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1. INTRODUCTION

Power load forecasting is important for the effective management
of modern power grids. The accurate load forecasting can improve
the real-time scheduling and operation planning of power system,
reducing the excessive consumption of energy, increasing the oper-
ation security level and contributing for the promotion of economic
and social development [1-3]. There have been many load forecast-
ing methods, which can be classified into long-term, medium-term,
short-term, ultra-short-term according to the forecasting periods.
Among these methods, the short-term forecasting method predicts
the load of the power system in hours or weeks, which is the basis for
dispatching center to formulate power generation plans and power
plant quotations. And it is also important for the operation, control
and planning of power system [4,5].

The transformer in distribution grid plays an important role in
power supply. And the overload of transformer should be avoided
as possible, which will not only cause the increasement of power
loss, even compromise the security operation of distribution net-
work. However, the load of transformer fluctuates according to
many factors, such as weather condition, utilizer, festival, and so
on. For example, in Fujian area, there are more than 200 transform-
ers overloading during the National Day in 2019. For overload will
lead to unstable power supply or even burning down of transformer,
the overload rate has been a key assessment index of the opera-
tion of distribution grid. So, it’s necessary to forecast the load for
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Load of transformer in distribution grid fluctuates according to many factors, resulting in overload frequently which affects the
safety of power grid. And short-term load forecasting is considered. To improve forecasting accuracy, the input information and
the model structure are both considered. First, the multi-dimensional information containing numerical data and textual data is
taken as the inputs of constructed deep learning model, and textual data is encoded by one-hot method. Then, for the purpose
of mining the features of data better, based on the framework composed of convolutional neural network (CNN) and long short-
term memory (LSTM), the modified inception structure is introduced to extract more detailed features and adaptive residual
connection is added to settle the problem of gradient diffusion when the layers of model grow more. At last, the comparison is
carried out and the improvements are presented after the textual data is added and the structure of model is modified. And the
forecasting error is reduced, especially when the load is heavy, which is beneficial for the prevention of overload of transformer
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transformers in distribution grid, especially the short-term load
forecasting, taking early measures to reduce the probability of over-
load. However, the accuracy of short-term load is impacted by lots
of factors, especially the transformer in distribution grid is more
vulnerable to the factors for its limited capacity [6,7]. So, the short-
term load forecasting of transformer in distribution network is dif-
ficult but significant.

Lots of scholars have conducted extensive explorations, and pro-
posed various prediction methods to improve the accuracy of short-
term load forecasting, including time series method [8], wavelet
analysis [9], regression analysis [10], Kalman filter [11], neural net-
work [12], and so on. In these methods, the forecasting models are
constructed reasonably based on complicated theories, but some
parts of parameters or weights in the proposed model are chosen
according to experience, resulting in the incomplete feature extrac-
tion, or the model is suitable for some specific conditions.

To further settle the forecasting error caused by subjective factor in
the feature extraction, the deep learning methods are considered for
its outstanding performance of feature extraction. There have been
many types of deep learning models according to the composition
structures and calculation methods, such as convolutional neural
network (CNN), recursive neural network (RNN), long-term and
short-term memory neural network (LSTM), and so on. And the
application of deep learning used for forecasting has been a trend.
In paper [13], a short-term power load prediction method based on
LSTM is proposed to reduce the dimensionality of the data volume
required by the load prediction model, having higher prediction
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accuracy than traditional BP neural network algorithm. In paper
[14], the model with the main framework of stacked LSTM are
applied for the load forecasting. In paper [15], aiming at the charac-
teristics of time series and nonlinearity of load data, a mixed model
short-term load forecasting method based on CNN and LSTM is
proposed with the input of historical load data, weather data, date
information and electricity price data. In paper [16], a deep resid-
ual network is modified and a two-stage ensemble strategy is con-
structed to enhance the generalization capability of the proposed
model and improve the forecast results. In the existing research, the
deep learning methods have shown better performance than other
methods.

In this paper, based on the existing research results, CNN and LSTM
can be adopted as the foundation for forecasting model. Besides
that, the multi-dimensional information of numerical data in hour
(containing historical load, meteorological data, electricity price)
and textual data (containing date type, states of distribution lines)
are both taken as input to increase the prediction precision. Mean-
while, the framework optimization for forecasting model is also
considered. At last, the comparison of forecasting results are pre-
sented.

2. RELATED WORK AND BASIC PRINCIPLE

In traditional methods, the load forecasting is mainly decided on
the numerical data, such as historical load, electricity price, pop-
ulation, meteorological data, and so on [8-12]. In these methods,
the correlation analysis methods mainly based on the probabil-
ity theory, such as canonical correlation analysis. The consensus
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is that the accuracy of the short-term load forecasting depends
on the performance of mining associations among related data to
a large extent. In these methods, for there are some parameters
decided subjectively or empirically and the association of different
variables is uncertain, the accuracy of forecasting model may also
be unstable.

Take the relationship between load and temperature, for example,
which is also the most often considered relation in load forecast-
ing. In Figure 1, the load and temperature of every day from Jan-
uary to December are presented. The maximum load occurs when
the temperature also stays high in the summer season. However, in
December, the temperature decreases but the load grows higher.

In Figure 2, trend 1 is collected on the day in winter, trend 2 in
spring, trend 3 in summer and trend 4 in autumn. It can be found
that transformer loads are inconsistent with temperatures and the
relationship between load and temperature varies with time. It
means that temperature is some part related to load trend and other
influence factors need to be taken into consideration in short-term
load forecasting. Such as the influence of festival, the load trend 1
collected in Spring Festival is higher than trend 2 and trend 4.

Through the review of the exiting methods, it can be found that the
more effective information is considered in forecasting model, the
better forecasting accuracy can be derived. To realize a better per-
formance of load forecasting, the factors including historical load
data, weather data, states of distribution lines and the day type (fes-
tival, workday or weekend) are considered. Meanwhile, with the
convolution computation and word embedding of deep learning,
the relationship between different kinds of factors can be modeled
qualitatively. And based on the traditional methods, it is difficult to
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temperature trends in different days.
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establish the quantitative and accurate model with the input infor-
mation both of numerical data and textual data. So, a novel fore-
casting model based on deep learning is needed.

2.1. One-Dimensional (1D) CNN

CNN contains convolutional calculations and has a deep struc-
ture. It’s a kind of feed forward neural networks [17,18]. CNN has
the ability of representation learning and can realize shift-invariant
classification of input information according to the hierarchical
structure, extracting high-order features.

There are several types of CNN according to the calculation dimen-
sion, containing 1D, 2D, 3D and 4D [19]. While obtaining inter-
ested features of in shorter segments with fixed length in the overall
data set, 1D CNN is effective. The process of 1D CNN is shown in
Figure 3.

For single filter, the mathematical expression can be described as
follows:

1
Mpxn : Fp><n
My ®Fp><n = : (1)
m—p+1
Mpxn : prn

(m—p+1)xn

where M., is the input matrix and M;,x" is the ith submatrix of
Mypxn> Foxn (%) is the filter, p is the window length for 1D convolu-
tion. And in the practical calculation, there are a certain number of
filters to realize the 1D convolutional calculation.

2.2. Recursive Neural Network

For 1D CNN is not sensitive enough to the time sequence, the
performance of feature extraction will decrease while settling with
longer data sequence, so RNN is considered. In RNN, the modu-
lar architecture of the cyclic neural network is adopted which can
better reflect the correlation between current results and historical
data [20].

The core part of RNN is the directed graph and the chained ele-
ments in a directed graph expansion is called RNN cell. In gen-
eral, the chain connection formed by the RNN cells can be analo-
gous to the hidden layers in the feed forward neural network, but in
different discussions, the “layer” of the RNN may refer to a single
time step loop unit or all loop units [21]. The framework of RNN is
shown as Figure 4.
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Figure 3 Work process of one-dimensional convolutional neural
network (1D CNN).

The calculation and update process of the output and state of the
cyclic neural network can be described as follows:

St = g(wssst—l + WexXi—1 + bs) s

yt = g(Wysst + by)

SO=O

2)

where, x« is the input, y« is the output, s« is the state, w« stands
for the weights of corresponding variable, b. corresponding offset
value, the subscript t is the processing step number.

Although RNN utilizes the history data by circulation, there is a gra-
dient disappearance problem. When data sequence is long, the error
of the backward time step cannot be propagated to the previous time
step for optimization calculation, thereby causing the information
before and after the certain time distance to not be correlated.

2.3. Long Short-Term Memory

To settle the problem in the processing of long data sequence, the
gated algorithm is considered. Through the gating unit, the RNN
controls the accumulation of internal information. When learning,
it can grasp long-distance dependence and selectively forget infor-
mation to prevent overload. There are also different types of LSTM.
A typical framework of LSTM is show in Figure 5.

In Figure 5, the symbol “F” means that the input data is fused
into an array. In LSTM, it adds a method of carrying information
across multiple time steps, allowing previous information to be re-
entered in subsequent calculations, thus solving the problem of gra-
dient vanishing [22,23]. Therefore, use LSTM to enhance the cor-
relation analysis of historical data and improve prediction accu-
racy. In LSTM, there are novel designs: forget gate determines that
some part of the data in the previous moment needs to be forgotten,
input gate to determine that some part of the current input needs to
remain in the state, and output gate to determine the system input
from the current moment, the input from the previous moment.
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Figure4 Framework of recursive neural network (RNN).
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Figure5 Framework of long short-term memory (LSTM).
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Some parts of the information combined with the status informa-
tion can be used as the final output. The expressions are as follows:

iy =0 (Wyx, + Wyh_qy + Wi + b)) (3)
fr=0 (W, + Wihyy + Werq + by) (4)
¢; = fici_1 + i tanh (Woox, + Wy h_q + b,) (5)
0, =0 (Wex, + Wioh_1 + Wecq + b,) (6)
h; = o, tanh (c,) 7)

where, it is the input gate, f; is the forget gate, ¢, is the cell state, o,
is the output gate, w- is the weight, b« is the bias, h- is the output of
the cell, x« is the input, o is the sigmod function.

3. PROPOSED METHOD

Compared with the existing load forecasting methods, the main
innovations of proposed method in this research contain two
aspects. First, to reduce the forecasting error, several highly associ-
ated factors are considered as inputs of the forecasting model that
the numerical and textual information are both considered. Second,
while constructing the deep learning model for load forecasting,
the inception structure and residual connection are applied in the
model modification to tackle with the numerical and textual infor-
mation, improving the ability of feature extraction and the effect of
backpropagation.

3.1. Textual Information Processing Method
for Load Forecasting

Besides the numerical data, some text information also indicates
the load trend, such as the description that which festival will come.
In traditional method, the text information is quite hard quantified
and used for the prediction work. With the advantage of powerful
computing capability of deep learning network, the text informa-
tion can be vectorized based on word embedding, which is different
from the traditional model.

There are many vectorization methods. Among these methods,
both consider the distinguish effect and computing workload, the
one-hot coding method is adopted for there is a small amount of
description words [24]. Using one-hot coding, the value of the dis-
crete feature is extended to the European space, and a certain value
of the discrete feature corresponds to a certain point in the Euro-
pean space. Using one-hot encoding for discrete features will make
the distance calculation between features more reasonable.

According to the requirement of grid operation, the demand of the
electricity utilization has been ensured during the mayor festival,
such as National Day, Spring Festival. And we can have the set Dy,
containing the types of day.

D

ype = {’ workday"',’ weekend',’ National — Day", } (8)

And the one-hot coding of Dy, can be described as

100
one-hot | 01 --- 0O
V(Dt}’P@) - A ©

len(D[),pe)xlen(DtyPe)

where, the elements in Dy, are coded as row vectors.

The types of day are represented by the derived row vectors cor-
respondingly. And similarly, the states of distribution lines can be
vectorized. The states of distribution lines contain the insulation sit-
uation and the historical situation of power supply area. For exam-
ple, the description is “The insulation situation is poor, the histori-
calload varies greatly” And all these messages are encoded for fore-
casting.

After the textual data is vectorized, the dimension needs to be fur-
ther extended to the same dimension of the numerical data which
is collected in minutes. With the branch of the text input processing
added, the framework of load forecasting is presented as Figure 6.

3.2. Inception Structure for Feature
Extraction of Numerical Data

The aforementioned CNN, RNN and LSTM provide basic deep
learning framework. However, the simple CNN or LSTM has a
limited ability of data extraction. Meanwhile, when the CNN and
LSTM are both introduced, the network grows larger, resulting in
the gradient vanishing or computing efficiency decreasing. So, the
performance of the model needs to be optimized for a better result.

There have been several operations for improvement of deep learn-
ing network, such as residual connection, stacking integration,
inception structure, and so on. Among these improvement meth-
ods, the inception structure expands the width of model and
reduces the scale of filters to get better performance, changing
the thought that the network is constructed deeper by stacking
convolution layers. So, for the purpose of mining the features of
data better, the inception structure is also introduced [25]. Such
as GoogLeNet [26], it proposed inception structure, improving the
local topology, performing multiple convolution and pooling oper-
ations on the input image in parallel, and splicing all the output
results into a very deep feature map. There have been several pop-
ular inception structures, known as Inception V1~V4 [27] and
Inception-ResNet [28].

For the existing Inception series algorithms is suitable for the image
recognition, it costs computing resource and the sizes of filters
are not suitable for data prediction, so the new designed incep-
tion structure for the load forecasting is proposed. It is shown as
Figure 7.

The proposed inception structure makes some optimization,
including factorization of kernels with small size and parallel
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Figure 6 Framework of textual data proposed model.
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branch computing. With the inception module introduced, the net-
work can mine more subtle features through the 3 branches, while
it also owns higher computational efficiency.

Meanwhile, in this forecasting model, the stacking integration strat-
egy can combine deep learning networks together with the advan-
tage of all networks. To further improve the performance of the
load forecasting model, the CNN and LSTM are both considered
to be applied in the new solution, meanwhile, inception structure
is adopted to prevent the gradient vanishing when the network of
model grows larger.

3.3. Residual Connection of Numerical and
Textual Data

Based on the framework of inception and stacked LSTM, with the
number of layers in the network increasing, there may be the prob-
lem of gradient diffusion [29,30]. In Figure 8, it shows that the orig-
inal data are decomposed into the numerical and textual data, and
then both of data are concentrated after the feature extraction in
each branch for further calculation. In the deep learning process,
attenuation of the backpropagation of textual data and numerical
data will occur.

The topology of the deep learning framework can be described as
Figure 9. CNNI is the CNN with inception structure. CNN2 and

‘/ Concentrate ‘
" ConviD | [ ConviD |
( ConvilD ) ‘ (3X3) ‘ ‘ (3><3) ‘
‘ (1X1) ‘ 1
[ ConviD | [ ConviD |
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\/ Numerical data \

Figure 7 Inception structure proposed for load
prediction.
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Figure 8 Framework of the data processing.

CNN3 are the convolution layers with different number of filters
and different sizes of kernel.

The input of x is decomposed into x; and x,. The deep learn-
ing model can be recognized as that it has two input. To settle
the gradient diffusion, two bypass residual connection structure in
Figure 10.

Suppose that L(.) is the loss function, there are m layers in the
model, Z,, is the corresponding output and Y is the input of the nth
layers. With the residual connection added, Y is

Y= Z,-1 + X1 + X2 (10)

And the derivation of loss function to input x; can be derived as

d
6_L=5_L Zm ﬂ (11)
0x1 0z,0z,_1 0x
_ 0L T7 9z, 0(x +x+2,1)
5zm =0 3zm_z-_1 axl
= a_L m_" azm—i <1 + azn—l)
5zm =0 3zm_z-_1 5x1
Similarly, the derivation to input x, is
oL oL f aZm—i aZn—l
—_— = 1+ 12
O0x, 0z, ill 0z,—i1 ( 0x, ) (12)

For the exiting of activation function attached to convolutional
layer, such as Relu function, the derivation to input x; and x, will
not be negative number, which improves the effect of backpropa-
gation.

Summarizing the above method, first the numerical data and tex-
tual information on the time axis are adopted to predict the future
load, then the modified inception structure extracts essential fea-
tures from high-dimensional features for prediction and improves
feature expression ability. Meanwhile, the residual connection is
introduced to tackle with the problem of gradient diffusion, with
the inputs of numerical and textual data considered.

X —

L
encoding

Figure 9 Main procedure of the forecasting without residual connection.

5
encoding ~ <

Figure 10 Main procedure of the forecasting with residual
connection.
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Figure 11 Main implementation of load forecasting.

4. MAIN IMPLEMENTATION PROCESS

In this part some key implementation program is introduced to
realize the proposed framework based on the deep learning frame-
work, such as Tensorflow. And the main process is shown in
Figure 11.

First, the data has to be collected. load data, date and the states of
distribution lines are extracted from the related monitoring system
of distribution network. And different types of data are processed
with the same dimension and every record has temporal correspon-
dence.

Then, the textual data is vectorized by one-hot coding and all data
should be reorganized. In this procedure, a data generator is con-
structed to realize the reorganization (seen in Appendix A). The
benefits of constructed generator include (1) The generator can
generate the historical data containing textual and numerical data,
based on which the short-term forecasting is carried out, and target
load values dynamically. (2) With the generator, the training set and
testing set can be generated dynamically and quickly, so the storage
space occupied by the data set can be reduced. (3) In the training
process, the data sets can be flexibly adjusted according to the train-
ing results.

Thirdly, based on the framework of deep learning, the proposed
model is constructed. The main program of the constructed model
is presented in Appendix B with the inception and residual connec-
tion. Through the above procedures, the forecasting load for trans-
former in distribution network can be realized based on the modi-
tied model.

5. TEST RESULTS

5.1. Training Results

To test the performance of forecasting model, the operation data of
the transformer located in Fuzhou with rated capacity of 315kW is
extracted with the maximum load factor 0.93, which overloaded in
the period of National Day in 2019.

And the experiment is carried out based on the dataset of the col-
lected weather, load and date type. All of the data is processed
with the interval of one hour. There are 64478 records, divided into
50000 training samples and validation samples with the left records.
Tensorflow and Keras are used as the program framework. The fore-
casting rule is using the past 168h records, predicting the load in
next 6h. And the parameters are set as value of batch size is 64,
number of iterations in each epoch is 100 and number of epochs is
30. The results are shown in Figure 12.

Through comparison, it can be found the training can be carried
out but the training loss is high based on CNN and LSTM. And then
the textual information added, the training loss decreases because
the useful text provides other relationship for prediction, however
the validation loss is still greater than training loss, even there is
over-fitting phenomenon to some extent. And it is obvious that
the proposed method can derive less loss performance than CNN
+ LSTM method. And meanwhile the validation loss and training
loss are more consistent.

5.2. Forecasting Results

Further, to testify the performance of the models, the comparison
of short-term load prediction is carried out. Based on the corre-
sponding recorded data in past 168h, the forecasting load in next
72h is shown. In Figure 13, the forecasting results of the models
based on LSTM [13], stacked LSTM [14], CNN-LSTM [15] with
numerical data as input are presented respectively. Although in the
previous published papers, it has verified the performance of the
LSTM-based forecasting model is better than traditional methods,
such as BP neural network, random forest model and so on, there
is still room for improvement.

It can be found that the errors of forecasting results are large. To
further show the improved performance when the textual informa-
tion and residual connection are introduced, the results predicted
by the CNN-LSTM with text input and the proposed model are also
presented in Figure 14.

Through Figure 14, the forecasting results are better than the results
in Figure 13. Meanwhile, in this research the key point is that the
situation of overload is prevented as possible. So, the forecasting
results should be analyzed and there are 11 overload-points that the
load of transformer is greater than 292kW, which is the approxi-
mate value derived by rated capacity timing load factor (315kW x
0.93). To quantify the errors of the above forecasting results, the
relative error comparison is calculated based on the formula of
[loadgorecast — l0ad e | /load; e X 100%.

For convenience, the error of the forecasting result of LSTM is
denoted as Error 1. The error of stacked LSTM is denoted as Error
2. The error of CNN-LSTM with numerical data is denoted as Error
3. The error of CNN and LSTM with textual and numerical data is
denoted as Error 4. The error of the proposed model in this paper
is denoted as Error 5. And the comparison of different errors when
overload occurred in transformer is shown in Figure 15.

Further, the numerical comparison result is summarized in Table 1.

It shows that the Max-error of Error 1 is the smallest and the Ave-
error of Error 5 is the smallest. Combined with Figures 13 and 14,
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it can be found that the Max-error occurs when the load is light.
And it shows the overall performance of Error 5 is better than others
with the smallest Ave-error. Further, for overload prevention is the

main purpose, the forecasting errors are also evaluated when load
is greater than 292kW.

66

While overloading, the Max-error of Error 5 is 37.9kW, which is
nearly 20.5% smaller than the other models. And the Ave-error of
Error is 21.9kW, which is 24.7% smaller than the others. So based on
the proposed model, the occurrence of the overload in transformers
in distribution grid can be reduced.
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Forecasting errors when the transformer overloaded

/kw

number

== Lrror |
Error 2
Error 3
Error 4

Error §
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5.3. Limitations

In former section, the performance of the proposed model is pre-
sented. There are some still limitations of the proposed method,
mainly including:

1. Complicated structure. For the combination of different types
of structures in the model, the number of the parameters in
proposed model is more than other models.

2. More training time. For the number of the parameters in the
model is large and the no optimization of training strategy is
carried out in model training yet. The training of model needs
more time.

3. The prediction error is large when the load fluctuates greatly
and there is still room for the improvement of proposed model.
For the load of transformer is affected by too many random
factors and fluctuates greatly in hour in practical situation,
although many factors are considered in this paper, there are
still some important factors, such as the usage habits of power
utilizers, dispatching plan of power grid, and so on. To improve
the accuracy of load forecasting, the related factors should be
also considered and transformed into the input of forecasting
model.

6. CONCLUSIONS

With the development of deep learning, to improve the accuracy
in prediction of load, the main framework of the model consists of
CNN and LSTM with the numerical data and textual information
as inputs. Meanwhile, to settle the problem while the layers growing
more, residual connection and inception structure are combined to
improve the forecasting effect and computational efficiency. At last,
the comparison is carried out and the results are presented to show
the improvement. For there are too many factors influencing the
variation of load and the load of transformer varies ceaselessly, the
forecasting of load in hour is a hard work and there is still much
further work to improve the prediction accuracy.

Table 1 Numerical comparison of prediction errors (in kW).

NO. Max-error Ave-error Max-error Ave-error

(load > (load >

292kW) 292kW)
Error 1 124.7 34.2 54.1 36.7
Error 2 191.9 39.9 47.7 33.3
Error 3 143.9 35.7 52.8 349
Error 4 140.8 36.0 50.4 33.6
Error 5 140.1 31.7 37.9 21.9
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Appendix A

where num_data is the original numerical data, text_data is the vec-
torized data, onehot_dim is the dimension of the vector after one-
hot coding, lookback is the range of the history data for prediction,
future is the moment at which the load will be predicted, minind is
the minimal index of the data set > maxind is the maximum index
of the data set » bhsize is the size of the batch of samples.

Program 1: Data generator

Process: define generator(num_data, text_data, future, onehot_dim,
lookback, minind, maxind > bhsize)
while 1:
if i + bhsize >= maxind:
i = minind + lookback
rows=np.arange(i, min(i+bhsize, maxind))
i+=len(rows)
samples=np.zeros((len(rows),lookback// step, num_data.shape[-1]))
targets = np.zeros((len(rows),))
txtsamples=np.zeros((len(rows),lookback//step,onehot_dim))
for j, row in enumerate(rows):
indices=range(rows[j]-lookback, rows([j], step)
samples[j] = num_data[indices]
txtsamples|j]=text_data[indices]
targets(j] = data[rows[j] + future][1]
yield [samples,txtsamples], targets

Appendix B

where the num and txt represent the inputs of numerical data and
textual data respectively, ki is the number of kernels in correspond-
ing layers, t1 is the output result.

Program 2: model construction

Process:num=Input(shape=(None, num_data.shape[-1]))
txt=Input(shape=(None, onehot_dim))
t1_a=layers.ConvlD(k1,1,activation="relu, padding="same’)(num)
t1_b=layers.ConvlD(k2, 1, activation="relu, padding="same’)(num)
t1_b=layers.Conv1D(k3, 3, activation="relu, padding="same’)(t1_b)
t1_c=layers.Conv1D(k4,3,activation="relu, padding="same’)(num)
t1_c=layers.ConvlD(k5, 3, activation="relu, padding="same’)(t1_c)
tl=layers.concatenate([t]1_a,t1_b,t1_c], axis=-1)
txt= layers.ConvlD(k6,3,activation="relu, padding="same’) (txt).

tl:nl.ayers.LSTM(k7, dropout=0.5)(t1)
tl=layers.Dense(1)(t1)
model=Model([num, txt], t1)
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