysis; DMU, decision-making unit.

Table 7 The degree of efficiency change.

DMU 1 2 3 4 5 6 7 8 9 10

WL
j 0.818 1.000 1.062 0.883 1.216 1.183 1.108 0.967 0.828 1.076

WU
j 0.828 1.000 1.000 0.768 0.823 0.832 1.000 0.835 0.669 0.929

DMU 11 12 13 14 15 16 17 18 19

WL
j 0.974 0.616 1.206 0.813 0.633 1.099 0.973 1.170 0.998

WU
j 1.000 0625 1.000 0.777 1.000 1.000 1.000 0.947 0.965

DMU, decision-making unit.

other DMUs of its cluster, and other DMUs can be adjusted and
improved according to its external environment to improve self-
efficiency value.

The traditional improvement benchmark directly means that all
noncompletely effectiveDMUsare improved according to the set of
completely effective DMUs. Compared with this, the method pro-
posed in this paper clusters DMUs with similar relationships into
one category and finds improvement benchmark in each category,
which is more scientific.

4.3. Discussions

From the numerical examples, the main novelty and advantages of
our proposed method are summarized as follows:

1. The proposed three-stage interval DEAmodel provides a novel
way to deal with the interval input and output data. In the pro-
posed method, the reasonable and effective way of coping with

the effects of excluding external environmental factors and ran-
dom errors is proposed. This is the distinct superiority and
difference between the proposed method and other DEA
models.

2. The improved benchmark is considered in the proposed
method, its influence, and importance has been illustrated
through the provided numerical examples. It can clusterDMUs
which are naturally similar to provide improvement targets for
poorly performing DMUs.

Like each coin has two sides, except for the aforementioned advan-
tages, the proposed method has limitations in current version, i.e.,
it does not consider the preferences of decision makers during the
decision process. Actually, the preferences are quite common in
our daily life, which are practical and inevitable issues in the real-
world situation, particularly under risk and uncertain environment.
Although it is a limitation in the proposed method, it is one of the
promising and solid future research directions, which canmake the
decision further close to the real-world situation.
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Figure 2 Hierarchical graph of clustering results.

5. CONCLUSIONS AND FUTURE WORKS

The traditional three-stage DEA model can evaluate the relative
efficiency of a group of DMUs with multiple inputs and outputs. It
can also consider the impact of external environmental factors and
random errors on efficiency measurement. However, this method
cannot perform efficiency measurement where the input and out-
put data are interval data. At the same time, the interval DEAmodel
can deal with the situation where the input and output data are
interval data, but the method has not yet considered the effects
of excluding external environmental factors and random errors.
Regarding aforementioned limitations, we have provided a three-
stage intervalDEAmodel based on three-stageDEAmodel together
with interval DEA model. It has been compared from different
perspectives with the traditional three-stage DEA model and has
shown a better performance on managing input–output values as
interval data and more reliable decision results comparing with the
traditional interval DEAmodel that do not exclude the influence of
environmental factors on efficiency measurement.

In addition, from the perspective of environmental factors, this
article combines the three-stage interval DEA model with cluster-
ing techniques to cluster naturally similar DMUs into one cate-
gory, and provides an improved benchmarks for poorly performing
DMUs. Compared with the previously improved reference unit, the
improved benchmark proposed by this method considers the influ-
ence of environmental factors, and provides a more easily achieved
goal for DMUs with poor performance. Finally, examples illustrate
the advantages, potentials, and applications of the model proposed
in this paper.

Based on the analysis on this study, it is found that the proposed
method not only improves the current studies, but also implies
several promising and solid future research directions, i.e., (1) at
present, only the case is considered where the input and output data
is interval data. Where the environmental data is interval data, the
case is worthy of our in-depth study. (2) This study considers the
input–output indicators of DMUs as the type of interval data and
explores the three-stage interval DEA problem. But the research
on different data types needs to be extended to ordinal data and

even bounded ratio data. (3) Making fewer changes to maximize
the efficiency improvement is also our future research direction. It
is a promising future research direction, which can enable the deci-
sion models and methodologies close to the real-world situation
and easy to be accepted by decision maker and experts.
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