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ABSTRACT
This paper focuses on the stability and stabilization analysis for the T-S fuzzy systems with time-delay under imperfect premise
matching, in which the number of fuzzy rules and membership functions employed for the fuzzy model and fuzzy controller
are different. By introducing an augmented Lyapunov-Krasovskii function containing a triple-integral term, a less conserva-
tive membership-dependent stability condition is proposed via an integral inequality. Moreover, a new design approach under
imperfect premise matching is developed in the paper. Four numerical examples are given to illustrate the advantages of our
approaches. A practical benchmark problem namely continuous Stirred Tank Reactor (CSTR) is discussed in details in order to
further verify their effectiveness.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

As we know that the fuzzy model proposed by Takagi and Sugeno
can effectively represent nonlinear dynamic systems [1], and some
efforts on T-S fuzzy model have been done [2,3]. For example, a
reinforcement fuzzy learning scheme for robots playing a differ-
ent game in [4], and [5] proposes a fuzzy logic control algorithm
(FLCA) to stabilize the Rössler chaotic dynamical system. Micro-
scopic simulation and fuzzy rule interpolation is applied to the traf-
fic lights cycles and green period ratios in [6]. Moreover, a model
for picture fuzzy Dombi aggregation operators is developed in [7]
to solve multiple attribute decision-making methods in an updated
way. On the other hand, time-delays exist in numerous dynamical
systems including biology systems, mechanics, economics, chemi-
cal systems, network systems, etc. Generally, time-delays often lead
to instability and poor performances. Therefore, it is significant to
take time-delays into account in the practical analysis and synthesis
problems [8–10]. In the literature, two basic techniques have been
widely utilized, i.e., delay-independent [11] and delay-dependent
approaches. The latter makes use of the information on the length
of the delays, which can yields less conservative results than the
former one. As a matter of fact, most delay-dependent stability
and stabilization results are derived via the Lyapunov-Krasovskii
function (LKF) method [12–14]. However, stability criteria based

*Corresponding author. Email: wdw9211@126.com

on the LKF method is sufficient and unnecessary, which leads to
the results conservative. Therefore, developing less conservative
criteria, i.e., enlarging the feasible region of stability criteria and
obtaining the maximum delay bounds of time-delays, has become
a popular research issue [15–19]. There are two major ways to
reduce conservativeness. One is constructing a proper LKF, and the
other is applying suitable bounding techniques so that the deriva-
tive of the constructed LKF can be estimated. During the recent
years, different LKF techniques have been extensively applied, such
as piecewise [20,21], fuzzy [22], and line integral [23]. If more
information related to delay and cross-term relationship is taken
into consideration, less conservative results can be obtained by
using the delay-partitioning LKF [24,25], refined LKF [26,27], and
delay-product-type LKF [28–30]. With multiple integral terms,
the conservatism of the obtained results is further lessened
[31–34]. In terms of bounding techniques, the free-weighting
matrix and integral inequality approaches have been used. When
more free matrices are introduced in the stability conditions, the
corresponding computational complexity is also increased in the
free-weighting matrix approach [35]. Therefore, Jensen’s inequal-
ity is applied to estimate the single integral terms without using any
slack matrices [36]. Wirtinger’s inequality providing more accurate
bounding results is proposed in [37]. In order to obtain better con-
servative results, some improved inequalities are studied, such as
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auxiliary function-based integral inequality [38] and free-matrix-
based integral inequality [39]. Additionally, Bessel–Legendre
inequality that is less conservative than Jensen’s and Wirtinger’s
inequalities is developed in [40]. An extended Wirting’s inequality
[41] is further applied to the time-delay systems. In order to gener-
ate tighter lower bounds for the single integral terms, a new inequal-
ity is proposed so that more results on stability analysis for time-
delay systems can be derived [42]. However, the above work only
considers the single integral terms. Some multiple integral inequal-
ities are introduced in [43–45]. For example, Wirtinger’s double
inequality is applied to handle the double integral terms in [46,47].
To reduce the estimation gap, a new double integral inequality is
proposed in [48]. Most of the existing work on the stability and sta-
bilization for the T-S fuzzy delayed systems is based on Parallel Dis-
tributed Compensation (PDC) scheme [1–38], in which both the
fuzzy model and fuzzy controller share the same premise member-
ship functions and number of fuzzy rules. However, the design flex-
ibility of such a fuzzy controller is limited and its structure becomes
unnecessary in some cases, thus resulting in a high implementation
cost. To cope with these issues, design of under imperfect premise
matching is studied [49], where the membership function of the
fuzzy controller can be selected arbitrarily. Some efforts on devel-
oping less conservative stability criteria for this kind of systems have
beenmade in order to enlarge the feasible region of stability criteria
as well as acquire themaximumdelay bounds. However, in [50–54],
there are still two open questions: how to select the LKF and how to
estimate the derivative of the constructed LKF.Motivated by coping
with these two issues, we propose a new augmented LKF containing
a triple-integral term in this paper. Moreover, we develop two novel
improved integral inequalities, which can generate tighter lower

bounds for ∫
b

a
̇xT (s)Q ̇x (s) ds and ∫

t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) dsdu than the

conventional approaches.

In this paper, we focus on the stability and stabilization issues for
the T-S fuzzy systems with the time-delay under imperfect premise
matching, in which the fuzzy model and fuzzy controller share
different premise membership functions as well as different num-
ber of fuzzy rules. With an augmented LKF that contains a triple-
integral term, a novel less conservative stability condition with the
information of membership functions is proposed on the basis of
improved integral inequalities. Moreover, a new design approach
under imperfect premise matching is explored. The main contribu-
tions of our paper can be summarized as follows:

• Some less conservative stability criteria are developed and
studied so that a larger upper bound of delay can be
obtained.

• The proposed controller design method can not only enhance
the design flexibility, but also reduce the implementation cost
of the fuzzy controller.

The remainder of this paper is organized as follows: In Section 2,
the problem under consideration is first described in details. Novel
stability and stabilization conditions under imperfect premise
matching are next proposed in Section 3. A total of five numerical
examples are used to illustrate the effectiveness and advantages of
the proposed method in Section 4. Finally, Section 5 concludes this
paper with some conclusions and remarks.

Notations: In this paper, matrices are assumed to have compati-
ble dimensions. Rn refers to the n-dimensional Euclidean space.
Rn×m denotes the set of all n × m real matrices. The notation M >
(≥,<,≤) 0 is used to denote a symmetric positive-definite (pos-
itive semi-definite, negative, and negative semi-definite, respec-
tively) matrix. The notation A−1 and AT denote the inverse and
transpose of A, respectively. r and c are the number of the fuzzy
rules. Mi

𝛼, 𝛼 = 1, 2, … , p; i = 1, 2, … , r denotes the fuzzy set of
rule i. f𝛼 (x (t)) are the known premise variables not dependent on
the input variables. x (t) ∈ Rn is the state variables, 𝜙 (t) is the ini-
tial condition, and 𝜏 is constant time-delay satisfying 0 ≤ 𝜏 ≤ 𝜏.
u (t) ∈ Rm is the control input, A1i,A2i,A3i,Bi are some constant
matrices with appropriate dimensions. 𝜇Mi

𝛼

(
f𝛼 (x (t))

)
is the grade

of membership of f𝛼 (x (t)) inMi
𝛼. N

j
𝛽 denotes the fuzzy set of rule

𝛽 = 1, 2, … , q; j = 1, 2, … , c. Fj ∈ Rm×n is the feedback gain of rule
j. vN j

𝛽

(
g𝛽 (x (t))

)
is the grade of membership of g𝛽 (x (t)) inN

j
𝛽. 𝜀 (t)

denotes the white Gaussian noise. diag {⋯} denotes the block diag-
onal matrix. 0 denotes the zero matrix. For any square matrix X, we
define sym {X} = X + XT. Note that NSR stands for noise-to-signal
ratio.

2. SYSTEM DESCRIPTION AND
MODELLING

2.1. Fuzzy Time-Delay Model

Consider the following nonlinear system with the state and dis-
tributed delays defined by the following T-S fuzzy delayed model.
Let r be the number of the fuzzy rules describing the time-delay
nonlinear plant. The ith rule can be represented as follows:

Rule i: IF f1 (x (t)) isMi
1 and ... and fp (x (t)) isMi

p THEN

{ ̇x (t) = A1ix (t) + A2ix (t − 𝜏) + A3i ∫
t

t−𝜏
x (s) ds + Biu (t)

x (t) = 𝜙 (t) , t ∈ [ −𝜏, 0]
(1)

where Mi
𝛼, 𝛼 = 1, 2, … , p; i = 1, 2, … , r denotes the fuzzy set of

rule i. f𝛼 (x (t)) are the known premise variables not dependent on
the input variables. x (t) ∈ Rn is the state variables, 𝜙 (t) is the ini-
tial condition, and 𝜏 is constant time-delay satisfying 0 ≤ 𝜏 ≤ 𝜏.
u (t) ∈ Rm is the control input, A1i,A2i,A3i,Bi are some constant
matrices with appropriate dimensions. For a given input and output
(x (t) , u (t)) , we can express the T-S fuzzy model as

̇x (t) =
r

∑
i=1

wi (x (t))
⎡⎢⎢⎢
⎣

A1ix (t) + A2ix (t − 𝜏)

+A3i ∫
t

t−𝜏
x (s) ds + Biu (t)

⎤⎥⎥⎥
⎦

(2)

where

wi (x (t)) =
𝜇i (x (t))
r

∑
i=1

𝜇i (x (t))
, 𝜇i (x (t)) =

p

∏
𝛼=1

𝜇Mi
𝛼

(
f𝛼 (x (t))

)
. (3)
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𝜇Mi
𝛼

(
f𝛼 (x (t))

)
is the grade of membership of f𝛼 (x (t)) in Mi

𝛼.
Therefore, based on (3), for all i ∈ {1, 2,⋯ , r}, we have

r

∑
i=1

wi (x (t)) = 1,wi (x (t)) ≥ 0 (4)

2.2. Fuzzy Controller Under Imperfect
Premise Matching

Different from the PDC design technique, a new fuzzy control law
under imperfect premisematching is employed here to establish the
state-feedback controller to stabilize the fuzzy time-delay systems
in Eq. (2).

Rule j: IF g1 (x (t)) is N
j
1 and … and gq (x (t)) is N

j
q THEN

u (t) = Fjx (t) , j = 1, 2, … , c (5)

whereN j
𝛽 denotes the fuzzy set of rule 𝛽 = 1, 2, … , q; j = 1, 2, … , c.

Fj ∈ Rm×n is the feedback gain of rule j. The overall state-feedback
fuzzy control law is represented by

u (t) =
c

∑
j=1

mj (x (t)) Fjx (t) (6)

where

mj (x (t)) =
vj (x (t))
r

∑
j=1

vj (x (t))
, vj (x (t)) =

q

∏
𝛽=1

vN j
𝛽

(
g𝛽 (x (t))

)
(7)

vN j
𝛽

(
g𝛽 (x (t))

)
is the grade of membership of g𝛽 (x (t)) in N j

𝛽.

Therefore, for all i ∈ {1, 2,⋯ , r}, we have
c

∑
j=1

mj (x (t)) = 1,mj (x (t)) ≥ 0 (8)

2.3. Close-Loop Fuzzy Control Systems

The closed-loop form of the nominal system is

̇x (t) =
r

∑
i=1

c

∑
j=1

hij (x (t)) [

(
A1i + BiFj

)
x (t)

+A2ix (t − 𝜏) + A3i ∫
t

t−𝜏
x (s) ds] (9)

where

hij (x (t)) ≜ wi (x (t))mj (x (t)) (10)

Remark 1. It can be discovered from Eq. (9) that the fuzzy time-
delay model and fuzzy controller do not share the same member-
ship functions that leads to imperfect premise matching. If we set
A3i = 0, our system has the same structure as that of [48–54]. On
the other hand, let r ≡ c, we can obtain the system in [48–52,54].
Moreover, letwi (x (t)) = mj (x (t))with i, j = 1, 2, … , r, which is the
requirement of the conventional PDC-based method. As a result,
the representation of the controller dynamics is more general, and
can provide more design flexibility.

Lemma 1. [42] For a positive-definite matrix Q > 0 and any con-
tinuously differentiated function x ∶ [a, b] → Rn, the following
inequality holds:

∫
b

a
̇xT (s)Q ̇x (s) ds ≥ 1

b − a
ΩT
1QΩ1 +

3
b − a

ΩT
2QΩ2

+ 5
b − a

ΩT
3QΩ3 +

7
b − a

ΩT
4QΩ4

(11)

where

Ω1 = x (b) − x (a)

Ω2 = x (b) + x (a) − 2
b − a ∫

b

a
x (s) ds

Ω3 = x (b) − x (a)

+ 6
b − a ∫

b

a
x(s)ds − 12

(b − a)2 ∫
b

a ∫
b

u
x(s)dsdu

Ω4 = x (b) + x (a) − 12
b − a ∫

b

a
x(s)ds + 60

(b − a)2 ∫
b

a ∫
b

u
x(s)dsdu

− 120
(b − a)3 ∫

b

a ∫
b

u ∫
b

v
x(s)dsdudv

Lemma 2. [48] For a positive-definite matrix Q > 0 and any con-
tinuously differentiated function x ∶ [a, b] → Rn, the following
inequality holds:

∫
b

a ∫
b

u
̇xT (s)Q ̇x (s) dsdu ≥ 2ΩT

5QΩ5 + 4ΩT
6QΩ6 + 6ΩT

7QΩ7 (12)

where

Ω5 = x (b) − 1
b − a ∫

b

a
x (s) ds

Ω6 = x (b) + 2
b − a ∫

b

a
x (s) ds − 6

(b − a)2 ∫
b

a ∫
b

u
x (s) dsdu

Ω7 = x (b) − 3
b − a ∫

b

a
x(s)ds + 24

(b − a)2 ∫
b

a ∫
b

u
x(s)dsdu

− 60
(b − a)3 ∫

b

a ∫
b

u ∫
b

v
x(s)dsdudv

Lemma 3 (Finsler’s Lemma [14]). Given matrices V ∈ Rn, Φ =
ΦT ∈ Rn×n,N ∈ Rm×n, if rank (N) < n, the following three state-
ments are equivalent:

i. VTΦV < 0, ∀NV = 0,V ≠ 0,
ii. N⊥TΦN⊥ < 0.
iii. ∃L ∈ Rn×n ∶ Φ + LN + NTLT<0

where N⊥ is the orthogonal complement of N.
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3. MAIN RESULTS

Theorem 1. For given scalar hij > 0, the system Eq. (9) is asymp-
totically stable, if there exist symmetric positive matrices P ∈ R4n×4n,
Q ∈ Rn×n, R ∈ Rn×n, S ∈ Rn×n, Mij ∈ Rn×n, any matrices
L ∈ Rn×n,Ti (i = 1, 2) ∈ Rn×n, and predefined Fj

(
j = 1, 2,⋯ , c

)
∈

Rn×n, such that

Φ̂ij + L̃Ŵij + ŴT
ij L̃

T − M̂ij +
r

∑
i=1

c

∑
j=1

hij (x (t)) M̂ij < 0 (13)

where L̃ = [ L L L L L L] ∈ Rn×6n,Φij = Ω1+Ω2+Ω3+sym {Θij},
andΩi (i = 1, 2, 3) are defined as in Eqs. (23–25),Wij, Θij are defined
in Eqs. (28) and (30).

Proof. Let us choose the following LKF candidate:

V (x (t)) = 𝜂T (t) P𝜂 (t) + ∫
t

t−𝜏
xT(s)Qx(s)ds + 𝜏 ∫

t

t−𝜏 ∫
t

u
̇xT(s)R ̇x(s)dsdu

+ ∫
t

t−𝜏 ∫
t

u ∫
t

s
̇xT(𝛾)S ̇x(𝛾)d𝛾dsdu

(14)

where

𝜂 (t) = [xT (t) ∫
t

t−𝜏
xT (s) ds ∫

t

t−𝜏 ∫
t

u
xT (s) dsdu ∫

t

t−𝜏 ∫
t

u ∫
t

s
xT (𝛾) d𝛾dsdu]

T

(15)

Differentiation of V (x (t)) along the trajectories of system Eq. (9)
yields

V̇ (x (t)) = 2𝜂T (t) P ̇𝜂 (t) + xT (t)Qx (t) − xT (t − 𝜏)Qx (t − 𝜏)

+𝜏2 ̇xT (t)R ̇x (t) + 𝜏2
2 ̇xT (t) S ̇x (t) − 𝜏 ∫

t

t−𝜏
̇xT (s)R ̇x (s) ds

− ∫
t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) dsdu

= 𝜉T (t)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

sym
⎛⎜⎜⎜⎝
(
eT1 eT4 eT5 eT6

)
× P

×
(
e3 e1 − e2 𝜏e1 − e4

𝜏2
2 e1 − e5

)⎞⎟⎟⎟⎠
+eT1Qe1 − eT2Qe2 + 𝜏2eT3Re3 +

𝜏2
2 eT3Se3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝜉 (t)

−𝜏 ∫
t

t−𝜏
̇xT (s)R ̇x (s) ds − ∫

t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) dsdu

(16)

Define

𝜉T (t) = [xT (t) xT (t − 𝜏) ̇xT (t) ∫
t

t−𝜏
xT(s)ds

∫
t

t−𝜏 ∫
t

u
xT(s)dsdu ∫

t

t−𝜏 ∫
t

u ∫
t

s
xT(𝛾)d𝛾dsdu]

(17)

ei = [ 0 0 … I(i) … 0] ∈ Rn×6n, i = 1, 2, … , 6. (18)

We have

𝜉T (t) eT1 = xT (t) ; 𝜉T (t) eT2 = xT (t − 𝜏) ;

𝜉T (t) eT3 = ̇x (t) ; 𝜉T (t) eT4 = ∫
t

t−𝜏
xT (s) ds;

𝜉T (t) eT5 = ∫
t

t−𝜏 ∫
t

u
xT (s) dsdu;

𝜉T (t) eT6 = ∫
t

t−𝜏 ∫
t

u ∫
t

s
xT (𝛾) d𝛾dsdu

(19)

From Lemma 1, there is

−𝜏 ∫
t

t−𝜏
̇xT (s)R ̇x (s) ds ≤

𝜉T (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− (e1 − e2)T R (e1 − e2)

−3
(
e1 + e2 −

2
𝜏 e4

)T
R
(
e1 + e2 −

2
𝜏 e4

)

−5
⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
T

R
⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
−7

⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠
T

R
⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜉 (t)

(20)

By Lemma 2, we get

− ∫
t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) ds ≤

𝜉T (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
(
e1 −

1
𝜏 e4

)T
R
(
e1 −

1
𝜏 e4

)

−4
⎛⎜⎜⎜⎝
e1 +

2
𝜏 e4

− 4
𝜏2 e5

⎞⎟⎟⎟⎠
T

R
⎛⎜⎜⎜⎝
e1 +

2
𝜏 e4

− 4
𝜏2 e5

⎞⎟⎟⎟⎠
−6

⎛⎜⎜⎜⎝
e1 −

3
𝜏 e4

+24𝜏2 e5 −
60
𝜏2 e6

⎞⎟⎟⎟⎠
T

R
⎛⎜⎜⎜⎝
e1 −

3
𝜏 e4

+24𝜏2 e5 −
60
𝜏2 e6

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝜉 (t)

(21)

The above inequalities are introduced to Eq. (16), and we have

V̇ (x (t)) ≤ 𝜉T (t) [Ω1 +Ω2 +Ω3] 𝜉 (t) (22)

where

Ω1 = sym
⎛⎜⎜⎜⎝
(
eT1 eT4 eT5 eT6

)
× P

×
(
e3 e1 − e2 𝜏e1 − e4

𝜏2
2 e1 − e5

)⎞⎟⎟⎟⎠ (23)
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Ω2 = − (e1 − e2)T R (e1 − e2)

−3
(
e1 + e2 −

2
𝜏 e4

)T
R
(
e1 + e2 −

2
𝜏 e4

)

−5
⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
T

R
⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
−7

⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠
T

R
⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠

(24)

Ω3 = −2
(
e1 −

1
𝜏 e4

)T
R
(
e1 −

1
𝜏 e4

)
−4

(
e1 +

2
𝜏 e4 −

4
𝜏2 e5

)T
R
(
e1 +

2
𝜏 e4 −

4
𝜏2 e5

)
−6

(
e1 −

3
𝜏 e4 +

24
𝜏2 e5 −

60
𝜏2 e6

)T

R
(
e1 −

3
𝜏 e4 +

24
𝜏2 e5 −

60
𝜏2 e6

)
(25)

From Eq. (9), the following equation holds

2
r

∑
i=1

c

∑
j=1

hij [

(
A1i + BiFj

)
x (t)

+A2ix (t − 𝜏) + A3i ∫
t

t−𝜏
x (s) ds − ẋ (t)] = 0 (26)

The above equation can be rewritten as follows:

2
r

∑
i=1

c

∑
j=1

hijWij𝜉 (t) = 0 (27)

where

Wij = [
(
A1i + BiFj

)
A2i −I A3i] [ e1 e2 e3 e4]

T (28)

For two arbitrary matrices with appropriate dimensions T1 and T2,
we can obtain

2𝜉T (t) [
r

∑
i=1

c

∑
j=1

hij (e1T1 + e3T2)Wij] 𝜉 (t) = 0 (29)

Define

Θij = (e1T1 + e3T2)Wij. (30)

𝜉T (t) [2
r

∑
i=1

c

∑
j=1

hijΘij] 𝜉 (t) = 0 (31)

By introducing the above zero quantities to Eq. (22), we can obtain

V̇ (x (t)) ≤ 𝜉T (t) [Ω1 +Ω2 +Ω3] 𝜉 (t) + 𝜉T (t) [2
r

∑
i=1

c

∑
j=1

hijΘij] 𝜉 (t)

=
r

∑
i=1

c

∑
j=1

hij𝜉T (t)
(
Ω1 +Ω2
+Ω3 + Θij + ΘT

ij

)
𝜉 (t)

(32)

Define

Φij = Ω1 +Ω2 +Ω3 + Θij + ΘT
ij (33)

If Φij < 0, then V̇ (x (t)) < 0.
According to statements of (i) and (iii) of Lemma 3, if
𝜉T (t)Φij𝜉 (t) < 0, and Wij𝜉 (t) = 0, there exists L̃ = [ L L L
L L L ] ∈ Rn×6n such that

Φij + L̃Wij +WT
ij L̃

T < 0. (34)

Furthermore, the information of membership function is used to
alleviate the conservativeness as in [53].

V̇ (x (t)) ≤
r

∑
i=1

c

∑
j=1

hij (x (t)) 𝜉T (t)
(
Φij + L̃Wij +WT

ij L̃
T
)
𝜉 (t)

≤
r

∑
i=1

c

∑
j=1

hij (x (t)) 𝜉T (t)
(
Φij + L̃Wij +WT

ij L̃
T
)
𝜉 (t)

+
r

∑
i=1

c

∑
j=1

(
hij − hij

)
𝜉T (t)Mij𝜉 (t)

=
r

∑
i=1

c

∑
j=1

hij (x (t)) 𝜉T (t)
(
Φij + L̃Wij +WT

ij L̃
T −Mij

)
𝜉 (t)

+
r

∑
i=1

c

∑
j=1

hij (x (t)) 𝜉T (t)Mij𝜉 (t)

=
r

∑
i=1

c

∑
j=1

hij (x (t)) 𝜉T (t)
⎛⎜⎜⎜⎝
Φij + L̃Wij +WT

ij L̃
T

−Mij +
r

∑
𝛼=1

c

∑
𝛽=1

h𝛼𝛽 (x (t))M𝛼𝛽

⎞⎟⎟⎟⎠ 𝜉 (t)
(35)

where hij ≤ hij, hij is the upper bound of hij, andMij = MT
ij is a relax

matrix. If

Φij + L̃Wij +WT
ij L̃

T −Mij +
r

∑
i=1

c

∑
j=1

hij (x (t))Mij < 0 (36)

we have V̇ (x (t)) < 0.
Remark 2. It is apparent that the inequalities in Lemma 1 we

introduce can produce tighter lower bounds for ∫
b

a
̇xT (s)Q ̇x (s) ds

than the extended Wirtinger’s integral inequality [41], since
7ΩT

4QΩ4 > 0 for any vectors Ω4 ≠ 0. If we set Ω4 = 0,
Lemma 1 will reduce to the extended Wirtinger-based integral
inequalities [41]. To authors’ best knowledge, most tight lower

bounds of the cross terms, such as ∫
b

a
̇xT (s)Q ̇x (s) ds emerging in the

derivative of LKF, can be produced from Lemma 1. Therefore, the
stability criteria deduced from Lemma 1 is the least conservative as
compared with those derived from Wirtinger’s integral inequality
for choosing the same LKF.

Remark 3.The triple-integral term ∫
t

t−𝜏 ∫
t

u ∫
t

s
̇xT (𝛾) S ̇x (𝛾) d𝛾dsdu is

introduced in the LKF in our paper. Since the triple-integral term
takes the amount of additional system information into account, it
is beneficial to reduce the conservatism.
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Remark 4. A novel double integral inequality in Lemma 2 is intro-
duced to deal with the time derivative of the triple-integral term

∫
t

t−𝜏 ∫
t

u ∫
t

s
̇xT (𝛾) S ̇x (𝛾) d𝛾dsdu. Because the relationship between

the ∫
t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) dsdu and ∫

b

a
x (s) ds, ∫

b

a ∫
b

u
x (s) dsdu,

∫
b

a ∫
b

u ∫
b

v
x (s) dsdudv is considered in this paper, the most tight

lower bounds of double integral form ∫
t

t−𝜏 ∫
t

u
̇xT (s) S ̇x (s) dsdu are

obtained, which may yield less conservative results.

Remark 5. In the proof of Theorem 1, the membership func-
tions are considered in the inequalities, and an improved
membership function information dependent stability criterion is
presented, which will lessen the conservatism of the existing results
based on the PDC scheme. Consequently, the stability conditions in
Theorem 1 are more relax than the ones that are membership func-
tion independent.

Remark 6. From Theorem 1, as the PDC scheme claims that the
fuzzy model and fuzzy controller must share the same member-
ship function, it is worthy to note that PDC-based stability analysis
cannot handle the case when r ≠ c and wi (x (t)) ≠ mi (x (t)). On
the other hand, the case of wi (x (t)) ≠ mj (x (t)), where i = j =
1, 2, … , r is explored in [48–54]. However, our method presented in
Theorem 1 is effective to resolve all these cases. In other words, the
above case is the special case of Theorem 1. Consequently, the sta-
bility criterion proposed in this paper is more general.

Remark 7. With the zero equality in Eq. (27) and the free matri-
ces Ti (i = 1, 2) we have introduced, a new less conservative delay-
dependent stability criterion is established.

As the controller in Theorem 1 is known, we will next investigate
how to design the unmatching controller.

Theorem 2. For a given scalar hij > 0 and ti (i = 1, 2), the system
Eq. (9) is asymptotically stable if there exist symmetric positive matri-
ces P̂ ∈ R4n×4n, Q̂ ∈ Rn×n, R̂ ∈ Rn×n, Ŝ ∈ Rn×n, M̂ij ∈ Rn×n,
and any matrices L̃ = [ L L L L L L] ∈ Rn×6n, L ∈ Rn×n, and
Yj

(
j = 1, 2,⋯ , c

)
∈ Rn×n, such that

Φ̂ij + L̃Ŵij + ŴT
ij L̃

T − M̂ij +
r

∑
i=1

c

∑
j=1

hij (x (t)) M̂ij < 0 (37)

where Φ̂ij = Ω̂1 + Ω̂2 + Ω̂3 + sym {Θ̂ij}, and Θ̂ij, L̃Ŵij are defined as
Eqs. (39) and (40). Ω̂i (i = 1, 2, 3) are defined in Eqs. (41–43). If the
above matrix inequalities have feasible solutions, the controller gain
can be defined as

Fj = YjL−T
(
j = 1, 2,⋯ , c

)
(38)

Proof. Pre and postmultiply both the diag [L−1 L−1 L−1
L−1 L−1 L−1]and its transpose to Eq. (34). Let Ti = tiL (i = 1, 2),
and denote new variables Q̂ = LQL−T, R̂ = LRL−T, M̂ij = LMijL−T

and P̂ =
⎡⎢⎢⎢
⎣

L−1
L−1

L−1
L−1

⎤⎥⎥⎥
⎦

P
⎡⎢⎢⎢
⎣

L−1
L−1

L−1
L−1

⎤⎥⎥⎥
⎦

T

. With

Fj = YjL−T, j = 1, 2,⋯ , c, we have

Θ̂ij = (e1t1 + e3t2)

× [A1iLTeT1 + BiYjeT1 + A2iLTeT2 − LTe3 + A3iLTeT4] ,

(39)

L̃Ŵij = [ L L L L L L]

× [A1iLTeT1 + BiYjeT1 + A2iLTeT2 − LTe3 + A3iLTeT4]

(40)

Ω̂1 = sym
⎛⎜⎜⎜⎝
(
eT1 eT4 eT5 eT6

)
× P̂

×
(
e3 e1 − e2 𝜏e1 − e4

𝜏2
2 e1 − e5

)⎞⎟⎟⎟⎠ (41)

Ω̂2 = − (e1 − e2)T R̂ (e1 − e2)

−3
(
e1 + e2 −

2
𝜏 e4

)T
R̂
(
e1 + e2 −

2
𝜏 e4

)
−5

⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
T

R̂
⎛⎜⎜⎝
e1 − e2

+6𝜏 e4 −
12
𝜏2 e5

⎞⎟⎟⎠
−7

⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠
T

R̂
⎛⎜⎜⎜⎝
e1 + e2 −

12
𝜏 e4

+60𝜏2 e5 −
120
𝜏3 e6

⎞⎟⎟⎟⎠

(42)

Ω̂3 = −2
(
e1 −

1
𝜏 e4

)T
R̂
(
e1 −

1
𝜏 e4

)
−4

(
e1 +

2
𝜏 e4 −

4
𝜏2 e5

)T
R̂
(
e1 +

2
𝜏 e4 −

4
𝜏2 e5

)

−6
⎛⎜⎜⎜⎝
e1 −

3
𝜏 e4

+24𝜏2 e5 −
60
𝜏2 e6

⎞⎟⎟⎟⎠
T

R̂
⎛⎜⎜⎜⎝
e1 −

3
𝜏 e4

+24𝜏2 e5 −
60
𝜏2 e6

⎞⎟⎟⎟⎠

(43)

Thus, if Eq. (37) holds, the system Eq. (9) is asymptotically stable

with the feedback controller, which is defined as
c

∑
j=1

mjYjL−T. This

completes the proof.

Remark 8. Different from the general PDC technique, the design
method under the imperfect premise matching is much more flexi-
ble, since the number of the fuzzy rules and membership functions
of fuzzy controller can be chosen different from those of the fuzzy
model. Therefore, certain simple and certainmembership functions
of the fuzzy controller might be employed, which can reduce the
implementation cost.

Remark 9. The matrices Ti = tiL (i = 1, 2) are introduced to deal
with the bilinear matrix inequality to realize the LMI criteria. Some
numerical optimization algorithms can be used to obtainmore suit-
able parameters of ti (i = 1, 2) so as to reduce the conservatism.



Z. Zhang et al. / International Journal of Computational Intelligence Systems 14(1) 11–22 17

4. NUMERICAL EXAMPLES

In this section, a total of five examples are introduced to illustrate
the effectiveness and efficiency of the proposed method. The first
example shows the improvement of stability conditions. The second
example demonstrates the improvement of stabilization conditions
of the new controller design approach. The efficiency of our con-
troller designmethod is further validated in Example 3. The robust-
ness of this scheme against the measurement noise is illustrated in
Example 4. Finally, in Example 5, the continuous Stirred Tank Reac-
tor (CSTR), a benchmark problem for nonlinear process control, is
used to verify the validation of the proposed approach.

Example 1. Consider the two rules of the T-S fuzzy system [15] in
the form of (9) with u (t) = 0 and the parameters as follows:

A11 = [ −2.1 0.1
−0.2 −0.9] ,A12 = [ −1.9 0

−0.2 −1.1] ,

A21 = [ −1.1 0.1
−0.8 −0.9] ,A22 = [ −0.9 0

−1.1 −1.2] ,

A31 = A32 = [ 0 0
0 0]

For comparison with the results reported in the existing literature,
the maximum values of time-delay 𝜏 are given in Table 1.

From Table 1, we can see that larger time-delays are obtained based
on the less conservativeness of our method.

Example 2. Consider the two rules of the T-S fuzzy system [15] in
the form of (9) with the following parameters:

A11 = [ 0 0.6
0 1 ] ,A12 = [ 1 0

1 0] ,A21 = [ 0.5 0.9
0 2 ] ,

A22 = [ 0.9 0
1 1.6] ,A31 = A32 = [ 0 0

0 0] ,B1 = B2 = [ 11] .

The membership functions are chosen as [49]:

w1 (x1 (t)) =
⎛⎜⎜⎜⎝1 −

c (t) sin
(
|x1 (t)|−4

)5
1 + exp−100x1(t)3(1−x1(t))

⎞⎟⎟⎟⎠
× cos (x1 (t))2

1 + exp
−2.5x1(t)

(
3+ x1(t)

0.42

) ,

w2 (x1 (t)) = 1 − w1 (x1 (t))

Table 1 Maximum value of 𝜏 (Example 1).

Paper 𝜏
[16] 0.65
[17] 1.25
[19] 3.37
[15] 4.71
[18] 5.58
[47] 5.73
Theorem 1 5.92

where c (t) = sin(x1(t))+1
40 ∈ [−0.05 0.05], x1 (t) ∈ [−𝜋

2
𝜋
2 ], and

c (t) is an uncertain variable.

By Theorem 2, the fuzzy controller with different membership
functions from those of the fuzzy model can be designed as

u (t) =
2
∑
j=1

mj (x1 (t)) Fjx (t)

Under the imperfect premise matching, some simple membership
functions can be chosen as

m1 (x1 (t)) = 0.93 exp
(
−x1 (t)
4 × 1.52

)
,

m2 (x1 (t)) = 1 −m1 (x1 (t)) .

Themaximumvalue of time-delay is obtained, and the comparisons
with the other results are provided in Table 2. Note that the con-
troller gains are given as follows:

F1 = [ −2.6146 −6.1300 ],
F2 = [ −2.5393 −7.5190 ].

With the initial x (0) = [ 0 1.6]T and 𝜏 = 1.3241, the simulation
result is shown in Figure 1, which illustrates that the overall system
is stable.

From Table 2, it is apparent that our technique can lead to larger
time-delays, and the stable area can be expanded via the unmatch-
ing state-feedback controller design scheme.

Table 2 Maximum value of 𝜏 (Example 2).

Paper 𝜏
[8] 0.1524
[19] 0.2664
[9] 0.6611
[15] 0.8420
[10] 1.0947
[47] 1.1403
Theorem 2 1.3241

Figure 1 State response of the closed-loop system.
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Remark 10. In Example 2, our method offers less conservative
results in the sense of allowing longer time-delay. Moreover, com-
pared with the results based on the PDC, where the fuzzy controller
must have the same membership functions as those of the fuzzy
model, our fuzzy controller sharesmuch simplermembership func-
tions, which leads a low implementation cost and enhances design
flexibility.

Remark 11. In Example 2, since the parameter c (t) in w1 (x1 (t))
is unknown, the fuzzy controller cannot be implemented based on
the PDC design technique. However, with our new design method,
some simpler and certain membership functions can be chosen for
an easy fuzzy controller implementation.

Example 3. Consider the three rules of T-S fuzzy system [53] in the
form of (9) with the following parameters:

A11 = [ 1 6
1 0] ,A12 = [ −10 −0.5

1 1 ] ,A13 = [ −1 0.5
1 −1]

A21 = [ 1 −0.2
0.2 0 ] ,A22 = [ 0 −0.2

0.2 2 ] ,

A23 = [ 0 0.2
0.2 2 ] ,A31 = A32 = A33 = [ 0 0

0 0] ,

B1 = [ −10.5] ,B2 = [ 36−2] ,B3 = [ 1
−0.01]

where the membership functions are chosen as

w1 (x1 (t)) = 1 − 0.6
1 + e−3−c(t)x1(t)

,

w2 (x1 (t)) = 1 − w1 (x1 (t)) − w3 (x1 (t)) ,

w3 (x1 (t)) =
0.4

1 + e3−c(t)x1(t)

(44)

Here, c (t) is described the same as in Example 2. From Theorem
2, some membership functions with different rules from the fuzzy
model can be selected as

m1 (x1 (t)) = 0.7 − 0.5
1 + e4−x1(t)

,

m2 (x1 (t)) = 1 −m1 (x1 (t))

(45)

The states response of the closed-loop system under the initial con-
dition x (0) = [ 3 −1]T and time-delay 𝜏 = 1 is shown in Figure 2.
For comparison, the state response from [53] is given in Figure 3.
From these two figures, we can find out that they are capable of sta-
bilizing the system at t = 40s and t = 100s, respectively. That is to
say, under the same conditions, our controller design method can
stabilize the control system within a much shorter period of time.

Remark 12. As the number of fuzzy rules and the membership
functions employed for the polynomial fuzzy model and polyno-
mial fuzzy controller are different, we emphasize that many existing
stabilization cannot be directly applied in this case.

Remark 13.Compared with the unmatching designmethod [53] in
case of the same time-delay, our approach can stabilize the system
faster.

Figure 2 State response of the closed-loop system.

Figure 3 State response of the closed-loop system [53].

Example 4. Consider the following system with measurement
noise:

̇x (t) =
3
∑
i=1

wi (x1 (t)) [
A1ix (t) + A2ix (t − 𝜏)
+Biu (t) + Cix (t) 𝜀 (t)

]

where 𝜀 (t) denotes the white Gaussian noise, and NSR = 0.01. The
parameters are given as follows:

A11 = [ −0.3 0.7
0.2 −0.4] ,A12 = [ −0.51 0.2

0.5 −0.7] ,

A13 = [ −0.7 0.4
0.5 −0.6] ,A21 = A22 = A23 = [ 0 0

0 0] ,

B1 = [ 1 2
3 4] ,B2 = [ 2 1

1 1] ,B3 = [ 1 1
3 1]

C1 = [ −0.201 −0.2
−0.5 −0.05] ,C2 = [ −0.2 −0.2

−0.9 −0.2] ,

C3 = [ −0.3 −0.8
−0.4 −0.01] .
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The membership functions are the same as in (44). From
Theorem 2, the membership functions of the fuzzy controller are
chosen as in (45).

Using the MATLAB LMIs toolbox, we can get the following con-
troller gains:

F1 = [ −0.3500 −1.2000
0.1000 1.0300 ] , F2 = [ 0.4000 1.8000

−1.2000 −3.1000] ,

F3 = [ −0.0500 −0.3000
−0.4000 1.000 ] .

Based on the Monte Carlo simulation, the state response along the
Gaussian noise path of the closed-loop system and the control input
under t ∈ [0,T] ,T = 15, 𝛿t = T/N, N = 28, Δt = R𝛿t,
R = 6 and the initial condition x (0) = [ −1.5 0.5]T are shown in
Figures 4 and 5, respectively. It can be observed that our controller
design method is well capable of stabilizing the system even in the
presence of the white Gaussian noise.

Part of the simulation codes used in the above examples can
be downloaded from the following link: https://www.jianguoyun.
com/p/DRTzbyAQkb-_CBj1iJ8D

Example 5. To further demonstrate the effectiveness of the pro-
posed method, in this example, we consider the CSTR bench-
mark problem, which has a lot of interesting features characterized
by highly nonlinear behaviors [55]. The following dimensionless

Figure 4 State response of the closed-loop system under white
Gaussian noise.

Figure 5 Control input of the closed-loop system.

model of the CSTR is used [56]:

̇x1 (t) = −1𝜆 x1 (t)+D𝛼 (1 − x1 (t))exp
⎛⎜⎜⎝ x2 (t)
1+ x2(t)

𝛾0

⎞⎟⎟⎠
+
( 1
𝜆 − 1

)
x1 (t − 𝜏) ,

(46)

̇x2 (t) = −
( 1
𝜆 + 𝛽

)
x2 (t) +

( 1
𝜆 − 1

)
x2 (t − 𝜏) + 𝛽u (t)

+HD𝛼 (1 − x1 (t)) exp
⎛⎜⎜⎝ x2 (t)
1+ x2(t)

𝛾0

⎞⎟⎟⎠ ,
(47)

where x1 (t) is the reactor conversion rate，x2 (t) is the dimension-
less temperature, u (t) denotes the input, 𝜆,D𝛼, 𝛾0,H, 𝛽,Tw denote
the dimensionless system parameters, and 𝜏 is the time-delay. For
sake of convenience, we set 𝛾0 = 20,H = 8, 𝛽 = 1, D𝛼 =
0.072, 𝜆 = 0.8. There are three equilibrium points in the CSTR
system: x10 = [ 0.1440 0.8862] , x20 = [ 0.4472 2.7520] , and
x30 = [ 0.7646 4.7052] . On the basis of these three equilibrium
points, the following T-S fuzzy model is constructed:

Rule 1: IF x2 (t) is small (0.8862), THEN

̇x (t) = A1x (t) + Ad1x (t − 𝜏) + Bu (t) ,

Rule 2: IF x2 (t) is middle (2.7520), THEN

̇x (t) = A2x (t) + Ad2x (t − 𝜏) + Bu (t) ,

Rule 3: IF x2 (t) is large (4.7052), THEN

̇x (t) = A3x (t) + Ad3x (t − 𝜏) + Bu (t) ,

where

A1 = [ −1.4182 0.1320
−1.3457 −1.1937] , A2 = [ −2.0590 0.3456

−6.4720 0.5146] ,

A3 = [ −4.4978 1.1666
−25.9826 1.7584] , Adi = [ 0.25 0

0 0.25] ,

i = 1, 2, 3,B = [ 0 1]T .

The membership functions are chosen the same as in Eq. (44).
Therefore, we have

̇x (t) =
3
∑
i=1

wi (x2 (t)) (Aix (t) + Adix (t − 𝜏) + Bu (t)) ,

Under the imperfect premise matching, the state-feedback fuzzy
controller can be designed as follows:

u (t) =
2
∑
j=1

mj (x2 (t)) Fjx (t) .

wheremj, j = 1, 2 are selected as in Eq. (45).

Based on Theorem 2, the controller gains are obtained:

F1 = [ 1.3013 −86.4765 ], F2 = [ 5.3487 −86.3894 ],
F3 = [ 23.2118 −87.0754 ].

https://www.jianguoyun.com/p/DRTzbyAQkb-_CBj1iJ8D
https://www.jianguoyun.com/p/DRTzbyAQkb-_CBj1iJ8D
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Figure 6a Systems responses under x1 (0).

Figure 6b Systems responses under x2 (0).

Under the initial conditions x1 (0) = [ 0.9 0.9]T ,

x2 (0) = [ 2.7 2.7]T , x3 (0) = [ 4.5 4.5]T, and 𝜏 = 2, the sim-
ulation results are given in Figures 6a–6c, which show that the
controller designed with the imperfect premise matching can sta-
bilize the nonlinear CSTR systems under different initial states. It
is clearly visible that the membership functions of the fuzzy model
(44) contain uncertain parameters, and may lead to unrealizable
controllers in the conventional PDC scheme. However, with the
imperfect premise matching, we can select certain functions as the
membership functions of the controller designed using ourmethod
so as to stabilize the CSTR system.

5. CONCLUSIONS

In this paper, the stability and stabilization issues for the T-S fuzzy
systems with time-delay under imperfect premise matching are
investigated. A less conservative and improved membership func-
tions dependent stability criterion has been derived by introducing
an improved integral inequality, which owns tighter lower bounds

Figure 6c Systems responses under x3 (0).

than Wirting’s inequality. Additionally, a new design technique
under imperfect premise matching is developed, which can sig-
nificantly improve the design flexibility by arbitrarily selecting the
fuzzy rules and fuzzy membership functions. A total of five exam-
ples are used to illustrate the conservativeness and effectiveness of
our novel methods.We emphasize that the proposed techniques are
valid only under the circumstance of the control systems without
uncertainty. Therefore, how to extend them to the uncertain T-S
fuzzy time-delay systems and obtain the corresponding robust sta-
bility condition will be an important topic in our future work.
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