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ABSTRACT
This paper introduces a new four-parameter extension of the generalized Gompertz distributions. This distribution involves
somewell-knowndistributions such as extension of generalized exponential, generalized exponential, and generalizedGompertz
distributions. In addition, it can have a decreasing, increasing, upside-down bathtub, and bathtub-shaped hazard rate function
depending on its parameters. Some mathematical properties of this new distribution, such as moments, quantiles, hazard rate
function, and reversible hazard rate function are obtained. In addition, the density function and the moments of the ordered
statistics of this new distribution is provided. The parameters of model are estimated using the maximum likelihood method.
Also, a real data set was used to illustrate the validity of the proposed distribution.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The class of extended-Weibull (EW) distributions is defined by [1] and has the following cumulative distribution function (cdf):

G(x) = 1 − e−𝜏Φ(x;𝜼), 𝜏 > 0, x ≥ 0, (1)

where Φ(x; 𝜼) is a nonnegative, continuous, increasing, and differentiable function of x. The probability density function (pdf) of EW
model is

g(x) = 𝜏𝜙(x; 𝜼)e−𝜏Φ(x;𝜼), x ≥ 0, (2)

where 𝜙(x) is the first derivative ofΦ(x; 𝜼). The class of EW distribution contains various well-known distributions. We summarized several
of these models in Table 1. For more details see [1] and [2].

Kundu andGupta [19] proposed an extension of generalized exponential (GE) distribution [20]. It is a flexiblemodel such that it is positively
skewed, and has increasing, decreasing, unimodal, and bathtub-shaped hazard rate function (hrf). It is included exponential, GE, Pareto, and
generalized Pareto [3] distributions. Cordeiro et al. [21] introduced a five-parameter called theMcDonald extended exponential distribution
[19] as a generalization of extended generalized exponential (EGE) distribution. Kazemi et al. [22] introduced an extension of the generalized
linear failure rate (GLFR) distribution [23]. It is included the EGE, GLFR, generalized Rayleigh [24,25], Rayleigh, and linear failure rate
distributions. By compounding the EW distribution and method of [19] and [22], we can define an extension of EW (EEW) distribution.

For 𝛼 > 0, 𝜏 > 0 and −∞ < 𝛽 < ∞, consider

F(x) =
⎧⎪
⎨⎪
⎩

(
1 − (1 − 𝛽𝜏Φ(x; 𝜼))1/𝛽

)𝛼
if 𝛽 ≠ 0(

1 − e−𝜏Φ(x;𝜼)
)𝛼

if 𝛽 = 0.
(3)
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Table 1 Special cases of extended-Weibull (EW) distribution and correspondingΦ(x; 𝜼) function.

Distribution Support Φ (x; 𝜂) 𝜏 𝜂 Reference

Exponential x ≥ 0 x 𝜏 ∅ [3]
Pareto x ≥ c log(x/k) 𝜏 c [3]
Gompertz x ≥ 0 c−1 (exp (cx)− 1

)
𝜏 c [4]

Weibull x ≥ 0 xc 𝜏 c [5]
Weibull Kies 0 < 𝜇 < x < 𝜍

(
x−𝜇

)a / (𝜍 − x)b 𝜏 (𝜇, 𝜍, a, b) [6]
Linear failure rate x ≥ 0 ax+ bx2/2 1 (a, b) [7]
Exponential power x ≥ 0 exp((cx)a − 1) 1 (a, c) [8]
Rayleigh x ≥ 0 x2 𝜏 ∅ [9]
Phani 0 < 𝜇 < x < 𝜍 ((x−𝜇)/(𝜍−x))b 𝜏 (𝜇, 𝜍, b) [10]
Additive Weibull x ≥ 0 (x/a)c + (x/b)d 1 (a, b, c, d) [11]
Chen x ≥ 0 exp(xb − 1) 𝜏 b [12]
Pham x ≥ 0 (ax)b − 1 1 (a, b) [13]
Weibull extension x ≥ 0 a

(
exp(cx)b − 1

)
𝜏 (a, b, c) [14]

Modified Weibull x ≥ 0 xb exp(ax) 𝜏 (a, b) [15]
Traditional Weibull x ≥ 0 xb exp(axc − 1) 𝜏 (a, b, c) [1]
Generalized Weibull power x ≥ 0 [1+ (x/a)b]c − 1 1 (a, b, c) [16]
Flexible Weibull extension x ≥ 0 exp(ax− b/x) 1 (a, b) [17]
Almalki additive Weibull x ≥ 0 axd + bx𝛾ecx 1 (a, b, c, d, 𝛾) [18]

Depending on whether the parameter 𝛽 be negative or positive, the support of EEW distribution varies in (0,∞) or
(
0,Φ−1

(
1
𝛽𝜏

))
, where

Φ−1(.) is the inverse function of Φ(.; 𝜼). The EEW is a flexible family and extends many exponentiated distributions such as GE [20],
exponentiatedWeibull [26], generalized Rayleigh distribution [24,27], generalizedmodifiedWeibull [28], GLFR [23], generalizedGompertz
(GG) [29] distributions.

As a special case of the class of EEW distribution, in this paper, we consider the GG distribution and investigate the properties of this new
four-parameter distribution which is called extended generalized Gompertz (EGG) distribution and contains EGE distribution. The paper
is organized as follows. In Section 2, the model EGG was introduced and described. Some statistical properties such as moments, quantiles,
and ordered statistics are provided in Section 3. The parameters are estimated using he maximum likelihood method in Section 4. An
application of the EGG is illustrated using a real data set in Section 5.

2. PROPOSED DISTRIBUTION

By considering Φ(x; 𝜼) = c−1 (ecx − 1
)
, c > 0 in (3), we obtain the EGG distribution by the support SX = (0,∞) if 𝛽 ≤ 0 and SX =(

0, 1
c log

(
c
𝜏𝛽 + 1

))
if 𝛽 > 0, and the following cdf:

FX(x) =
⎧⎪
⎨⎪
⎩

[1 − (1 − 𝛽𝜏
c

(
ecx − 1

)
)1/𝛽]

𝛼
if 𝛽 ≠ 0(

1 − e−
𝜏
c (ecx−1)

)𝛼
if 𝛽 = 0.

(4)

The pdf of this new distribution is

fX(x) =
⎧
⎨
⎩

𝛼𝜏ecx (1 − 𝛽z)
1
𝛽−1 (

1 − (1 − 𝛽z)1/𝛽
)𝛼−1

if 𝛽 ≠ 0

𝛼𝜏ecxe−z
(
1 − e−z

)𝛼−1 if 𝛽 = 0,
(5)
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and the hrf has the following form:

h1(x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛼𝜏ecx (1 − 𝛽z)1/𝛽−1
(
1 − (1 − 𝛽z)1/𝛽

)𝛼−1

1 −
(
1 − (1 − 𝛽z)1/𝛽

)𝛼 if 𝛽 ≠ 0

𝛼𝜏ecxe−z
(
1 − e−z

)𝛼−1

1 − (1 − e−z)𝛼
if 𝛽 = 0,

(6)

where z = 𝜏
c
(
ecx − 1

)
. We denote this new distribution by EGG(𝛼, 𝛽, 𝜏, c). The new model reduced to GG model which is introduced by

[29] when 𝛽 = 0. The GG includes the GE (If c tends to zero), exponential (If c tends to zero, and 𝛼 = 1), Gompertz (If 𝛼 = 1), distributions.
If c tends to zero, then EGGdistribution reduces to the EGE distribution introduced by [19]. The EGE distribution includes GE, exponential,
generalized Pareto [3], and Pareto distributions. Also, If X has a EGG distribution, then Y = 𝜏

c
(
ecX − 1

)
has a EGE distribution. Figure 1

obtains the shapes of pdf and hrf of EGG distribution for some values of the parameters when 𝛽 ≠ 0.

The limiting behaviors of pdf and hrf of the EGG distribution are as follows:

lim
x→0+

fX (x) = {
0 if 𝛼 > 1
𝛼𝜏 if 𝛼 = 1
∞ if 𝛼 < 1

and lim
x→v−

fX (x) = {∞ if 𝛽 > 1
0 if 𝛽 < 1,

Figure 1 probability density function (pdf) and hazard rate function (hrf) of extended generalized Gompertz (EGG)
distribution.
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lim
x→0+

h1(x) = {
0 if 𝛼 > 1
𝛼𝜏 if 𝛼 = 1
∞ if 𝛼 < 1

and lim
x→v−

h1(x) = {∞ if 𝛽 > 0
0 if 𝛽 < 0,

where v = 1
c log

(
c
𝜏𝛽 + 1

)
for 𝛽 > 0, and v = ∞ for 𝛽 < 0.

3. PROPERTIES

In this section, some measure such as the quantile function, non-central moment and entropy measure for EGG distribution are obtained
and discussed.

3.1. Quantiles

The quantile function of EGG distribution is

Q (u) =
⎧⎪
⎨⎪
⎩

1
c log

(
c
𝜏𝛽 [1 −

(
1 − 𝛼√u

)𝛽
] + 1

)
if 𝛽 ≠ 0

1
c log

(
1 − c

𝜏 [log
(
1 − 𝛼√u

)
]
)

if 𝛽 = 0,

3.2. Moments and Characterization

Here, first, we obtain a theorem to compute the noncentral moment, 𝜇(r), of EGG distribution when 𝛽 > 0. Also, we show that all moments
of X exist when 𝛽 < 0.

Theorem 3.1. For 𝛽 > 0, the r-th non-central moment of EGG(𝛼, 𝛽, 𝜏, c) is

𝜇(r) = E(Xr) =
∞
∑
n=0

∞
∑
m=0

m

∑
k=0

r

∑
i=0

𝛼𝜏m+1 (−1)i+n+2m−k r! 𝜓r−i

((k + 1) c)i+1 (r − i) !
𝜏n,m,k𝛽mc−me(k+1)cv, (7)

where 𝜏n,m,k =
(𝛼−1

n
)( n+1

𝛽 −1
m

)(m
k
)
and v = 1

c log
(

c
𝜏𝛽 + 1

)
.

Proof. The proof is done by using binomial series expansion and following formula resulted from [30], Section 2.321, as

∫
𝜓

0
xre(k+1)cxdx = e(k+1)c𝜓r!

r

∑
i=0

(−1)i

((k+ 1) c)i+1 (r− i) !
𝜓r−i.

□

Theorem 3.2. All moments of EGG (𝛼, 𝛽, 𝜏, c) exist when 𝛽 < 0.

Proof. See the Appendix. □

Using Theorem 3.2, the moments of the EEG distribution exist when 𝛽 < 0. Therefore, Table 2 obtains them for some selected values of
model parameters.

Remark 3.1. Consider Y = 𝜏
c
(
ecX − 1

)
, where X has EGG distribution with parameters 𝛼, 𝛽, 𝜏, c. Therefore, (see [19])

E [ecX] = c
𝛽𝜏

(
1 − Γ (𝛼 + 1) Γ (𝛽 + 1)

Γ (𝛼 + 𝛽 + 1)

)
+ 1, 𝛽 ≠ 0.

3.3. Entropy

In this part, for measuring the uncertainty amount of the EGG(𝛼, 𝛽, 𝜏, c) distribution, we use the Shannon’s entropy defined by [31] as

HSh(f) = −Ef [log fX(X)] = − ∫
∞

0
fX (X) log(fX (x))dx.
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Table 2 Computation of 𝜇(r) for 𝜏 = 2 and c = 3.

𝛽

𝛼 r −1 −1.5 −2 −4 −4.5 −5

2 1 0.595 0.750 0.922 1.703 1.913 2.127
2 0.512 0.875 1.384 5.037 6.376 7.891
3 0.582 1.406 2.922 21.186 30.189 41.537
4 0.829 2.906 7.998 115.83 185.72 283.98
5 1.429 7.383 27.012 781.781 1410.264 2396.170

0.5 1 0.253 0.307 0.366 0.641 0.717 0.794
2 0.165 0.272 0.421 1.493 1.887 2.335
3 0.165 0.389 0.799 5.732 8.166 11.237
4 0.221 0.763 2.087 30.085 48.238 73.767
5 0.369 1.891 6.896 199.151 359.255 610.443

If 𝛼 = 1, then the cdf of the EGG(1, 𝛽, 𝜏, c) distribution can be rewritten as

F∗(x) = { 1 − (1 − 𝛽z)
1
𝛽 if 𝛽 ≠ 0

1 − e−z if 𝛽 = 0

respectively, where z = 𝜏
c (e

cx− 1) and consequently, the cdf in (4) can be written as (F∗(x))𝛼. LetW ∼ beta(𝛼, 1). Then, following the result
of [32], the Shannon entropy for EGG(𝛼, 𝛽, 𝜏, c) distribution is

H(X) = − ln(𝛼) + 𝛼 − 1
𝛼 − EW[ln f1(F−1

1 (W))]. (8)

3.4. Ordered Statistics

In this section, the cdf and noncentral moments of ordered statistics from the EGG distribution are provided. Let x(1), … , x(n) be the ordered
statistics of a random sample. Then, the pdf of the ℓ-th ordered statistic X(ℓ), is

fX(ℓ) (x) = n
( n−1
ℓ−1

)
fX(x)

n−ℓ
∑
j=0

(−1) j
(

n−ℓ
j

)
[FX(x)]ℓ+j−1 =

n−ℓ
∑
j=0

n(−1) j
(

n−ℓ
j

) ( n−1
ℓ−1

)
(j + ℓ) f ∗X (x), (9)

where f ∗X is the pdf of EGG with parameters 𝛼(j + ℓ), 𝛽, 𝜏, c. In the following, the r-th non-central moment of X(ℓ) is given.

Theorem 3.3. For 𝛽 > 0,

𝜇(r)
ℓ∶n =

n−ℓ
∑
j=0

∞
∑
n=0

∞
∑
m=0

m

∑
k=0

𝛼
(
j + ℓ

)
𝜏m+1𝛽m (k + 1)−r−1 c−r−c (−1)n+2m−k 𝜏∗n,m,kΔ (r; (k + 1) c𝜓) ,

where 𝜏∗n,m,k =
(𝛼j+𝛼ℓ−1

n
)( n+1

𝛽 −1
m

)(m
k
)
and Δ (r; t) = ∫ t0 xiexdx.

Proof. We can proof the theorem Using (7) and (9). □

4. ESTIMATION

In this section, we discuss the maximum likelihood method to estimate the parameters of the EGG model based on a random sample of
size n. When 𝛽 ≠ 0, the log-likelihood function is

ℓ(𝜃) = n log(𝛼) + n log(𝜏) + c
n

∑
i=1

xi +
(

1
𝛽 − 1

) n

∑
i=1

log(1 − 𝛽zi) + (𝛼 − 1)
n

∑
i=1

log
(
1 − (1 − 𝛽zi)

1
𝛽
)
,
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where zi = 𝜏
c (e

cxi−1). By taking the derivative of log-likelihood function, we obtain the score vectorU(𝜃) =
(
U𝛼(𝜃),U𝛽(𝜃),U𝜏(𝜃),Uc(𝜃)

)T
where

U𝛼(𝜃) = 𝜕ℓ(𝜃)
𝜕𝛼 = n

𝛼 +
n

∑
i=1

log
(
1 − (1 − 𝛽zi)

1
𝛽
)
,

U𝛽(𝜃) =
𝜕ℓ(𝜃)
𝜕𝛽 = − 1

𝛽2

n

∑
i=1

log(1 − 𝛽zi) −
(

1
𝛽 − 1

) n

∑
i=1

zi
1 − 𝛽zi

+ (𝛼 − 1)
𝛽2

n

∑
i=1

(1 − 𝛽zi)
1
𝛽−1

1 − (1 − 𝛽zi)
1
𝛽
[𝛽zi + (1 − 𝛽zi) log(1 − 𝛽zi)],

U𝜏(𝜃) = 𝜕ℓ(𝜃)
𝜕𝜏 = n

𝜏 −
𝛽
c

(
1
𝛽 − 1

) n

∑
i=1

(ecxi − 1)
1 − 𝛽zi

+ (𝛼 − 1)
c

n

∑
i=1

(ecxi − 1)(1 − 𝛽zi)
1
𝛽−1

1 − (1 − 𝛽zi)
1
𝛽

,

Uc(𝜃) =
𝜕ℓ(𝜃)
𝜕c =

n

∑
i=1

xi −
𝛽𝜏
c2

(
1
𝛽 − 1

) n

∑
i=1

ecxi + cxiecxi − 1
(1 − 𝛽zi)

+ (𝛼 − 1) 𝜏
c2

n

∑
i=1

(ecxi + cxiecxi − 1)(1 − 𝛽zi)
1
𝛽−1(

1 − (1 − 𝛽zi)
1
𝛽
) .

Unfortunately, the close form solution for the maximum likelihood estimation (MLE) of parameters does not exist, but one can provide
them. As we see, when 𝛽 be negative then the support of the model is (0,∞). So, by checking that the regularity conditions hold, one can
say that the asymptotic distribution of vector �̂� is multivariate normal. But the story is different when 𝛽 be positive, because in this case
the support of the distribution depends on the unknown parameters and so we can say that the asymptotic normality distribution does not
satisfy. Here, We first find the MLE of the threshold parameter using [33]. Then, similar to the method of [19], asymptotic distribution of
the MLE’s are obtained.

As we know v = 1
c log( c

𝜏𝛽 + 1) is the thresholding parameter. It is easily verified that the MLE of v is ̃v = x(n). Following the method of [19],
the log-likelihood function is

ℓ(𝛼, 𝜏, c, ̃v) = (n − 1) log(𝛼) +
n−1

∑
i=1

log(w(x(i))) + (W( ̃v) − 1)
n−1

∑
i=1

log(1 − q̃(i))

+(𝛼 − 1)
n−1

∑
i=1

log
(
1 − (1 − q̃(i))W( ̃v)

)
,

where q = W(x)/W(v), w(x) is the derivative ofW (x) with respect to x and x(i) and q(i) are the i-th observed ordered statistics from random
samples xi and qi, respectively. At first, we provide that �̃� = −(n − 1)/ũ, where ũ = ∑n−1

i=1 log
(
1 − (1 − q̃(i))W( ̃v)) and in the next stage, the

MLE of other parameters can be obtain by maximizing ℓ(�̃�, 𝜏, c, ̃v) with respect to 𝜏, and c.

To determine the asymptotic distribution of the MLEs of (𝛼, 𝜏, c) based on the log-likelihood function ℓ(𝛼, 𝜏, c, ̃v), we present the following
theorem.

Theorem 4.1. a. n1/W(v)( ̃v − v) converges to −W(v)
𝜏ecv V

1/W(v) in distribution, where V is distributed as an exponential distribution with
mean 1

𝛼 .

b. Given X(n), the asymptotic distribution of the modified MLE for 𝜃 is multivariate normal distribution.

c. The asymptotic distribution of (�̃�, ̃𝜏, ̃c) is (i) multivariate normal ifW(v) < 1
2 , (ii) multivariate Weibull ifW(v) > 1

2 , and (iii) a mixture
of normal and Weibull if W(v) = 1

2 .

Proof. See [22] and [19]. □
Pdf_Folio:477
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5. MODELING A REAL DATA SET

The following data set has been provided by [34] and also analyzed by [23]. It represents the lifetimes of 50 devices.

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 1821 32 36 40 45 46 47 50 55
60 63 63 67 67 67 67 72 7579 82 82 83 84 84 84 85 85 85 85 85 86 86

To find the best model for above data, we compare EGG, EGE, GG, and GE distributions as competing models. For each model, we obtain
the MLEs of parameters. Then, we calculate some statistics that are useful in detecting the fitting effect of above proposed distributions.
These statistics as well as their p-values are famous in all fitting distribution problems. In Table 3, we provide these statistics. From the
p-value of Kolmogorov-Smirnov (K-S) statistic, we find that all proposed distributions can be fitted to this data set. Also in Table 3, we
provide some statistics such as Akaike information criterion (AIC), Corrected Akaike’s Information Criterion (AICC), and Bayesian infor-
mation criterion (BIC) to find the best fit between all proposed distributions. The lowest values of AIC, AICC, and BIC are related to EGG
model. Also, all p-values of likelihood ratio test (LRT) statistic are less than 0.0001 which results in favor of EEG distribution. Totally, we
can claim that the EGG model is the best model to fit among others. The plots of fitted pdfs with the histogram and plots of cdfs with the
empirical cdf of the data set are presented in Figure 2.

Table 3 Fit criteria based on EGG, EGE, GG, and GE distributions.

Distribution

Statistic EGG EGE GG GE

�̂� 0.3098 0.5368 0.2624 0.7798
̂𝛽 5.0000 1.8199 — —
̂𝜏 0.0010 0.0064 0.0001 0.0187
̂c 0.0173 — 0.0828 —
− log(L) 173.69 189.1973 222.2441 239.9951
K-S 0.1371 0.1558 0.1146 0.2042
p-value (K-S) 0.3041 0.1763 0.5273 0.0309
AIC 355.3747 384.3945 454.2548 483.9903
AICC 356.2636 384.9163 454.7765 484.2456
BIC 363.0228 390.1306 459.9908 487.8143
LRT — 31.0198 100.8801 132.6156
p-value (LRT) — 0.0000 0.0000 0.0000
EGG, extended generalized Gompertz; EGE, extended generalized exponential; GG, generalized
Gompertz; GE, generalized exponential; LRT, likelihood ratio test; K-S, Kolmogorov-Smirnov.

Figure 2 Fitting extended generalized Gompertz (EGG), extended generalized exponential (EGE), generalized
Gompertz (GG), and generalized exponential (GE) distributions to the histogram (left) and the empirical cumulative
distribution function (cdf) of the data (right).
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APPENDIX

A. Proof of Theorem 3.2
i. Let 𝛼 = 1. Then

E
(
Xk

)
= ∫

∞

0
F
(
x1/k

)
dx = ∫

∞

0

1(
1 + 𝜏

cs
(
ecx1/k − 1

))s dx,
where F = 1 − F and s=− 1

𝛽 . Since
(
cs−𝜏+𝜏ecx1/k

)
cs ∼ 𝜏

cs e
cx1/k

, and integral ∫∞0 𝜏
cs e

−csx1/k
dx converges for all positive values of 𝜏, s and c.

ii. Since
𝛼
∑
i=1

(−1)i
(𝛼
i

)(
1 + z

s

)−is
<

𝛼
∑
i=0

(𝛼
i

)(
1 + z

s

)−is
< 2𝛼

(
1 + z

s

)−s
,

then using part (i), we can conclude that E [Xk] exists for 𝛼 ∈ ℤ.

iii. Since E [Xk] exists for all 𝛼 ∈ ℤ and F is an increasing function of 𝛼 then using (i) and (ii), we can conclude that E [Xk] exists for all
𝛼 > 0.
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