

Analysis of Recursive Teaching of Computational

Thinking

Ren Xiaokang, Yang Deyi
*

School of I Northwest Normal University, Lanzhou, Gansu, China
*Corresponding author. Email: 237993036@qq.com

ABSTRACT

The idea of recursion runs through the algorithm design itself and is a very important part of the
program design. Learning algorithms is a good way to cultivate computing power. This paper

analyzes computational thinking, the concept of recursion, algorithm thinking methods and steps

based on recursive problems, and combines the procedural nature of algorithm design and
computational thinking problem solving from five aspects, so as to analyze the thousands of factors

between algorithm design and computational thinking. The inextricable connection enables students

to strengthen their computational thinking skills while studying algorithm design courses; they can be

more comfortable in solving programming problems.
Keywords: computational thinking, recursion, divide and conquer, backtracking

1. INTRODUCTION

Since Professor Zhou Yi-zhen, Carnegie Mellon
University, put forward the concept of “computational

thinking”, the international and domestic education
fields have set off an upsurge of research on

computational thinking [1].Professor Zhou Yi zhen

proposed: Computational thinking is a series of
thinking activities covering the breadth of computer

science, such as problem solving, system design, and
understanding of human behaviour using the basic

concepts of computer science. It is also foreseen that
computational thinking will become an essential

cognitive skill for everyone like reading, writing, and
arithmetic. A report on computational thinking by the

National Re-search Council (NRC) advanced a similar
idea, that CT is cognitive skill which the “average

person is expected to possess” [2]. Similarly, Bundy
suggested that computational thinking concepts have

been used in other disciplines via problem solving
processes, and that the ability to think computationally

is essential to every discipline [3]. With the Ministry
of Education issued “Several Opinions on Further

Strengthening the Undergraduate Teaching in
Colleges and Universities”, it is proposed that colleges

and universities should actively promote research-
based teaching and improve their innovative ability

[4]. Nowadays, computational thinking has received
widespread attention. As a good way to cultivate

students' computational thinking, algorithm
programming courses must have common

characteristics with computational thinking. We
recognize that the process of computational thinking

is generally problem analysis, problem
decomposition, and solution planning. The essence of

computational thinking is abstraction and automation.
Algorithm programming is a very critical course.

Recursion is widely used in programming, and it is
also a difficult point in many students’ learning. Many

students understand recursion, but they always
encounter various problems in the process of

programming, especially non-computers. Of students
are very difficult to understand.

1.1. Basic understanding of recursion

Recursion is a process of directly or indirectly calling

oneself. It is completed by two parts, one is the calling
phase, and the other is the return phase. When the

program is executed, the loop is gradually applied
according to the setting of the conditions until the

termination instruction is met. The process of
returning to the previous instruction and finally

getting the return value. There is an inseparable
connection between recursion and loops. Recursion is

often used to replace loops. Recursion has always
been irreplaceable in program design. Combining

computational thinking to perform recursive problem
algorithm selection analysis requires a preliminary

understanding of recursion, so what? Is it recursive?
What is the idea of recursion? What are some

examples of recursion in real life?

Advances in Social Science, Education and Humanities Research, volume 480

Proceedings of the 2020 5th International Conference on Modern Management and

Education Technology (MMET 2020)

Copyright © 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 661

1.1.1. The concept of recursion

In fact, recursion is a kind of nested call function that
you use to define yourself. In programming, you call

your own process. If there is no termination condition,

an infinite loop is formed, so recursion needs a
conclusion. This conclusion is not to terminate the

recursion, but to terminate the process of transmission
and let the process of regression begin. When the

substantive recursive function is called, the system
allocates stack space for it. This process is the process

of pushing variables onto the stack. At the end of each
call, there will be a popping process, and the

corresponding value at the top of the stack is assigned
to the formal parameter. And variables, continue to

start the next call return process until the end.

1.1.2. Recursive thinking

The idea of recursive problems is to decompose a

large problem into smaller ones, and perform the same

operations on smaller problems. Recursion has a very
special problem among the small problems. This

problem is the termination condition of recursion. The
variable that controls the termination condition is

called the recursive element. Usually, divide and
conquer ideas and backtracking ideas are commonly

used to solve recursive problems. If all the small
problems decomposed by recursion are combined to

obtain the final solution of the recursive problem, then
this is a recursive problem solved by divide and

conquer; if you decompose several Small problems,
one loop and one loop, must be the next small

problem that depends on the solution of the previous
small problem, then this is a recursive problem solved

by retrospective thinking. According to the
description of the recursive thought, we can get the

principle diagram of divide and conquer as shown in
Figure 1, and the principle diagram of backtracking as

shown in Figure 2.

 Figure 1 The principle diagram of divide and

conquer

 Figure 2 The principle diagram of backtracking

2. BACKGROUNDANALYZE THE

RECURSIVE PROBLEM FROM THE

PERSPECTIVE OF COMPUTATIONAL

THINKING

In the learning process of students, they can
understand the recursion problem by understanding

the concept of recursion, and then analyze the
recursive problem case, such as the most classic N

factorial problem, the Tower of Hanoi problem, etc.
After programming and executing the dynamic picture

demonstration, it is completed Teachers often think
that the problem is relatively simple from their own

point of view, and students should understand more
thoroughly after the dynamic demonstration. In fact,

most students only remember the demonstration
process. Better students understand the principle and

have not reached a thorough understanding of how the
problem occurs. Analyze the problem, solve the

problem, and not when you encounter other similar
problem-solving processes. Analyzed from the

perspective of computational thinking, teachers need
to downplay their own role, so that students can

participate completely, through the substantial

abstraction and automation of computational thinking
to carry out problem analysis, problem decomposition,

modeling, algorithm design, evaluation and reflection,
from divide and conquer Look back at two angles to

analyze the recursion problem.

2.1. The concept of computational thinking

Computational thinking was proposed by Professor

Zhou Yizhen in 2006, who believed that
computational thinking is a series of thinking

activities using the basic concepts of computer science
for problem solving, system design and human

behavior understanding (wing, 2006). Since then, the
American Association for Educational Technology

and the Association of Computer Teachers have
proposed professional vocabulary related to

computational thinking, such as data collection, data

representation, data analysis, problem decomposition,

Advances in Social Science, Education and Humanities Research, volume 480

662

abstraction, algorithms and programs, automation,

simulation, and parallelization (ISTE&CSTA, 2011b).
Professor Zhou Yizhen believes that computational

thinking can be applied to various disciplines. It is a
ubiquitous existence of human thinking like logical

thinking. It will be called essential human skills like
listening, speaking, reading and writing.

Computational thinking will combine basic

mathematical thinking in the process of application,
and use computer science knowledge to complete the

automatic solution of the problem [5].In recent years,
the scholars believe that the computational thinking is

one of the core qualities of information technology
disciplines. Therefore, improving students’

computational thinking ability is one of the core goals
of computer teaching [6].

2.2. Basic analysis mode for recursive

problems

There are two types of recursion: direct recursion and

indirect recursion. Here we take the direct recursive
printing of digital triangles as an example for analysis.

This program realizes the printing of digital triangles by
calling the function print. Each time its own function is

called, the value of n is reduced by one from the
previous call. When n is 0, it returns to printing.

2.3. Recursive problem analysis model

combined with computational thinking

From the perspective of how students solve the

problem combined with computational thinking, the
problem model analysis of the printing digital triangle

is mainly carried out from the following five steps:
problem analysis, problem decomposition, abstract

modeling, algorithm design, evaluation and reflection.

2.3.1. Problem analysis

First, analyze what kind of problem the problem is,

whether it is a recursive problem, what is the scale of
the problem, whether it can be executed recursively,

and if the result required by the problem is executed
recursively, given the input and output conditions,

what is the termination condition.

2.3.2. Problem decomposition

The process of problem decomposition is actually
relatively simple. It only converts large-scale

problems into small-scale problems, and small-scale
problems into smaller-scale problems, until it can’t be

transformed, but it is the same scale regardless of
scale. The process is to reduce the scale until it can no

longer be reduced.

2.3.3. Abstract Modeling

After decomposing the problem by scale, it is
necessary to analyze the problems solved by the sub-

problems of various scales. Each sub-scale problem is

divided into two types. One is an equal relationship.
The scales do not affect each other and are

independent of each other. The solutions of each scale
are combined to obtain The solution of the general

problem, that is, this problem is the idea of divide and
conquer, it is necessary to use the divide and conquer

strategy to model the problem; the second is the child-
parent relationship, with the result of the first

question, there is an answer to the second question,
that is, the question belongs to For backtracking

thinking, it is necessary to use backtracking strategies
to model the problem recursively.

2.3.4. Algorithm design and operation

According to the combination of problem analysis,

problem decomposition, and abstract modeling, the
algorithm design is carried out. First, the function

framework is written, and then input and output
conditions and termination conditions are added at the

appropriate positions. The algorithm is realized
through the automatic operation of the program. This

process That is the process of automated execution.

2.3.5. Evaluation reflection

In the teaching process, a teaching program that feels

good may not necessarily have a good teaching effect.
The algorithm design and analysis process combined

with computational thinking is even more essential to
evaluate the teaching effect and evaluate the

computational thinking method, and to carry out the
teaching process through the teaching effect Reflection

will enable students to improve their computational

thinking ability and grasp the knowledge points.

3. CP ANALYSIS OF EXAMPLES OF

ALGORITHMS COMBINED WITH

COMPUTATIONAL THINKING

Taking computational thinking as the starting point,
analyze the problem from five aspects.

3.1. Example analysis of the Tower of

Hanoi problem

The Tower of Hanoi problem is a very typical
example of recursion. Suppose there are three pillars,

denoted by A, B, and C, respectively. It is required to
move the plate on A to pillar C. At any time, the small

Advances in Social Science, Education and Humanities Research, volume 480

663

plate should be on the upper plate and the larger plate

on the lower plate. Only one plate can be moved at a
time. Partial processing of problems through

computational thinking analysis models:

3.1.1 Problem analysis

The Tower of Hanoi problem is first analyzed briefly.
Assuming that there are only four plates, the solution

is obviously to first move the three plates on A to B
using C as an intermediary, and then move the fourth

plate on A to C, and finally A is an intermediary to
move the three plates on B from B to C. We first

reduce the size of the problem from N plates to 4
plates. The actual problem to be solved is the same

because of the number of plates. We can’t do it purely
by calculation. We can only use recursive functions to

make big problems smaller. Therefore, we are sure
that this problem is a recursive problem and has a

recursive nature. According to the conditions given in
the title, the market is on top and one plate is moved

at a time. The condition for recursive input, when will
the recursion be terminated? The recursion ends when

there is only one plate left.

3.1.2 Problem breakdown

The key to the decomposition of the Tower of Hanoi
problem lies in the number of plates. According to the

problem analysis, the first step is to move n-1 plates
from A to C. The second step is to move the

remaining plate to B. Finally Move N-1 plates through
a to C, and only one plate can be moved at a time

during the moving process, that is to say whether the
plate is moved from A to B or the plate is moved from

A to C during the moving process, Still move the plate
from B to C. When the number of plates is reduced to

1, the smallest problem can no longer be resolved, that
is, the plate moves at this time.

3.1.3 Abstract modeling

According to the problem analysis and problem

decomposition, we can find that moving the plate is
carried out in two situations, that is, when the number

of plates is 1, it is moved, and when the number of
plates is greater than 1, it cannot be moved, and the

scale can only be reduced again to generate recursive
functions. Move until the number of plates is

gradually reduced to 1. Moreover, according to the
model, it is divided into several problems that are

smaller in scale, but belong to the same kind of
independent problems. This problem is a recursive

problem solved by the divide and conquer idea.

3.1.4 Algorithm design and operation

Through the above analysis and modeling, we can
easily start programming based on problem analysis,

problem decomposition, and abstract modeling. The

function part of the execution code is as follows (c
language programming):

void hanoi(int n,char A,char B,char C)
{

 if(n==1)
 move(A,C);

 else
 {

 hanoi(n-1,A,C,B);
 move(A,C);

 hanoi(n-1,B,A,C);
 }

}

3.1.5 Evaluation and reflection

The Tower of Hanoi problem is a typical divide-and-
conquer problem. When we use computational

thinking to solve the divide-and-conquer problem, is it
feasible to also solve the problem of retrospective

type? The answer is yes, when we try to solve the
Fibonacci amount problem, it is still very appropriate.

4. CONCLUSION

Analyze the problem with the idea of computational
thinking, start from the root of the problem, analyze,

decompose, and model the problem, so that many
students who are unable to start when they see

programming can analyze the problem step by step
according to different modules, and slowly Ideas,

know where the key points are to solve the problem,
after the model is established, you can write the code

and run successfully. For students with strong

programming ability, combining computational
thinking to analyze recursive problems also enables

them to have strong computational thinking solving
skills when solving programming problems without

panic, and more importantly, so that the teacher is no
longer the role of a traditional teacher, The classroom

is no longer a traditional classroom where teachers
talk and listen to students. Through the integration of

computational thinking, the role of teachers is
downplayed, students’ participation is strengthened,

the quality of students’ classrooms are improved, and
their ability to solve problems after class is enhanced.

The ability of computational thinking will gradually
deepen into all disciplines and stages.

Advances in Social Science, Education and Humanities Research, volume 480

664

REFERENCES

[1] FAN Wen-xiang, ZHANG Yi-chun, LI Yi. A

review of research and development of computational

thinking at home and abroad. Journal of Distance

Education. 2018, 2:3-15.

[2] Committee for the Workshops on Computational

Thinking. Report of a Workshop on The Scope and

Nature of Computational Thinking. The National

Academies Press, 2010

[3] A. Bundy. Computational thinking is pervasive.

Journal of Scientific and Practical Computing, 1:67–

69, 2007.

[4] The Ministry of Education. "Some opinions on

Further Strengthening Undergraduate Teaching in

Colleges and Universities." China University

Teaching, February, 2005. (In Chinese)

[5] Yong Yang, Chaoyan Zhu,and Huanda Lu."A

Case Study of C Language Programming Teaching

based on Computational Thinking". Proceedings of

1st International Conference on Education and

Educational Development (EED 2020). Ed. BCP,

2020, 139-142.

[6] Jing G, Chang-Lin H , Xin-Ting Z . Study on the

Computational Thinking Ability Development Model

and the Teaching Program[J]. modern educational

technology, 2018.

Advances in Social Science, Education and Humanities Research, volume 480

665

