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1. INTRODUCTION

Hematopoietic cell transplantation (HCT) is a potentially cura-
tive procedure for patients with hematologic malignancies, but 
its success has been limited by the morbidity and mortality of 
post-transplant infections and relapse. Impaired immune recon-
stitution post-HCT increases the risk of both complications [1–4]. 
Multiple factors influence the vulnerability of patients to these 
complications, including time since transplantation, graft source 
[i.e., autologous (auto-HCT) or allogeneic (allo-HCT)], and per-
sisting myelosuppression (humoral and cell-mediated) post-HCT 
[2,3]. The composition of the intestinal microbiome is associated 
with clinical outcomes after allo-HCT, but the mechanisms for such 
have not been fully elucidated [5,6].

In humans, there are three main circulating monocyte subsets 
with diverse functions, classified based on their expression of 
CD14 and CD16 surface proteins and cytokine production. These 
monocyte subsets are named, “classical”, “intermediate” and “non- 
classical monocytes” [7–9], and typically comprise 85%, 10%, and 
5% respectively of the circulating monocyte pool in a healthy indi-
vidual under homeostatic conditions [10,11].

Classical monocytes specialize in phagocytosis and produce the 
cytokine interleukin (IL)-10 [12], while intermediate monocytes 
have elevated surface expression of MHC class II, suggesting they 
have an important role in antigen presentation [13]. In contrast, 
non-classical monocytes secrete substantial levels of inflammatory 
cytokines tumor necrosis factor (TNF) and (IL-1b) and are known 
to exert endothelial surveillance by endovascular slow patrolling 
when tissue damage is present [14]. These roles make monocytes a 
critical cell line for host defense against common post-HCT infec-
tions including Aspergillus, and for mitigating the risk of develop-
ing graft-versus-host disease (GVHD) [15–21].
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A B S T R AC T
Background:  Monocytes are an essential cellular component of the innate immune system that support the host’s effectiveness 
to combat a range of infectious pathogens. Hemopoietic cell transplantation (HCT) results in transient monocyte depletion, but 
the factors that regulate recovery of monocyte populations are not fully understood. In this study, we investigated whether the 
composition of the gastrointestinal microbiota is associated with the recovery of monocyte homeostasis after HCT.
Methods:  We performed a single-center, prospective, pilot study of 18 recipients of either autologous or allogeneic HCT. Serial 
blood and stool samples were collected from each patient during their HCT hospitalization. Analysis of the gut microbiota was 
done using 16S rRNA gene sequencing, and flow cytometric analysis was used to characterize the phenotypic composition of 
monocyte populations.
Results:  Dynamic fluctuations in monocyte reconstitution occurred after HCT, and large differences were observed in monocyte 
frequency among patients over time. Recovery of absolute monocyte counts and subsets showed significant variability across the 
heterogeneous transplant types and conditioning intensities; no relationship to the microbiota composition was observed in this 
small cohort.
Conclusion:  In this pilot study, a relationship between the microbiota composition and monocyte homeostasis could not be 
firmly established. However, we identify multivariate associations between clinical factors and monocyte reconstitution post-
HCT. Our findings encourage further longitudinal surveillance of the intestinal microbiome and its link to immune reconstitution.
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While it has been shown that monocyte reconstitution in the first  
100 days post-HCT is associated with improved survival [22,23], 
a better understanding of the mechanisms that regulate monocyte 
reconstitution in this setting is needed. Given the known immuno-
modulating properties of the microbiota [24–28], we investigated 
whether the composition of the intestinal microbiota is associated 
with monocyte recovery. Monocyte migration out of the bone marrow 
and into the blood circulation has been shown to be driven by low 
level lipopolysacharide (LPS)-mediated signaling [29]. Further, basal 
circulating LPS levels derived from the intestinal microbiota have 
been detected in immunocompromised hosts [30,31]. Therefore, we 
hypothesized that microbial communities of Gram-negative bacteria 
through the production of LPS [32,33] and commensal anaerobes 
[34] influence monocyte maturation post-HCT.

2. MATERIALS AND METHODS

2.1.  Study Patients, Specimen Collection, 
and Patient Tracking

The study cohort consisted of 18 adult recipients of auto- or allo-
HCT at the Memorial Sloan Kettering Cancer Center (MSKCC) 
from July 2015 to January 2016, as previously described [35].The 
gender breakdown consisted of seven females and 11 males with 
an age range from 40 to 75. Longitudinal stool samples were col-
lected during each patient’s transplant hospitalization using a 
prospective institutional fecal biospecimen collection protocol 
(described previously) [36]. Daily stool collection began 7–10 days 
before hemato poietic cell infusion at the start of pre-transplant 
conditioning regimen and continued until discharge. The patients’ 
median length of stay in the hospital was 27 days. Clinical meta-
data collected for all patients included medication administrations 
such as chemotherapy agents, antibiotics, absolute white blood cell 
values (determined by daily complete blood counts), and other 
patient characteristics that were retrieved from the electronic 
health record. The study protocol was approved by the Institutional 
Review Board (IRB #15-124). Informed consent was obtained from 
all subjects prior to specimen collection.

2.2. Transplantation Practices

As previously described [35], antimicrobial prophylaxis was given 
routinely to patients undergoing HCT. Auto- or allo-HCT patients 
were given ciprofloxacin for 2 days prior to hematopoietic cell 
infusion as prophylaxis against Gram-negative bacterial infec-
tions. Allo-HCT recipients received intravenous (IV) vancomy-
cin prophylactically against viridans-group streptococci [27] and 
either trimethoprim-sulfamethoxazole, aerosolized pentamidine, 
or atovaquone prophylaxis against Pneumocystis jiroveci pneumo-
nia. The start of antibiotic prophylaxis administration during pre- 
conditioning or after HCT engraftment (defined as an absolute 
neutrophil count ≥500 neutrophils/mm3 for three consecutive 
days) varied. In the event of a new fever during times of neutro-
penia, patients were usually started on empiric antibiotics, such as 
piperacillin–tazobactam, cefepime, or meropenem. Recipients of 
an autograft received pegfiltastrim on day +1 and recipients of an 
allograft received daily filgastrim starting on day +7 until engraft-
ment to accelerate recovery from neutropenia [37].

2.3.  Sample Analysis and Defining Microbial 
Predictors

2.3.1. Sample analysis

Stool DNA was extracted and purified, and the V4 and V5 region 
of the 16S rRNA gene was amplified by polymerase chain reac-
tion using modified universal bacterial primers [38]. Sequencing 
was performed using the Illumina Miseq platform [39] to obtain 
paired-end reads. These reads were assembled, processed, filtered 
for quality, and grouped into operational taxonomic units of 97% 
similarity using a previously described UPARSE pipeline [24]. 
Taxonomic assignment to species level was performed using nucle-
otide Basic Local Alignment Search Tool [40] with the National 
Center for Biotechnology Information RefSeq (refseq_rna) as the 
reference database [41]. Alpha diversity was calculated using the 
inverse Simpson index at the OTU level [42] (For additional exper-
imental details and microbiota data availability, see Supplementary 
Methods.).

2.3.2. Microbial predictors

We analyzed obligate anaerobic bacteria by major anaerobic 
groups defined at various taxonomic levels for their importance 
in maintaining ‘healthy’ immunity [34,43–46]: Clostridia (class), 
Bacterioidetes (phylum), Negativicutes (class) and Fusobacteria 
(genus). Percent anaerobes in a given stool sample was calculated 
by adding the percent 16S rRNA gene sequences of these obligate 
anaerobic bacteria.

2.4.   Monocyte Subsets, Analysis of Blood 
Samples, Monocyte Isolation and Flow 
Cytometry

A median of seven blood samples were obtained from each patient 
during transplant days −10 to +30. A total of 5–10 cc of blood in 
heparinized tubes were processed within 4 h of collection. The first 
blood sample was collected within 2 days of hospital admission 
(prior to any perturbations to white blood cells from chemother-
apy or radiation) and subsequent blood samples were collected at 
the start of white blood cell reconstitution through engraftment 
[47,48].

Peripheral blood mononuclear cells were isolated by density gradient 
centrifugation (Histopaque 1119; Sigma). Single-cell suspensions 
were stained for surface antigens with fluorescently conjugated anti-
bodies and signals were acquired with LSR II (Becton Dickinson, 
Franklin Lakes, NJ). All flow cytometry data were analyzed using 
FlowJo software. For flow cytometry staining, the following anti-
bodies were used: CD14-PE (clone M5E2; BD Biosciences, San 
Jose, CA), CD16-FITC (clone 3G8; BD Biosciences), CCR2-APC 
(clone K036C2; BioLegend, San Diego, CA), CD45-Alexa Fluor 
700 (clone Hl30; BioLegend), CD11b (APC-Cy7; clone lCRF44; 
BioLegend), HLA-DR-PE-Texas Red (clone L243; BioLegend), 
CD86-PE-Cy7 (clone lT2.2; BioLegend), CD15-Pacific Blue (clone 
Hl98; eBioscience), CD20-PerCP-Cy5.5 (clone 2H7; BioLegend), 
CD3-PerCP-Cy5.5 (clone OKT3; BioLegend), CD19-PerCP-Cy5.5 
(clone SJ25C1; BioLegend), CD56-PerCP-Cy5.5 (clone 5.1H11; 
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BioLegend), and CD5-PerCP-Cy5.5 (clone UCHT2; BioLegend). 
‘Fluorescent minus one’ controls were used to determine positive 
staining gate [49]. The monocyte gating strategy used to define 
monocyte subsets (classical, intermediate, and non-classical) 
[10,11,50] is shown with CD14 on the x-axis and CD16 on the 
y-axis. A dump gate excluded B cells, T cells, and NK cells using 
CD19/CD20, CD3, and CD56, respectively (Figure S2).

2.5. Analytical Approach

We analyzed absolute monocyte count recovery as a function of 
time at the start of immune reconstitution defined as engraftment 
day −2 days (“reconstitution day”) until hospital discharge, using 
conditioning intensity and transplant type as stratification vari-
ables. Linear mixed models were fit using patient as a random effect 
(for intercept), absolute monocyte count as the dependent variable, 
and reconstitution day as a fixed effect. Fixed effect sizes and 95% 
confidence intervals are shown.

Descriptive statistics (box plots) were used to visualize the propor-
tions of classical (CD14hiCD16neg), intermediate (CD14hiCD16Int), 
and non-classical (CD14IntCD16hi) monocytes in the last blood 
sample collected from each patient, to assess whether the subpop-
ulations of circulating monocytes reached their estimated targets: 
approximately 85% classical monocytes, 10% non-classical mono-
cytes and 5% intermediate monocytes. These thresholds were 
determined based on previous studies [10,11,51].

We calculated the Pearson correlation coefficient to measure the 
strength of the relationship between the proportion of anaerobic 
commensal gut microbes and microbial diversity to monocyte 
subset recovery. Next, we trained linear regression models while 
controlling for false discovery rates [52] to assess whether or not 
different clinical predictors correlated with monocyte recovery in 
the last blood sample tested (using the above mentioned ‘target’ 
values). The following clinical variables were used in the regres-
sion: (1) conditioning type [reduced-intensity conditioning (RIC) 
vs. myeloablative conditioning (MAC)] (2) transplant type (T-cell 
depleted vs. unmodified vs. auto-HCT) (3) GCSF administration 
within 7 days of blood collection (4) bloodstream infection (exclud-
ing positive blood cultures considered to be contaminants) within  
7 days of blood collection and (5) percent Gram-negative bac-
teria (in the phyla, Bacteroidetes and Proteobacteria, major 
Gram-negative taxa) in the stool sample collected within 3 days 
before-or-after the last blood sample collected. Statistical analyses 
were performed using R (v. 3.3.1).

3. RESULTS

3.1.  Description of Study Population  
and Biospecimens

Eighteen patients who received either an auto- or allo-HCT were 
included in this pilot study. They underwent different types 
of HCT for different hematologic malignancies. Four patients 
received an auto-HCT after MAC with Carmustine (BCNU), 
etoposide, cytarabine, and melphalan (BEAM). Four were given 
an allo-HCT after MAC consisting of the following regimens: 

total body irradiation, thiotepa, and cyclophosphamide or busul-
fan, melphalan, and fludarabine. Ten patients were recipients of 
an allo-HCT after RIC regimens. Clinical characteristics for each 
patient are shown in Table 1.

Patients stayed in the hospital for 20–38 days following their 
HCT and received both prophylactic and therapeutic antibiotics 
during this time. Throughout the hospitalization period, daily 
fecal sample collection was attempted resulting in a total of 236 
samples that yielded high quality 16S amplicons which could be 
sequenced. Concurrently, patient blood samples were collected for 
monocyte recovery analysis, with each blood sample being paired 
with a stool sample collected within 3 days (either before or after 
blood sample collection). A median of 15 stool samples and seven 
blood samples were collected per patient during their HCT hospi-
talization (Table 1).

3.2. Monocyte Recovery

Monocyte counts were considered during an analysis window from 
2 days prior to the date of neutrophil engraftment (“reconstitution 
day”) until hospital discharge. Significant differences in reconsti-
tution trajectories were found among groups stratified by condi-
tioning regimens and transplant type. Patients receiving reduced 
intensity conditioning and unmodified transplants demonstrated 
the most variability (CI95% = [0.196 ± 0.062] and CI95% = [0.194 ± 
0.060], respectively). All 18 patients reached a minimum normal 
absolute monocyte count value of 0.26 × 109/L defined elsewhere 
[53–55], and patients who received RIC and an unmodified trans-
plant were more likely to overshoot the upper reference limit of  
1.3 × 109 (a value determined by the MSKCC laboratory) (Figure 
1A and 1B).

Three representative flow cytometry plots collected longitudi-
nally from three patients who received different transplant types 
[Auto-HCT; Allo-HCT (RIC); Allo-HCT (MAC)] show significant 
monocyte heterogeneity as represented by the commonly observed 
distribution of monocytes within a patient [56,57] changing over 
time (Figure 2A). Data from all other patients (n = 15) are shown in 
Figure S1. The gating strategy used to identify the monocyte sub-
sets of interest is shown in Figure S2.

Some patterns in monocyte reconstitution were observed; classical 
monocytes had an initial robust recovery consistent with previous 
findings [58], followed by restoration of intermediate and non-clas-
sical monocytes at later timepoints (Figure 2A). This trend was 
particularly pronounced for non-classical monocytes. On average, 
patients who were recipients of either an auto-HCT or allo-HCT 
with RIC were more likely than allo-HCT patients with MAC to 
recover classical monocytes to target threshold (approximately 
85%). The threshold of approximately 5% intermediate monocytes 
was met in 72% (13/18) of patients, while those who received an 
allo-HCT with MAC were more likely to be discharged with levels 
of circulating non-classical monocytes that met target (approxi-
mately 10%) (Figure 2B). Absolute levels of monocyte subsets were 
also calculated using the total white blood cell count (/µL) showing 
similar trends (Figure 2C).

We next compared the frequency of circulating monocyte subsets 
with the composition of the intestinal microbiota. At presentation, 
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Figure 1 | Recovery of absolute monocyte counts (AMC) is variable among patients receiving different conditioning regimens and transplant types. 
Graph showing absolute monocyte counts obtained for all patients when there was any sign of white blood cell recovery defined as “reconstitution day” 
(engraftment day – 2). Patient groups were divided by (A) conditioning, reduced intensity conditioning (RIC) and myeloablative conditioning (MAC) 
and (B) transplant type. Each color represents a different patient and a dashed line in each panel marks the upper limit of a “normal” AMC, defined by the 
Memorial Sloan Kettering Cancer Center laboratory to be 1.3 K/mcL. In the upper right-hand corner is the coefficient (i.e. slope/effect size) multiplied by 
1.96 (±95% confidence interval).

A B

patients started with highly diverse intestinal microbial communi-
ties which subsequently underwent stark composition changes and 
loss of diversity upon antibiotic administration [35]. Diversity of 
intestinal microbial communities, as measured by inverse Simpson 
index, were not associated with monocyte recovery (Figure 3A). 
Additionally, the proportion of obligate anaerobes associated 
with a healthy flora (Negativacutes, Clostridia, Bacteroidiales, and 
Fusobacteria) within the microbiota did not correlate with mono-
cyte recovery (Figure 3B).

While the proportion of monocyte subset recovery did not cor-
relate with the microbiota, we next sought to investigate whether 
the immune activation status of monocyte subsets was altered by 
the microbiota composition. Monocyte immune activation pheno-
type as measured by the expression of cell surface markers [CD86, 
HLA-DR, and CCR-2 (Table S1)]. was assessed in each subset. No 
correlation was observed between expression of these markers and 
microbiota diversity (Figure S3) or percent of obligate anaerobic 
bacteria in the microbiota (Figure S4).

We used a simple linear regression model to test whether dif-
ferent compositional characteristics of the microbiota and dif-
ferent clinical variables are related to monocyte recovery. In 
this model, microbiota diversity and the proportion of Gram-
negative Proteobacteria in the gut were not observed to be asso-
ciated with monocyte recovery of each subset. Exposure to GCSF 
within 7 days of blood sample collection/processing was associ-
ated with successful reconstitution of classical and intermedi-
ate monocytes (p = 0.037 and 0.002, respectively). Conversely, a 
T-cell depleted transplant was negatively associated with these 
monocyte subsets (p = 0.041 and 0.008, respectively) Table 2. 

Non-classical monocytes were not significantly associated with 
any of the clinical predictors we defined.

4. DISCUSSION

Hematopoietic cell transplantation involves the administration of 
intense chemotherapy with or without radiation and antibiotic reg-
imens, resulting in large shifts in leukocyte and microbiota com-
partments, often leading to complete compositional changes from 
1 day to the next. The myeloablation associated with HCT provides 
a unique platform for exploring the nascent, re-development of 
immune reconstitution. Prior studies have supported the symbiotic 
relationship between the gut microbiota and the systemic immune 
system [59,60], but most of that work has focused on the role the 
microbiota has on shaping different populations of T cells [29–31]. 
Staffas et al. [6] did find a delay in monocyte recovery when the 
gut flora was depleted with antibiotics, but it was not as dramatic as 
the defects in lymphocyte maturation post-HCT (in mice). We fol-
lowed a systematic strategy to identify three subsets of monocytes 
(classical, intermediate, and non-classical monocytes) [10] during 
the period of immune reconstitution post-HCT to assess whether 
constituents of the microbiota affect monocyte recovery.

This pilot study involved high-frequency timeseries collection of 
stool and blood samples from 18 patients to assess whether a link 
between the microbiota and monocyte recovery could be found. 
We found no correlation between the microbiota composition 
and differences in monocyte recovery when analyzing a high- 
diversity microbiota or a microbiota composed primarily of either 
commensal anaerobes or Gram-negative organisms. We also found 
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Figure 2 | Variable recoveries of monocyte populations (classical, intermediate, and non-classical). (A) Time series for three representative patients using 
transplant day: Auto-hematopoietic cell transplantation (HCT) (top panel), Allo-HCT [reduced intensity conditioning (RIC; middle panel)], and Allo-HCT 
myeloablative conditioning (MAC; bottom panel). The first figure (from left-to-right for each panel) is a cartoon illustration depicting each monocyte subtype, 
classical (C), intermediate (I), and non-classical (NC) (clockwise from left-to-right) that corresponds to successive multicolor flow cytometry plots that follow. 
The numbers in each gate are percentages of each monocyte population. The gating strategy is detailed in Figure S1. (B) A boxplot showing the distribution of 
monocyte subsets determined from a patient’s last blood sample collected. Colored dashed lines indicate the upper limit of “normal” for the percent values for 
each monocyte subset: 85% classical monocytes (blue), 10% non-classical monocytes (yellow), 5% intermediate monocytes (green). Data points (dots) indicate the 
monocyte subset type using the same color scheme. (C) A boxplot showing the distribution of absolute monocyte subsets from a patient’s last blood sample and 
collected and calculated now using the patient’s white blood cell count (K/mcL) taken from the electronic health record; the absolute value (classical, intermediate, 
non-classical) was determined by taking the white blood cell count (K/mcL) × 1000 × percent cells in gates (B–G; Figure S2).

A B

C

Figure 3 | Monocyte subset frequency does not correlate with microbiota diversity or proportion of obligate anaerobes. (A) Relationship between the 
proportion of each monocyte subset and microbiota diversity measured by Inverse Simpson and (B) the proportion of obligate anaerobes (percent 16S 
rRNA gene sequences of Negativacutes + Clostridia + Bacteroidiales + Fusobacteria) in the stool microbiota for each matched stool and blood collection. 
Pearson correlation coefficient values are shown in the upper right-hand corner of each panel.

A B
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Table 2 | Parameters assessed for association with monocyte subset recovery

Variables Type Estimate p-value Adj.

% Gram-negatives in stool sample Classical % −0.053 0.800
RIC Classical % −0.88 0.540
Auto-HCT Classical % 0.871 0.900
T-cell depleted Classical % −1.103 0.041**

Unmodified Classical % −0.0792 0.106
+ Blood culture within 7 days of collection Classical % 0.145 0.315
GCSF administration within 7 days of collection Classical % 1.200 0.037**

% Gram-negatives in stool sample Intermediate % 0.146 0.458
RIC Intermediate % −0.265 0.492
Auto-HCT Intermediate % −1.395 0.003*

T-cell depleted Intermediate % −1.310 0.008**

Unmodified Intermediate % 1.236 0.007**

+ Blood culture within 7 days of collection Intermediate % −0.033 0.931
GCSF administration within 7 days of collection Intermediate % 1.401 0.002**

% Gram-negatives Non-classical % 0.039 0.892
RIC Non-classical % 0.325 0.847
Auto-HCT Non-classical % −0.293 0.847
T-cell depleted Non-classical % 0.772 0.459
Unmodified Non-classical % 0.244 0.846
+ Blood culture within 7 days of collection Non-classical % −0.893 0.254
GCSF administration within 7 days of collection Non-classical % 0.895 0.318

* and ** is an asterisk rating system to show a significant result (p value < 0.05).  Auto, autologous; Allo, allogeneic; RIC, reduced intensity conditioning; MAC, myeloabla-
tive conditioning; GCSF, granulocyte colony-stimulating factor.

no association between microbiota composition and the expres-
sion of co-stimulatory markers, including CD86, HLA-DR and the 
chemokine receptor, CCR2.

Analysis of factors associated with immune reconstitution revealed 
that the relationship between the microbiota and immune reconsti-
tution is weak relative to other clinical variables. As expected, GCSF 
exposure correlated positively with classical and intermediate mono-
cyte reconstitution, while T cell depletion by means of CD34-positive 
selection was negatively associated with monocyte subset reconsti-
tution. We also found significant variability in the reconstitution of 
absolute monocyte counts and monocyte subsets across patients. 
The biological significance of the varying rate of monocyte recovery 
on patient outcomes will need to be further explored.

Discerning the effects of many patient variables in the setting of 
HCT, including medications delivered and clinical complications 
that ensue (bacteremia, fever, GVHD, etc.) makes forming a direct 
relationship between the microbiota and monocytes in HCT 
patients challenging [61]. Medications given to HCT patients that 
have immunomodulating properties (i.e. antibiotics and steroids), 
could have served as confounders in our analysis. For example, 
17/18 patients received ciprofloxacin and 7/18 patients received 
steroids (not shown). Ciprofloxacin can dampen the effects of LPS 
[62,63], a potent stimulator of monocyte mobilization out of the 
bone marrow [29,64], while steroids can reduce blood monocyte 
numbers [29,65]. Further, the intestinal permeability of LPS into 
systemic circulation to stimulate monocyte production from the 
bone marrow is not fully known, and testing for this endotoxin in 
serum or blood is challenging [61].

While we did not find an association between microbiota composi-
tion and monocyte recovery in this heterogeneous pilot cohort, this 
study demonstrates the feasibility of high-resolution sampling of 
blood and stool samples and opens the door to future studies where 
sampling more patients with daily frequency may help distinguish 

which microbial and clinical factors drive HCT patient outcomes. 
Future larger studies may reveal relationships between microbiota 
composition and immune reconstitution [10,11].
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