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1. INTRODUCTION

The Weibull distribution is a very popular distribution, which was initially developed by the Swedish physicist Waloddi Weibull in 1937
for modelling breaking strength of materials data. The Weibull distribution is widely used statistical model for studying the life-testing
problems. In some cases, the Weibull distribution is proved to be a good alternative to the log-normal, gamma and generalized exponen-
tial distributions. The Weibull distribution is well- appreciated model in the statistics literature for explaining bathtub-shaped curve. The
Weibull distribution having exponential and Rayleigh as special sub-models for modelling lifetime data and for modelling phenomenon with
monotone failure rates. The statistics literature in distribution theory has growing interest for studying life-testing problems. In the last few
years many new families of lifetime distributions have been proposed based on the modification of the Weibull distribution for explaining
real-world scenarios. The exponentiated Weibull (EW) distribution was introduced by Mudholkar and Srivastava [1], the additive Weibull
distribution presented by Xie and Lai [2], the extended Weibull distribution studied by Xie et al. [3], the modified Weibull (MW) distri-
bution proposed by Lai et al. [4], Kumaraswamy Weibull distribution proposed by Cordeiro et al. [5]. The five parameters Kumaraswamy
MW distribution proposed by Cordeiro et al. [6]. Aryal and Tsokos [7] offered the transmuted Weibull distribution by using the quadratic
rank transmutation map method proposed by Shaw and Buckley [8]. Khan and King [9] introduced and studied some mathematical prop-
erties of the transmuted MW distribution. Khan et al. [10] studied the flexibility of the transmuted Inverse Weibull distribution with various
structural properties through an application to survival data. More recently Khan et al. [11,12] studied the transmuted generalized expo-
nential and transmuted Weibull distributions with covariates regressing modelling to analyze survival data. Merovci [13,14] proposed the
transmuted Rayleigh distribution and transmuted generalized Rayleigh distribution for modelling lifetime data. Yuzhu et al. [15] studied
the transmuted linear exponential distribution with an application to reliability data. The density function of Weibull distribution with two
parameters given by

g(7,0) = 0n°x°lexp{= 0%}, (x> 0) (1)
The cumulative distribution function corresponding to (1) is given by
. 6
G(xn,0)=1—exp {— (nx) } (2)

Here > 0 is the scale parameter and 6 > 0 is the shape parameter of the Weibull distribution. In this research, we investigate the
potential usefulness of the transmuted Kumaraswamy Weibull distribution, which contains several well-known distributions. As the special
sub-models, such as transmuted Weibull distribution, transmuted Rayleigh distribution, Kumaraswamy Weibull distribution, transmuted
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Kumaraswamy Rayleigh distribution, among several others. The proposed family of distributions can be used effectively for modelling sur-
vival data, since it accommodates monotonically increasing, decreasing and constant bathtub-shaped hazard rate functions. The transmuted
Kumaraswamy Weibull distribution is more flexible for modelling bathtub-shaped hazard function than the Kumaraswamy Weibull distri-
bution. More recently, Khan et al. [16] introduced the transmuted Kumaraswamy G family of lifetime distribution with two applications
of Aircraft windshield data sets. For an arbitrary baseline cdf G (x, & ) , we define the TKw-G distribution by using the pdf f (x, 13 ) and cdf
F(x,£) are given by

flaapid§) =as(x8) 6 (u ) (1-6()") fi-av2(1-6(e”) ], 0

and
F(xaB,4,8) = [1 ~(1-¢ (x,g)“)ﬁ] [1 +2(1-6 (x,g)“)ﬁ], @)

respectively, If X is a random variable with pdf (3), then we write X ~ TKw-G (x; a,B,1,& ), where a and 8 are the shape parameters, A is
the transmuting parameter, £ is the parameters vector of the baseline model and g (x, 3 ) is the derivative of G (x, 13 ) Fora = 3 = 1 the
proposed family of distribution reduces to the transmuted family distributions introduced by Bourguignon et al. [17]. By substituting A = 0
in Equation (3), we obtain the Kw-G family of distribution proposed by Cordeiro and de Castro [18].

The rest of the paper is outlined as follows: In Section 2, we define the TKwW distribution and discussed some special cases of this model
and quantiles. In Section 3, we formulate the expression of moments, moment-generating function and incomplete moments. Maximum
likelihood estimation of the model parameters is discussed in Section 4. In Section 5, we discuss the transmuted log-Kumaraswamy Weibull
distribution and derive its moments. Section 6 illustrated two applications of the TKw-Weibull family of distributions, followed by conclud-
ing remarks.

2. TRANSMUTED KUMARASWAMY WEIBULL DISTRIBUTION

A random variable X has the TKw-Weibull distribution with parameters «, 8,%,8 > 0 and |4| < 1, x > 0. The density function of the TKw
Weibull distribution (see Khan et al. [16]), given by

Fricww (5, 8,7,0,2) = @O exp = 90} {1 — exp - 0
[1-{1- e f- o]
fi-2e22[1- {1 - ewf- o} T}, (5)

The cdf corresponding to (5) is given by

Hnmﬁmﬁjo=P—[L{l—mﬂ—@m%frul+ﬂ}—p—mﬂ—m@ﬂffl (6)

Here a, 3,0 control the shape of the distribution, 7 controls the scale of the distribution and A is the transmuting parameter, which
provides the extra flexibility in the new extended model. If X is a random variable having the TKw Weibull distribution, we write
X ~ TKwW (x; a, 8,1, 6, A). The reliability function (RF), hazard function (HF) and cumulative hazard function (CHF) corresponding to
(5) are given by

Reiaf..6.0 = 1= [1=[1= {1 e -0 |1+ 4[1 - f1 - ewl- 0 T %
and

“ﬁenexe‘lexp{—l(nx)e}{l —expf— (nx)e}}a—l
X [1 —{1—exp{- (Ux)e}}a]ﬁ— {1 —1+21 [1 — {1 —expf{- (Ux)e}}a]ﬁ}

1— [1 — [1 — {1 - exp{— (nx)e}}a]ﬁ] [1 +4 [1 - {1 - exp{— (Ux)e}}a]ﬁ] ’

h(xa,B,1,0,4) = (8)
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The gth quantile x4 of the TKw Weibull random variable is given by

L

6
1
[ B
X = % —log]1-[1- <1 - DV _4@) 0<g<1 ©)

The TKw Weibull model contains as special cases seventeen lifetime distributions are displayed in Figure 1. The TKwR distribution is the
special case of the TKwW distribution when shape parameter 8 = 2. The Kw Weibull distribution proposed by Cordeiro et al. [5], is the
special case of the TKwW distribution, when A = 0.If6 = 2 in addition to A = 0, it reduces to the Kw Rayleigh distribution. The transmuted
exponentiated Weibull (TEW) model is also the special case of the TKwW distribution when 8 = 1. If & = 1 in addition to 8 = 1 it reduces
to the transmuted Weibull distribution proposed by Aryal and Tsokos [7].

Fora = § = 1and @ = 2, the TKwW distribution reduces to the transmuted Rayleigh distribution proposed by Merovci [13]. Figure 2 shows
some possible shapes of probability density functions of the TKwW distribution for some selected values of parameters. The visualizations in
Figure 3 demonstrates some promising shapes of the hazard functions for the TKwW distribution with some selected values of parameters.
The hazard function of the TKw Weibull distribution has the monotone decreasing and increasing, U shapes and ] shapes bathtub hazard
rate functions. The quantile function of the Tkw Weibull distribution is useful for obtaining the percentile life. Table 1 shows the quartile
values of the Tkw Weibull distribution for some selected values of parameters. By substituting g = 0.5 in Equation (9) we obtain the median
of the Tkw Weibull distribution. Equation (9) is also useful for generating random numbers for the Tkw Weibull distribution. The Tkw
Weibull distribution contains as special sub-models some new lifetime distributions.

* Transmuted Kumaraswamy Rayleigh distribution
fTKWR (x9 a, ﬁ’ n, A) = zaﬁnzxexp {_ (nx)z} {1 —exp {_ (nx)z}}a_l
[1 —f{1—exp{— (nx)z}}a]ﬁ_l
mah
{1 — A+ 22[1 = {1 — exp{— )’} }

The four-parameter transmuted Kumaraswamy Rayleigh (TKw-R) distribution is the special case of the TKw Weibull distribution by
substituting & = 2 in Equation (5). If A = 0 it corresponds to the Kw Rayleigh distribution. If « = 1 and 8 = 1, it reduces to the

TKwWED G

i TKwWD

=

RD

Figure1 Relationships of the TKw Weibull sub-models.
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Figure 2 Plots of the TKw Weibull Probability density function (PDF) for some parameter values.
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Figure 3 Plots of the TKw Weibull Hazard function (HF) for some parameter values.
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Table 1 The Quartile values of TKwW distribution.

Estimates
a f n 6 A Q, Q, Q; L.Q.R QD C.Q.D
1 15 1 1 -1 0.2006 0.3555 0.5819 0.3812 0.1906 0.4871
-0.5 0.1319 0.2786 0.5011 0.3691 0.1845 0.5831
0.5 0.0564 0.1393 0.2909 0.2345 0.1172 0.6750
1 0.0416 0.1003 0.2006 0.1590 0.0795 0.6562
1 2 12 -1 0.3879 0.5163 0.6606 0.2727 0.1363 0.2601
-0.5 0.3145 0.4571 0.6130 0.2984 0.1492 0.3217
0.5 0.2057 0.3232 0.4671 0.2614 0.1307 0.3884
1 0.1767 0.2743 0.3879 0.2112 0.1056 0.3741
2 2 1 3 -1 0.6968 0.7890 0.8840 0.1872 0.0935 0.1184
-0.5 0.6388 0.7476 0.8534 0.2145 0.1072 0.1437
0.5 0.5404 0.6459 0.7548 0.2143 0.1071 0.1654
1 0.5101 0.6046 0.6968 0.1866 0.0933 0.1546
2 3 1 3 -1 0.6406 0.7219 0.8047 0.1641 0.0820 0.1135
-0.5 0.5890 0.6856 0.7781 0.1891 0.0945 0.1383
0.5 0.5005 0.5954 0.6918 0.1913 0.0956 0.1604
1 0.4730 0.5584 0.6406 0.1675 0.0837 0.1504

transmuted Rayleigh distribution proposed by Merovci [13]. If &« = 8 = 1 in addition to 4 = 0, the TKw-R distribution simplifies to
the Rayleigh distribution introduced by Lord Rayleigh [19].

* Transmuted Kumaraswamy exponential distribution
Sricur (6.0, 8.0, ) = afin exp {—nx} {1 — exp {—nx}}*"
[1 = {1 = exp ="
{1 —A+2A[1-{1 - exp{—nx}}“]ﬁ},

The four-parameter transmuted Kumaraswamy exponential (TKw-E) distribution is the special case of the TKw Weibull distribution
by substituting 6 = 1 in Equation (5). If A = 0 it corresponds to the Kw exponential distribution. If 8 = 1, it reduces to the transmuted
generalized exponential distribution proposed by Khan et al. [11]. If &« = 1 and § = 1, it reduces to the transmuted exponential
distribution proposed by Owoloko et al. [20].

* TEW distribution
Frew (x;,7,8,2) = aBnx®exp{~ (0 °} {1 — exp{~ ®}) "
{1 —A+21 [1 - {1 —exp {— (nx)e}}a]},

The four-parameter TEW distribution is the special case of the TKw Weibull distribution by substituting 8 = 1 in Equation (5).If A = 0
it corresponds to the Kw Weibull distribution proposed by Cordeiro et al. [5]. If 1 = 0 in addition to § = 1, it reduces to EW distribution
proposed by Mudholkar and Srivastava [1]. If & = 1, it reduces to the transmuted Weibull distribution proposed by Aryal and Tsokos [7].

3. STATISTICAL PROPERTIES

This section presents the moments, moment-generating function and incomplete moments of the transmuted TKwW distribution.

Theorem 1. If X has the TKwW distribution with || < 1, then the k" moment of X say f1 is given as follows:

T s UL
f = ‘j;ﬁ <6+1) (1—/1)2 l’l +21 3 —= 1

wI= 0(J+1)6 = O(J+1)9
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where
gﬁ -1 at+a—1 i+
Ug,i,,z' = . J (-1 ,g=1,2.

4

Proof: By definition

fe==4 J ) afOndxF+o-1 exp{= p0°}{1 = exp{~ (nx)e}}a_l dx
0 [1 —{1 —exp{— (vx)e}}a]l—ﬁ
o J ® oyt v 21 1L~ el G
! [1 - {1 —exp {_ (nx)e}}“]l-Zﬁ

The above integral reduces to

fi = (1 —2)apén® Z <B ; 1> ( ot +; B 1> (=1 J xk+s_lexp {— (4+1) (nx)e}dx
0

U7 =0

+24a0n° ) < 26 - 1> ( at +;." - 1) (-1)+e ro A exp = (5 + 1) (g dx,
0

R v
154 =0

Hence, the k" ordinary moment of the Tkw Weibull distribution can be obtained as

) . N+
f=1-2) Y (ﬁ;1><m+j‘_1>z—f—( D r<§+1>

iy7=0 (;+1ne*!
- . it
2y <2/3i—1)<on+c_%—l>$ D7 : r<g+1>, (10)
i,4=0 ’ 7 (;+1ne*!

The values of the moments can be calculated numerically by the Monte Carlo method with respect to the integral using R or SAS
languages. Table 2 shows the moments and Table 3 displays the mean, variance, coefficient of variation, coefficient of skewness and coeffi-
cient of kurtosis measures of the TKwW distribution.

Table 2 Moments of the TKw Weibull distribution with some parameter values.

Estimates

a B n 0 A I 28 As Ay
1 1.5 1 1.5 -1 0.9438 1.1116 1.5555 2.5073
-0.50 0.8163 0.9025 1.2222 1.9340
0.50 0.5614 0.4842 0.5555 0.7875
1 0.4339 0.2751 0.2222 0.2143
1 2 1.5 2.5 -1 0.5568 0.3389 0.2223 0.1555
—-0.50 0.5025 0.2883 0.1822 0.1243
0.50 0.3940 0.1871 0.1019 0.0619
1 0.3397 0.1365 0.0618 0.0307
2 3 1.5 3.5 -1 0.6400 0.4182 0.2787 0.1892
-0.50 0.6074 0.3810 0.2457 0.1624
0.50 0.5422 0.3065 0.1797 0.1089
1 0.5096 0.2693 0.1468 0.0822
2 3.6 2 5 -1 0.4735 0.2265 0.1094 0.0533
—-0.50 0.4561 0.2114 0.0994 0.0473
0.50 0.4213 0.1812 0.0794 0.0354

1 0.4039 0.1661 0.0694 0.0294
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Table 3 Moments based measures of the TKw Weibull distribution.

Estimates
a fp n 0 i Mean Var CcvV (&) CK
1 1.5 1 1.5 -1 0.9438 0.2208 0.4979 0.8624 4.0111
—-0.50 0.8163 0.2361 0.5953 0.8709 3.9356
0.50 0.5614 0.1690 0.7323 1.3509 5.5197
1 0.4339 0.0868 0.6791 1.0741 4.3863
1 2 1.5 25 -1 0.5568 0.0288 0.3052 0.2948 2.9411
-0.50 0.5025 0.0357 0.3765 0.2003 2.7982
0.50 0.3940 0.0318 0.4531 0.5404 3.2294
1 0.3397 0.0211 0.4276 0.3565 2.8892
2 3 1.5 35 -1 0.6400 0.0086 0.1449 0.0551 2.4316
-0.50 0.6074 0.0121 0.1808 -0.2839 3.3906
0.50 0.5422 0.0125 0.2064 —-0.0428 3.3383
1 0.5096 0.0096 0.1923 -0.2417 2.7453
2 36 2 5 -1 0.4735 0.0023 0.1012 -0.2154 -2.4033
—-0.50 0.4561 0.0034 0.1273 -0.4911 —-0.8445
0.50 0.4213 0.0037 0.1445 -0.2769 3.9478
1 0.4039 0.0029 0.1348 —-0.5126 2.1183

Theorem 2. If X has the TKwW distribution with |A| < 1, then the moment generating function of X, Mx (t) is given as follows:

My()=(1=-2Y > <5: 1> <°‘i +;‘_ 1) “_'?#1¢0[(1’f_1);t/n]

w0720 m! (l"‘l)?“
o _ . _ _1yits 1
+2AZ 2 (25 1><L+Z 1> %ﬁ—( 3 T 1%[(1’? );t/n].
m=0 1,7 =0 (y+De

Proof: By definition

MX(t)_(l_A)J P ) Ui | W d |
[1 - 1 - exp{_ (nx)e}}a]l_ﬁ
o el = @Y1 el o

+2/1J' apBon®x _
0 [1 - 1 —exp {— (nx)a}}a]l #

Using the Taylor series expansions, the above integral reduces to

Mx (t) = (1 — 1) ap6n®

D <5;1> <cxz +;— 1> %(_1)%1[ xm+9_1exp{—(1+ 1)(77x)6}dx

m=01,7=0 0

RN <25‘1) (“i+l‘?‘_1>fn—r'1,(—1)i+ij "l exp{— (5 + 1) (0 dx
: 0

m=01,7=0

Hence, the Mx (f) can be finally obtained as

e, § (7))

m=0 1,7 =0 (J + 1)§+1

+2/12 Z <2ﬁ_1> <°‘i +;‘_1> <i)| “ﬁ(_l);lr(%H). (11)

m=01,7=0 (i+1)§+1
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The integral form Mx (f) in Equation (11) can be obtained by using the Wright-generalized hypergeometric function as

(B +Bjn)

&
X r

" TIT (6 +Din)

—

1
*

o i5m) 2 G-

-

1

) 0 . _1\+a —
Mx(t)=(1—/1)z Z (ﬁb—.l><m+;—1>“_ff#l¢o[(l,€ 1);f/77]

.
1

"m0 i =0 m! G+ 1)§+1
_ . _ -1 i+7 -1
23 S (25 1) <°“+?‘ 1) %ﬁ; %lzpo[(l’f );t/n]. (12)
m=01,7=0 4 : (.l+1)§+1

Corollary 1. The characteristic function ¢y (t) = ( "X) of the Tkw Weibull distribution corresponding to the m.g.f formulation of Equation

(12) as
<ﬁ_.1> (ai+q_1> @—(_1)21 1%[(1’?_1);#/77]

m=0 =0 ;=0 K 4 m! (1+1)§+1
© 0 _ . _ _1\tta -1
233y (2/2. 1) <°“+?‘ 1) %‘f—( Do lz,bo[(l’? );it/n]. (13)
m=07=0 j=0 I “G+net!

Theorem 3. If X has the TKwW distribution with |1 < 1, then the k™ incomplete moment of X say b (2) is given as follows:

< ZU iy
b (2) = ﬁi(l—l) Z gl’kz 1’ o 21 Z gl’k : li,

= °(;+1)9 ©I= °(;+1)9

where

- -1 ) k .
Ugins = (gﬁi 1) ("“ i >(—1) Yg= 1,2.€;,k,z=y<5+1,(;+1)(nz)6>

Proof: By definition

. _ 0 l _ _ 0 a—1
g () = (1 = A)j apon®x o e it e ] Q(U; )l_}i
0 [1—{1—exp{—(77x) }} ]
exp [~ m0°}{1 — exp = " "
[1 - {1 = expf- o)) ™7

+z/1j afon®x o
0

The above integral reduces to

fgy (@) = (1= D) aBEn® Y <5 B 1) (“‘ " ;“ 1) (—1)"“’[ M exp = (4 + 1) (x)°} dx
0

t,7=0
120apen® Y (25; 1) ("”" teo 1) 0 [ el G 1 o
i,7=0 0

Hence, the k" incomplete moment of the Tkw Weibull distribution can be obtained as

o _ . _ _1)i+d K
o @=0-2) Y (ﬁi 1) (o“ te 1) w b, <5+1,<1+1>(nz>6>

o nk (+ 1)§+1
_ . _ —1)tts
2 Z <2/3 1) (on +; 1) Z_f D77 - 7,(ngl,(l‘+1)(nz)9>. (14)

30 (7 +1pe"
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Corollary 2. The first incomplete moment of the Tkw Weibull distribution can be obtained from (14) by substituting k = 1, is very useful
measure for Bonferroni and Lorenz curves, mean residual life and for mean waiting time can be defined as

® _ o _1)its 1 .
fo@=a-2 3% (F7) (e L (fenG o)

i7=0 1 Ui (l+1)§+1
© _ . _ -1 i+
+21 Z (2{: 1><m+q 1) i - y(%+1,(1+1)(v2)6)- (15)
=0 4 7 (1+1)§+1

4. PARAMETER ESTIMATION

Consider the random samples x1, x2, ..., x, consisting of n observations from the TKwW (x; «, 8, 7,6, 1) distribution then we apply the
maximum likelihood estimation for estimating the model parameters based on complete samples. The log-likelihood function £ = InL of
(5) is given by

L = nlna + ninf + nlnd + nblnn + (6 — 1)2 Inx; — Z(mci)6

i=1 i=1

+ (o — l)zﬂl ln{l —exp{ — (nx,-)e}} + (B - l)i ln[l - {1 — exp{ — (Uxi)e}}a]
i=1

i=1

+ Z ln{l " 2/1[1 - 1 — exp{ — (%) }}Q]BE. (16)

i=1

By differentiating (16) with respect to at, 5, 0,7 and A then equating it to zero, we obtain the estimating equations are

n . B IR B o
g_f( = g + Z ln{l - exp{ (nxi) }_ I)Z {1 exP{ (mxi) }} ln{l exp{a (1xi) }}
i=1 [1 - {1 — exp{ — (Uxi)e}} ]

[1 - 1 — exp{ — (nxi) }}a]ﬁ_l{l —exp{ — (nxi)e}}aln{l — exp{ — (nxi)e}}

TS

—218 Z

s

oL n - L _ -G
"3 +;ln[1 {1 exp{ — (nx:) }} ]
B
[1 — 1 — exp{ (nxi) }} ] ln[l — {1 — exp{ — (r;xi)e}}a]
+22 Z 5 ,
{1 A+ 2/1[1 — {1 —expf - (nxi)e}}“] ;
oc exp{ — (nx)°}(nx)° In(nx;)
Frial] = -+ nlm + Z Inxi — g(nx,) In (1) + (@ — Dlzl 1 — exp{ — (9x:1)°}
" {1 — exp{ — (nxi)e}}a_lexp{ - (nxf')e}(nxi)eln(nxi)
—aB-1), =
i=1 [1 — {1 — exp{ — (nxi)e}} ]

n [1 — {1 — exp{ — (f)xi)e}}a]ﬁ_l{l —exp{ — (nxi)e}}a_lexp{ — (9x)°Yx) P In(mx:)

—2ap Z

s

{1 2+ 221 = {1 - expf - <vm>6}}a]ﬁ}
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oc  nd e i expf — ()Rt
= W g0t 6 — 1)6n8-! e 2 S
5 =5 O ;x +(@—1)67 gl_exp{_(nxi)e}
n 11— expf — (nxi)e} a_lexp{ - (nx,-)e}xie
—af (B—1Dn°"' ) { } -

i=1 [1 —{1 —exp{—(nxi)e}} ]

a1B-1 a—

n [1 - {1 — exp{ — (nxi)e}} ] {1 —expf{ — (nx,-)e}} 1exp{ - (nx,—)e}x,e
—21a 639! Z 3
i=1 {1 —/1+2/I[1 —{1 —exp{—(nx,-)e}}a] }

E}

and

or & 2[i-fi-epl-oof ] - |
o1 & {1 —A+21 [1 - {1 - exp{— (ﬂxi)e}}“]ﬁ}

The log-likelihood function of the model parameters can be estimated by using the R package [21] or by solving the nonlinear log-likelihood
equations obtained by differentiating Equation (16). For the interval estimation and hypothesis testing, we required the observed informa-
tion matrix. All the second- order derivatives exist for the five parameters TKwW distribution. Thus, we have the asymptotic distribution
defined as

(6.8.6.9.2)" ~ Ns{(e.8.6,0. )" .k (®) ],

where K (9) is the (5) X (5) the expected unit information matrix

kaa kocﬁ koc@ kOﬂ? kot/l
kag kgp  kgo kgp kga
k(®)=| kao kgo koo kye kea |- (17)
ken kpy key knn kya
kar kpa kea kna kaa

where k19,,9j = 825/819,»1%, i,j = 1,2,3,4,5. The asymptotic multivariate normal distribution can be used to construct the confidence
intervals for each parameter. An asymptotic confidence interval for significance level y for each parameter 9, can be estimated as

ACI, = (ér = Zy\) =k (8), 8, + Zyn [ —krsr (9)) ,

where kzrl (9) is the ™ diagonal element of the inverse of observed information matrix k (9) and Zy/, is the (1 —y) % quantile of the
standard normal distribution.

5. TRANSMUTED LOG-KUMARASWAMY WEIBULL DISTRIBUTION

In the context of the survival studies, many new lifetime distributions have been developed for studying time to event data with covariates
regression modelling. The location-scale regression models with covariates has a rich tradition in survival analysis and commonly used in
clinical trials. Survival models provide more understanding of time to event data by allowing more flexible formulation with precise and
informative conclusion. In this section, we examine statistical inference aspect and modelling a new regression using the logarithm of the
transmuted Kumaraswamy Weibull distribution. The modification in the distribution under study leads to the location-scale regression
model for fitting headache relief patient’s data. If X is a random variable having the transmuted Kumaraswamy Weibull distribution, then
Y = log(X) has the transmuted log-Kumaraswamy Weibull distribution. The density of Y, parameterize in terms of 7 = exp (—u) and
0 = 1/o, hence the density function of Y is given by

o) = Desp (M F espenp (V)1 - exp e (V2F )

ag g ag

[-fi-efen (W h-aen[i-froenfen (CZFT] a9
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Figure 4 Plots of the transmuted log-Kumaraswamy Weibull distribution.
The survival function corresponding to (18) is given by

S(y; B, u,0,4) = 1— [1 —{1 —exp{—exp (y—;x)}}“r’gl +/1[1 —{1 —exp{—exp (y_”)}}a]ﬁ§, (19)

g g

where —c0 < Y < 00, —00 < < o0, with |4| < 1, and «, 8,0 > 0. If Y has the transmuted log- Kumaraswamy Weibull distribution, then
itis denoted by Y ~ TLKwW ( ¥, B, 1,0, /1). The greater flexibility of the proposed model to fit survival data is due to the different forms
of the density function for some selected values of parameters are displayed in Figure 4. The log-Kumaraswamy Weibull distribution is the
special case of the transmuted log-Kumaraswamy Weibull distribution when the transmuting parameter A = 0. The standardized random
variable Z = (Y — ) /o has the density function as

7 (506,00 = Loxp @) exploexp OH1 - expl-exp )
[1- {1 - expi—exp @I {1 =2+ 22[1 = {1 — exp{—exp @} |}, (20)

where —o0 < z < o0, respectively.

The proposed model reduces to the transmuted log-EW distribution, when § = 1. If A = 0, in addition to § = 1, the transmuted
log-Kumaraswamy Weibull model becomes the log-EW distribution proposed by Hashimoto et al. [22].
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The covariates vector is denoted by x = (x1, %2, ..., )" associated with the ith response variable y; through regression model. Consider the
re-parametrization for the covariates regression by taking scale parameter 1 = x'8 which depends on the explanatory variable Y and the
scale parameter 1 depends on the matrix of the explanatory variable X in the TLKwW regression model. We assume that the lifespans of
time to event data are independently distributed and also independent from censoring technique. Considering right censored lifetime data,
we observe y; = min (Y;, C;), where Y; is the lifetime and C; is the censoring time, both for ith individual i = 1,2, ..., n.

Now we construct the linear regression model for the response variable y;|X based on the TLKwW regression model can be represented as
yi=X'0+0z, i=12,..,m, 1)

where 8 = (6,,6,, ..., Gm)T, o > 0 and |A| < 1 are the unknown parameters, XT = (x1, ..., xm) is the vector of explanatory variables and the

survival function of y; can be estimated as
o aB
y,‘ - XTQ “«
1—41—expi—exp e . (22)

ra\ 41
~ A~ A A A A Yi— X6 Py
S(yi;oc,ﬁ,e,a,/l)=1—l1—{1—exp{—exp< : )}} l X1+ 4
Let Fand C be the sets of individuals for which y; is the log-lifetime or log-censoring, respectively. The total log-likelihood function for the
TLKwW regression model parameters ©® = (oc, B,0,4, GT)T can be obtained from Equations (20) and (21) as

_xT T
1(®) = nlna + nlnf —nlna+2{<yl—xe> — exp(ylo_Xe>}+(oc— 1)

icF g
Sifieof -er (" -0 gl -enf-eo ("
egfr-r ez foenf-en (2T
B Z i~ fi-eof —en (")}
gl =l e () T
The maximum likelihood estimates © of the parameter vector ® of the TLKwW regression model can be obtained as
00+ Sl - et

i€eF

{1 — exp{ — exp(zi)}}aln{l —exp{ — exp(zi)}}

-B-DY,;

ieF [1 - {1 —exp{ — exp(z,-)}}a]
s Z [1 — {1 — exp{ — exp(zi)}}a]ﬁ_l{l — exp{ — exp(zi)}}aln{lﬁ — exp{ — exp(zz-)}}
ieF [1 —/1+2/1[1 —{1 —exp{—exp(zi)}}“] ]
{1 —expf — exp(zi)}}aln{l — exp{ — 6XP(Z:')}}
ieC {1 - {1 —exp{ — exp(zi)}}a}

/1[3[1 - {1 — exp{ — exp(z,')}}“]ﬁ_l{l — exp{ — exp(zi)}}aln{l — exp{ — exp(zi)}}

_Z )

TSR T——
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%‘g)) ‘% + Z ln[ {1 — exp{ — exp(zi)}}a] + gé ln{l — {1 —exp{ — exp(zz‘)}}a}

[1 — {1 — exp{ — exp(z,-)}}a]ﬁln[l — {1 — exp{ — exp(zi)}}a]

+21))
i€F

S —r

[1 - {1 — exp{ — exp(zi)}}a]ﬁln[l - {1 — exp{ — exp(z,-)}}a]

+1)]
ieC 11 + /1[1 - {1 - exp{ - exP(Zi)}}a]ﬁI

31(®) xf explzi — exp(z}
0 ——é {1 exp(zi)} + (o — 1)20{1 exp{ - explz)}]

+a (B — 1)2

{1 exp exp(z) }a 1exp z - exp(z)
[ {1 exp{ — exp(z; )}} ]

T [1 — {1 —exp{ — exp(zi)}} ]'6_ {1 —exp{ — exp(zi)}}a_lexp{zi  expian]

+2af Z R
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31©) _ 2[1 - {1 — exp{ — exp(zi)}}“]ﬁ -1
o1

ieF [1 1+ 2,1[1 - {1 — exp{ — exP(Zi)}}a]ﬁ]

a1B
1—11 — exp{ — exp(z))}
+2 [ oert-er Haﬁ’
ieC El +,1[1 - {1 —exp{ — exP(Zi)}} ] }

where z; = y"%fTe. Under the regularity conditions that are fulfilled in the boundary of the sample space for the parameter vector O, the

asymptotic distribution of \/n (® — ©) is multivariate normal Ny,.+4 ]0, k (G))_1 , where k (®) is the expected information matrix. For testin,
ymp p g

of hypothesis and confidence intervals estimates for (oc, B,0,4, GT) T of the TLKwW regression model based on the asymptotic distribution
is defined as

(6.8,6,4,6™)" ~ Ny { (e 8,0,,67) k7 (6)},
where K (C:)) is the (m + 4) X (m + 4) observed information matrix.

Ay =1 .
The asymptotic multivariate normal Ny.4+4 {0, k (G)) } distribution can be used to construct the confidence intervals for each parameter

©. 100 (1 —¥) % asymptotic confidence intervals for each parameter ® can be estimated by using the well-known procedure in statistics
literature. Further we can construct likelihood ratio statistics for comparing sub-models for the TLKwW distribution by using the values of
log-likelihood.

Theorem 4. If Y has a TLKwW (y; a, B, U, o,/l) distribution with |A| < 1, then the k" moment of Y, say fu is given by

5 _ ; —_ P k P
h=-2 Y (6 - 1) <oc(v +11) 1) D™ B S S s

“ad=0 p=0g=0
28-1) (ai+D -1 . kop
+2/1 ; (_1)L+J aﬁ/.lk . ‘
,;0< > < 4 > PZ::O;) kspsdsks0

where

k (=11
Vespsattso = <p> <Z> <M> it D (log (i + 1))"~ ql“((f)).

Proof: By definition

(= ocﬁ(la—l) r’ ykexp(y%”)exp{ exp (L) H1—exp{~ l(g ) dy
e [1— 1—exp{—exp (12F)

|
+2,1%r° ykexP(y%”)exP{—exP(u)}{l—exP{ E; il
7 oo [1—{1—exp{ exp (©F '“)}} ]

dy.

The above integral reduces to

L=>0Q-2) i <ﬁ;1> Ca,ﬁ,i,iJm )’exp( )exp{ (L+1)exp<y M)}d}/

1,7=0

21 i <2,3L— 1) Ca,ﬁ,i,lJ'w yexp( )exp{ (1,+1)exp< 5 )}dy,

1,7=0

where Co g1, = (a(t +ll) - 1> (—1yi*+ a?,fs’
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By setting w = exp (£2£), we obtain

f=Q1-2) ) <,8;1> Ca,ﬁ,i,.iJ (pc+ologw)kexp(—w(i+l))dw

i,7=0

+21 Z < 251;_ 1) Ca,pi, i J (,u + alogw)kexp (—w (< + 1)) dw.

1,7=0 —00

If k is an integer, we can obtain with the binomial expansion as

(utologw) =3 (’;) <€>Puk (logw)’ .

p=0 H

Applying binomial expansion in the above integral, we obtain

S < B—1 k o\’ *
=01 -2) Z Z( p >(P> (;) //LkCa’ﬁﬂ;’l'J‘ (logw)pexp(—w(i+1))dw

0,4 =0p=0 —o

oo k P I
+24 Z Z <26L_ 1) <I;> <%> ,ukCa,ﬁ,ﬂ’l-J (logw)p exp (—w (¢ + 1)) dw.

t,7=0p=0 —oo

We can easily evaluate the integral by using nth order derivative of gamma function is given by
Iy = J u"™" (logu)" exp (—u) du.
—0o0

Finally, we obtain the K moment as

h=-2 Y <l5’ - 1> <oc(t +J_1) 1> D @Bt 3 S v

i,7=0 p=04g=0

e . . . k p
Y Z <25; 1) <oc(t +°il) - 1) (_1)L+J O(ﬁ/.lk Z Z Vepuasiso- (24)

©,7=0 p=049=0

6. APPLICATIONS

In this section, we present the usefulness of the TKwW distribution and TLKwW regression model applied to two real data sets.

6.1. Application 1: Fatigue Life of Aluminium Data

In this section, we provide an application to illustrate the flexibility of the Tkw Weibull distribution and compare this model with four
different lifetime distributions for data modelling. The data set refers to the fatigue life of 6061-T6 aluminium coupons cut parallel with
the direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle
31,000 psi, which were originally reported by Birnbaum and Saunders [23]. We fitted five distributions namely: transmuted Kumaraswamy
Weibull distribution [16], Kumaraswamy transmuted Weibull distribution [24], Kumaraswamy Weibull distribution [5], EW [1] and Weibull
distribution [25]. The model’s parameters are estimated by the method of maximum likelihood and four goodness of-fit statistics are used to
compare the transmuted Kumaraswamy Weibull model with other four distributions. The Maximum Likelihood Estimation (MLEs) of the
unknown parameter(s) with their corresponding standard errors in parenthesis and the corresponding Akaike information criteria (AIC)
for the fitted models are listed in Table 4. Furthermore, we applied the K-S test, the Cramér-von Mises and Anderson-Darling goodness
of-fit statistics in order to verify, which model provides the better estimate for the fatigue life of aluminium data. Table 5 shows that the
TkwW distribution has the smallest values of these statistics; therefore the TkwW model can be chosen as the best model among the four
competitive models. Finally, in order to access whether the TkwW distribution is appropriate for the fatigue life of aluminium data, plots of
the fitted pdfs and cdfs of the TkwW, kwTW, kwW, EW and W distributions are displayed in Figure 5.

It is believable that if the true lifetime distribution is a TkwW/kwW distribution for fitting the fatigue life of aluminium data. This is
predictable and is completed as a validation check to ensure that the derived MLEs formulation for the Tkw W distribution is consistent with
the fatigue life of aluminium data. As expected, in Figure 5(a), which represents the case when the TkwW distribution fitted to the fatigue
life of aluminium data, the TkwW fit (red) overlaps almost entirely with the original distribution of the fatigue life of aluminium data and is
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Figure 5 Fitted models for fatigue life of aluminium data.

suggestive of a good fit. The kwW density (green) slightly deviates from the original distribution of the fatigue life of aluminium data. The
same behavior is observed in Figure 5(b), where the TkwW distribution is a competing model for the fatigue life of aluminium data.

These fitted models indicate that the TkwW distribution is superior to the other four models in terms of data fitting. In the light of the above
remarks, we conclude that the TkwW model has better relationship for the fatigue life of aluminium data. Throughout this research article,
we conclude that the conventional lifetime distributions currently in use are not the best choice in many practical scenarios, therefore we
provide an efficient alternative that can be directly implemented by introducing the transmuted parameter in the base model.

Figure 6 shows the PP-Plots of the TkwW, kwW, EW and W distributions used to compare the empirical cumulative distribution function
of a data set with a specified theoretical cumulative distribution function and suggest that the TkwW distribution provides a better fit for
the fatigue life of aluminium data.

Table 4 MLEs of the Parameters for fatigue life of aluminium data and the AIC measure.

Model Parameter Estimates AIC
& p fi ] i

ThkwW 11.0468 4.8596 0.0104 1.6159 0.3111 914.73
(2.0429) (12.9815) (0.0011) (0.5588) (0.4381)

kwTW 28.4867 5.6224 1.1055 55.5826 0.0001 914.83
(34.8781) (1.5020) (0.3640) (41.4296) (0.0024)

kww 19.1444 0.6425 0.0139 2.2342 917.71
(41.9197) (1.1386) (0.0085) (2.3567)

EwW 19.5586 1.2631 0.0070 — - 943.45
(3.6944) (0.0272) (0.0009)

w — 143.315 5.9789 - - 922.19

(2.5402) (0.4173)

AIC, Akaike information criteria

Table 5 The K-S test, Cramér-von Mises and Anderson-Darling goodness of-fit tests.

Model K-S Test w A

TkwW 0.0665 0.0445 0.3087
kwTW 0.0664 0.0473 0.3195
kwwW 0.1003 0.1159 0.6749
Ew 0.1411 0.0864 0.5154

w 0.0981 0.1404 0.9639
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Figure 6 P-P Plots of the TKW, KW, exponentiated Weibull (EW) and W models for fatigue life of aluminium data.

The Cramér-von Mises and Anderson-Darling goodness of-fit tests of the Kumaraswamy Weibull as a sub-model of the transmuted
Kumaraswamy Weibull (TKW) suggests Kumaraswamy Weibull's (kW) inadequacy to describe the fatigue life of aluminium data. The K-S
test and P-P plots (Figure 6) lead to the same conclusion for the TkwW fits, residuals of the TkwW PP fit lie closely to the unit-slope line,
whereas residuals of the kwW fit deviate slightly from the unit-slope line in Figure 6(b). In view of the density and P-P Plots, it seems that
the proposed model can be regarded as a suitable candidate model in the context of reliability analysis for modelling lifetime data.

6.2. Application 2: Headache Relief Data

This section demonstrates the applicability of the transmuted log-Kumaraswamy Weibull regression model, which adequately fits the
observed data, discusses the clinical trials for thirty-eight headache relief patients’ records (SAS/STAT 9.1. [26]) and identify the covariates
are significantly associated with the response. We examine the utility of the proposed regression model by dividing data into two groups
of equal size and different pain relievers assigned to each group. The outcome described is time in minutes until headache relief. The
variable censor indicates whether relief was observed during the observation period (censor = 0) or whether the observation is censored
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Table 6 MLEs of the Parameters for fitted TLKwW, TLKwR, LKwW regression models to the headache
relief data, with their corresponding SEs in parenthesis.

Parameter Estimates

Distribution
& B ] i b, b,
TLKwW 4.3417 8.4464 1.7419 -0.5436 3.0135 0.0421
(205306)  (71.1515) (6.3867) (0.4795) (0.9109) (0.0657)
[<0.0021] [0.5256]
TLKwR 1.5113 0.0859 — —0.3851 1.5735 0.0456
(0.9044) (0.0968) (3.1683) (0.0360) (0.0222)
[<0.0001] [0.0470]
LKwW 2.9024 0.1147 3.7569 - 2.4569 0.0223
(0.5377) (0.0189) (7.6547) (0.9672) (0.3542)
[<0.0040] [0.3525]

Table 7 Goodness of-fit measures.

Distribution AIC Bayesian Consistent Akaikes
information Information Criterion
criterion (BIC) (CAIC)
TLKwW 187.6 197.4 190.3
TLKwR 211.7 219.9 213.5
LKwW 189.0 197.5 190.9

AIC, Akaike information criteria.

(censor = 1). For regression model the experiment has been designed to evaluate the effect of headache relief (y) on groups (x;) with censor
observations. We consider the linear regression model fitted to the headache relief patients’ data

yi = Bo + Pixa + 0z,

fori=1,2,...,38, where z; follows the TLKwW distribution given in Equation (18).

The maximum likelihood estimates of the model parameters are calculated with constraint |4| < 1, using the general framework of the
NLMixed in SAS [26]. Table 6 reports the MLEs, maximized log-likelihoods for the TLKwW, TLKwR and LKwW regression models with
their corresponding standard errors in parenthesis. Considering the AIC, BIC and CAIC goodness of-fit measures of the fitted models
displayed in Table 7, we find that the TLKwW regression model gives a better fit than the TLKwR and LKwW regression models.

The likelihood ratio test of the Kumaraswamy Weibull as a sub-model of the transmuted Kumaraswamy Weibull’s inadequacy describe the
headache relief patients’ records data (A = 6.6 on 1 df, with p-value = 0.0102 < 0.05). The AIC, BIC and CAIC goodness of-fit values are
smaller for the TLKwW regression model than for the baseline model and sub-models lead to the same conclusion.

The likelihood ratio test is appealing because there is significant evidence in rejecting the null hypothesis. Based on this goodness of-fit
measures, we conclude that the TLKw W regression model provides improved result for headache relief patients’ data. Based on this ground,
the proposed TLKwW regression model may play a very important role in modelling survival data.

7. CONCLUDING REMARKS

In this paper, we propose the transmuted log-Kumaraswamy Weibull regression model and examine the performance of Tkw Weibull distri-
bution. The transmuted Kumaraswamy Weibull distribution includes seventeen lifetime distributions as special sub-models. The analytical
shapes of density and hazard functions are obtained for some selected choice of parameters. The Tkw Weibull model have flexible behav-
ior for instantons failure rate function. Flexibility and usefulness of the proposed family of distributions are illustrated in two applications
containing the fatigue life of aluminium coupons data and headache relief patients’ data. We conclude that the Tkw Weibull distribution
provides better estimates than the other competing models for the fatigue life of aluminium coupons data. Furthermore, we also introduced
the transmuted log-Kumaraswamy Weibull distribution and obtained explicit expressions for its moments. Based on the Tkw Weibull dis-
tribution, we defined the TLKw Weibull regression model for studying time to event data. We have shown that new family of lifetime distri-
butions perform better than the baseline distribution for explaining the real-world scenarios. We hope that the proposed extended family
of distribution may attract wider applications for explaining the real-world phenomena.
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