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ABSTRACT
We have developed Pranav Quasi Gamma Distribution (PQGD) as a mixture of Pranav distribution (𝜃) and Quasi Gamma
distribution (2, 𝜃). We obtained various necessary statistical characteristics of PQGD. The flexibility of proposed model is clear
from graph of hazard function. The reliability measures of proposed model are also obtained. Sample estimates of unknown
parameters are obtained by making use of maximum likelihood estimation method. We have also carried out the simulation
study for comparing ourmodel with its relatedmodels.We then tested the significance ofmixing parameter. Finally, applications
to real-life data sets is presented to examine the significance of newly introduced model.
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1. INTRODUCTION

Continuous efforts have been made by researchers for many years to bring more and more flexibility in fitting probability models to real-
life data. Flexibility can be introduced by generalizing the classical probability models or by mixing the two probability models. Need of
mixture models arise when the population or distribution from which the data is obtained is a genuine mixture of k distinct populations or
distributions and our aim is to estimate the proportions

(
p1, p2, … pk

)
in which these k distinct populations in which these occur. As we deal

mostly with the data obtained from two or more populations mixed in different proportions, so mixture models find greater applicability in
fitting models to data. Mixture models also extract more variation from the data. Data analysts use mixture models to the complex data for
better interpretation of results. Stacy [1] obtained generalized form of gamma model using power transformation of gamma distribution.
Nadarajah et al. [2] obtained another generalized form of gamma model and applied it to various real-life situations. Shukla [3] obtained
Pranav distribution by mixing gamma and exponential models in appropriate proportions and obtained its properties. Ghitany et al. [4]
formulated Lindley distribution by mixture technique and studied its important properties. Shanker et al. [5] introduced a Quasi Gamma
distribution and obtained its vital properties. Shanker and Shukla [6] obtained Ishita distribution by using mixture technique. Hassan et
al. [7] obtained Lindley-Quasi Xgamma distribution and studied its important properties. Hassan, Wani and Shafi [8] introduced Poisson
Pranav distribution and obtained its various mathematical properties along with obtaining applications of the proposed model. Hassan,
Wani and Para [9] formulated three parameter Quasi Lindley distribution by using weighting technique and obtained various properties of
that model. Shafi et al. [10] obtained properties and applications of Sanna distribution.

A continuous r. v X will have a mixture distribution if its p.d.f f(x) is obtained as a mixture of k distinct populations having density functions
f1(x), f2(x), … fk(x) and with mixing proportions p1, p2, … pk respectively. Mathematically

f(x) = p1f1(x) + p2f2(x) + … + pkfk(x)

where

0 ≤ pi ≤ 1
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k

∑
i=1

pi = 1

We have used mixture technique to obtain Pranav Quasi Gamma distribution (PQGD) in this paper.

2. PRANAV QUASI GAMMA DISTRIBUTION

A nonnegative r.v X would follow a PQGD if it will have p.d.f f(x) which can be obtained as a mixture of Pranav (𝜃) having p.d.f f1(x) &
Quasi Gamma distribution (2, 𝜃) having p.d.f f2(x), in which 𝜃 is a scale parameter. Mathematically

f (x) = (1 − p) f2(x) + p f1(x) (1)

In Equation (1) p is a mixing parameter and

f1(x) = 𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x x > 0, 𝜃 > 0 (2)

(2) is a p.d.f of Pranav (𝜃) distribution with the corresponding c.d.f F1(x) given below

F1(x) = {1 − [
(
3𝜃x + 6 + 𝜃2x2

)
𝜃x

(𝜃4 + 6)
+ 1] e−𝜃x} (3)

And p.d.f of Quasi Gamma distribution (2, 𝜃) is given in (4)

f2(x) = 2𝜃2e−𝜃x
2
x3 𝜃 > 0, x > 0 (4)

And corresponding c.d.f F2(x) of QGD is given below

F2(x) =
(
−Γ

(
2, 𝜃x2

)
+ 1

)
(5)

Substituting values of f1(x) & f2(x) in (1) we obtain p.d.f f(x) of PQGD as given below

f(x) = [ p𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x + 2(1 − p)𝜃2e−𝜃x

2
x3] x > 0, 𝜃 > 0, 0 ≤ p ≤ 1 (6)

The graphs of p.d.f of PQGD are given in Figure 1a and 1b. These graphs show that for different parameter values indicating positively
skewed nature of proposed model.

And the c.d.f of PQGD is found by using (3) and (5) and is given below

F(x) = [p
(
1 − [

(
𝜃2x2 + 3𝜃x + 6

)
𝜃x

(𝜃4 + 6)
+ 1] e−𝜃x

)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
] (7)

The above graphs represents the cumulative distribution function of PQGD.

3. RELIABILITY ANALYSIS

This different reliability measures are obtained in this particular area of paper. Expressions for survival function, failure rate and reverse
failure rate of proposed PQGD are obtained in (8), (9), (10) respectively.

R (x) = 1 − {p
(
1 − [

(
3𝜃x + 6 + 𝜃2x2

)
𝜃x

(𝜃4 + 6)
+ 1] e−𝜃x

)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
} (8)

h(x) =
[p𝜃4

(
𝜃 + x3

)
e−𝜃x + 2

(
𝜃4 + 6

) (
1 − p

)
𝜃2e−𝜃x2x3]

(𝜃4 + 6) − {p
(
(𝜃4 + 6) − [(𝜃4 + 6) + 𝜃x (𝜃2x2 + 3𝜃x + 6)] e−𝜃x

)
+ (1 − p) (𝜃4 + 6) (1 − Γ (2, 𝜃x2))}

(9)

R.H.R = hr(x) =
[p𝜃4

(
𝜃 + x3

)
e−𝜃x + 2(𝜃4 + 6)

(
1 − p

)
𝜃2e−𝜃x2x3]

{p
(
(𝜃4 + 6) − [(𝜃4 + 6) + 𝜃x (𝜃2x2 + 3𝜃x + 6)] e−𝜃x

)
+ (1 − p) (𝜃4 + 6) (1 − Γ (2, 𝜃x2))}

(10)
Pdf_Folio:507



508 S. A. Wani et al. / Journal of Statistical Theory and Applications 19(4) 506–517

Figure 1 Graph of density function.

Figure 2 Graph of distribution function.
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Figure 3 Graph of survival function.

Figure 3a and 3b represent the survival function of PQGD. Figure 4 represents the hazard rate of PQGD which shows the flexibility of
proposed model as the graph is inverted bathtub shaped. The hazard rate is of monotonic increasing as well as monotonic decreasing nature
which shows the flexibility of proposed model.

4. STATISTICAL PROPERTIES

Moments, mean deviation about mean, median characterize probability model among other properties. Here we have obtained these sta-
tistical properties for our proposed Pranav Quasi Gamma model.

4.1. Moments

Assuming X being a r.v having PQGD (𝜃, p). We now know that kth moment about origin of PQGD is given as below

𝜇′k = E
(
Xk) = ∞

∫
0

xkf
(
x, 𝜃, p

)
dx

=
∞

∫
0

xk[ p𝜃4
(𝜃4 + 6)

(𝜃 + x3)e−𝜃x + 2(1 − p)𝜃2e−𝜃x
2
x3]dx

𝜇′k =
k!

𝜃k(2 + 𝜃𝛼)2 [
pk! (k + 3)(𝜃4 + (k + 1)(k + 2)

𝜃k(𝜃4 + 6)
+

(1 − p)
(
Γ
( 4+k

2
))

𝜃
k
2

] (11)

Put k = 1 in Equation (11) we get

𝜇′1 = [
p
(
𝜃4 + 24

)
𝜃 (𝜃4 + 6)

+
(1 − p)

(
Γ
( 5
2
))

𝜃
1
2

]
Pdf_Folio:509
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Figure 4 Graph of hazard function.

which is mean of the PQGD

Put k = 2 in Equation (11) we get

𝜇′2 = [
2p

(
𝜃4 + 60

)
𝜃2 (𝜃4 + 6)

+ (1 − p) (Γ(3))
𝜃 ]

And variance of PQGD is

V(x) = [
p
(
𝜃8 + 84𝜃4 + 144

)
𝜃2 (𝜃4 + 6)2

+
(1 − p)

(
2 −

(
Γ
( 5
2
))2)

𝜃 ]

4.2. Average Deviation About Median and Arithmetic Mean of PQGD

We have derived the expressions for average deviation about median & arithmetic mean of PQGD in this area of paper.

Theorem 1: If r.v X follows PQGD
(
𝜃, p

)
, then average deviation about median (𝛿2(x)) and arithmetic mean (𝛿1(x))

𝛿1(X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2𝜇 {p
(
1 −

(
1 +

𝜃𝜇
(
(𝜃𝜇)2 + 3𝜃𝜇 + 6

)
(𝜃4 + 6)

)
e−𝜃𝜇

)
+ (1 − p)

(
1 − (Γ(2, 𝜃𝜇2)

)
}

−2 { p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2, 𝜇) + 𝛾(5, 𝜇)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
, 𝜇

)
}

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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And

𝛿2(X) = [𝜇 − 2 { p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2,M) + 𝛾(5,M)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
,M

)
}]

respectively.

Proof: Average deviation about median (𝛿2(x)) & arithmetic mean (𝛿1(x)) are well defined as

𝛿1(X) =
⎛⎜⎜⎝
∞

∫
0

|x − 𝜇|f(x)dx
⎞⎟⎟⎠

&𝛿2(X) =
⎛⎜⎜⎝
∞

∫
0

|x −M|f(x)dx
⎞⎟⎟⎠

respectively.

where 𝜇 and M are arithmetic mean and median of PQGD respectively. The measures 𝛿1(X) & 𝛿2(X) are obtained by making use of the
simplified relations given below.

𝛿1(X) =
𝜇

∫
0

(𝜇 − x)f(x)dx +
∞

∫
𝜇

(x − 𝜇)f(x)dx

𝛿1(X) = 2𝜇F(𝜇) − 2
𝜇

∫
0

xf(x)dx (12)

and

𝛿2(X) =
∞

∫
M

(x −M)f(x)dx +
M

∫
0

(M − x)f(x)dx

𝛿2(X) = 𝜇 − 2
M

∫
0

xf(x)dx (13)

Using (6) we obtain

𝜇

∫
0

xf(x)dx = [ p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2, 𝜇) + 𝛾(5, 𝜇)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
, 𝜇

)
] (14)

M

∫
0

xf(x)dx = [ p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2,M) + 𝛾(5,M)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
,M

)
] (15)

where 𝛾 (s, x) = ∫
x

0
ts−1e−tdt is an incomplete gamma function.

𝛾 (2, 𝜇) = ∫
𝜇

0
t2−1e−tdt

𝛾
(5
2
, 𝜇

)
= ∫

𝜇

0
t
5
2−1e−tdt
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512 S. A. Wani et al. / Journal of Statistical Theory and Applications 19(4) 506–517

and 𝛾 (5, 𝜇) = ∫
𝜇

0
t5−1e−tdt

Using expressions (12), (13), (14), and (15) and expression for c.d.f (7) we obtain average deviation about median (𝛿2(x))&and arithmetic
mean (𝛿1(x))

𝛿1(X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2𝜇 {p
(
1 −

(
1 + 𝜃𝜇((𝜃𝜇)2 + 3𝜃𝜇 + 6)

(𝜃4 + 6)

)
e−𝜃𝜇

)
+ (1 − p)(1 −

(
Γ
(
2, 𝜃𝜇2))}

−2 { p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2, 𝜇) + 𝛾(5, 𝜇)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
, 𝜇

)
}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝛿2(X) = [𝜇 − 2 { p
𝜃 (𝜃4 + 6)

(
𝜃4𝛾(2,M) + 𝛾(5,M)

)
+ (1 − p)

𝜃
1
2

𝛾
(5
2
,M

)
}]

5. ORDER STATISTICS OF PQGD

Assuming X(1),X(2),X(3)....,X(n) being an order statistics for the random sample x1, x2, x3, ....xn obtained from PQGD having c.d.f
F
(
x, 𝜃, p

)
and p.d.f f

(
x, 𝜃, p

)
, then the p.d.f of vth order statistics X(v) is given by: fv

(
x, 𝜃, p

)
= n!

(v−1)!(n−v)! f
(
x, 𝜃, p

)
[F

(
x, 𝜃, p

)
]v−1 [1 − F

(
x, 𝜃, p

)
]n−v v = 1, 2, … n

Using the Equations (6) and (7), the probability density function of vth order statistics of PQGD is specified as

f(v)
(
x, 𝜃, p

)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n!
(v − 1) ! (n − v) ! [

p𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x + 2(1 − p)𝜃2e−𝜃x2x3]

[p
(
1 − [1 +

𝜃
(
𝜃2x2 + 3𝜃x + 6

)
(𝜃4 + 6)

] e−𝜃x
)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
]
v−1

[1 − p

(
1 − [1 +

𝜃
(
𝜃2x2 + 3𝜃x + 6

)
(𝜃4 + 6)

] e−𝜃x
)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
]
n−v

.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then, the p.d.f of first order statistic X(1) of of PQGD is specified as

f(1)
(
x, 𝜃, p

)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n [ p𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x + 2(1 − p)𝜃2e−𝜃x2x3]

[1 − p

(
1 − [1 +

𝜃
(
𝜃2x2 + 3𝜃x + 6

)
(𝜃4 + 6)

] e−𝜃x
)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
]
n−1

.

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and the p.d.f of nth order statistic X(n) of of PQGD is specified as

f(n)
(
x, 𝜃, p

)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n p𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x + 2(1 − p)𝜃2e−𝜃x2x3

[p
(
1 − [1 +

𝜃
(
𝜃2x2 + 3𝜃x + 6

)
(𝜃4 + 6)

] e−𝜃x
)
+ (1 − p)

(
1 − Γ

(
2, 𝜃x2

))
]
n−1

.

⎤
⎥
⎥
⎥
⎥
⎥
⎦

6. ESTIMATION OF PARAMETERS OF PQGD

Assuming X1,X2,X3.....Xn being a randomly selected sample of size n obtained from PQGD having density function given by (2.6), then
the likelihood function of PQGD is given as

L
(
x|𝜃, p

)
=

n

∏
i=1

[ p𝜃4
(𝜃4 + 6)

(
𝜃 + x3i

)
e−𝜃xi + 2(1 − p)𝜃2e−𝜃x

2
i x3i ]
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The log-likelihood function becomes

log L = {2n log 𝜃 − n log
(
𝜃4 + 6

)
+

n

∑
i=1

[log
(
p𝜃2

(
𝜃 + x3i

)
e−𝜃xi + 2

(
𝜃4 + 6

)
(1 − p)e−𝜃x

2
i x3i

)
]} (16)

By partially differentiating (16) w. r. to 𝜃 and p and then equating the outcome to zero, we get the resulting normal equations specified below

𝜕 log L
𝜕𝜃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2n
𝜃 − 4n𝜃3

(𝜃4 + 6)
+

n

∑
i=1

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

p
((

3𝜃2 + 2𝜃x3i
)
e−𝜃xi −

(
𝜃3 + 𝜃2x3i

)
xie−𝜃xi

)
+2(1 − p)x3i

(
4𝜃3e−𝜃x2i − x2i e−𝜃x

2
i
(
𝜃4 + 6

))
(
p𝜃2

(
𝜃 + x3i

)
e−𝜃xi + 2 (𝜃4 + 6) (1 − p)e−𝜃x2i x3i

)
⎫
⎪⎪⎪
⎬
⎪⎪⎪
⎭

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0 (17)

𝜕 log L
𝜕p = [

n

∑
i=1

{

(
𝜃2

(
𝜃 + x3i

)
e−𝜃xi − 2

(
𝜃4 + 6

)
e−𝜃x

2
i x3i

)
(
p𝜃2

(
𝜃 + x3i

)
e−𝜃xi + 2 (𝜃4 + 6) (1 − p)e−𝜃x2i x3i

)}] = 0 (18)

MLEs of 𝜃, p cannot be obtained by solving above complex equations as these equations are not in closed form. So we solve above equations
by using iteration method through R software.

7. SIMULATION STUDY

Wehave generated a data of 50 observations through R software by using inverse c.d.f technique from proposedmodel andwe have obtained
loss of information values AIC, BIC, AICC, and HQIC values for our model and its related models. We have also obtained the Shannon’s
entropy of our model and its related models. For testing the significance of mixing parameter p we used likelihood ratio (LR) statistic. In
Table 1 estimates of parameters of fitted models along with model functions are given.

In order to test the statistical significance of mixing parameter p for proposed PQGD we computed LR statistic by testing H0 ∶ p = 0
against H1 ∶ p ≠ 0 using LR statistic 𝜔 = 2 {L

(
Θ̂
)
− L

(
Θ̂0

)
} = 23.01, where Θ̂ and Θ̂0 are MLEs under H1 and H0. LR statistic 𝜔 ∼(

𝜒2
(1)(𝛼 = 0.01) = 6.635

)
as n → ∞, d.f being the difference of dimensionality. From Table 2 𝜔 = 23.01 > 6.635 at 1% significance level,

hence we rejected H0 and conclude that mixing parameter p plays statistically a significant role.

Table 1 ML estimates with standard errors in parenthesis, model function of proposed model, and its related models
for simulated data of 50 observations.

Distribution Parameter Estimates Model Function

Quasi Gamma (QGD) ̂𝜃 = 3.176(0.317) 2𝜃2e−𝜃x2x3

Pranav (PD) ̂𝜃 = 2.217(0.156) 𝜃4

(𝜃4+6)
(
𝜃 + x3

)
e−𝜃x

Pranav Quasi Gamma
(PQGD)

̂𝜃 = 2.978(0.309)
p̂ = 0.1222(0.068)

p𝜃4

(𝜃4+6)
(
𝜃 + x3

)
e−𝜃x + 2(1− p)𝜃2e−𝜃x2x3

Table 2 Model comparison and likelihood ratio statistic of proposed model and its related models.

Distribution − log L AIC BIC AICC HQIC Shanon Entropy
H(X)

Likelihood Ratio

PQGD 11.67180 27.3436 31.167 27.598 28.799 0.233
23.01

QGD 23.1788 48.3576 50.2696 48.440 48.44094 0.46
PD 41.09660 84.1932 86.105 84.276 84.921 0.82
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Loss of information criteria’s like AIC, BIC, AICC, and HQIC are computed along with measure of average uncertainty that is Shannon
entropy H(X) for comparison of models fitted to data.

AIC = 2v − 2 log L AICC = AIC + 2v(v + 1)
f − v − 1

BIC = v log f − 2 log L HQIC = 2v log
(
log

(
f
))
+ 2 log L

H(X) = − log L
f

where v gives count of parameters in the statistical model, f represents the sample size, and −2 log L shows the maximized value of the
log-likelihood function. From Table 2, it is observed that the PQGD possesses the lesser AIC, AICC, BIC, and HQIC and H(X)values as
compared to QGD and PD for simulated data. Hence we can conclude that the PQGD gives much better fit as compared to QGD and PD
for simulated data.

8. SPECIAL CASES

Case I: By putting p = 0, then PQGD (6) reduces to Quasi Gamma distribution with p.d.f as

f2(x) = 2𝜃2e−𝜃x
2
x3 x > 0, 𝜃 > 0

Case II: By putting p = 1, PQGD (6) reduces to Pranav distribution with p.d.f as

.f1(x) = 𝜃4
(𝜃4 + 6)

(
𝜃 + x3

)
e−𝜃x x > 0, 𝜃 > 0

9. APPLICATIONS OF PQGD

We fitted PQGD and its related distributions to two real-life data sets and showed that our proposed model fits well to these data sets as
compared to its related models.

Data Set 1: The data set given in Table 3 has been taken from Kotz and Johnson [11] and represents the survival times (in years) after
diagnosis of 43 patients with some kind of leukemia.

Data set 2: This data set given in Table 4 represents the Kevlar 49/epoxy strands failure times data (pressure at 90%) is taken fromMakubate
et al. [12].

Table 3 Survival times (in years) after diagnosis of 43 patients with a certain kind of leukemia.

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781

0.869 1.175 1.206 1.219 1.219 1.282 1.356 1.362
1.458 1.564 1.586 1.592 1.781 1.923 1.959 2.134
2.413 2.466 2.548 2.652 2.951 3.038 3.6 3.655
3.745 4.203 4.690 4.888 5.143 5.167 5.603 5.633
6.192 6.655 6.874

Table 4 Kevlar 49/epoxy strands failure times data (pressure at 90%).

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07

0.07 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.12 0.13 0.18
0.19 0.20 0.23 0.24 0.24 0.29 0.34 0.35 0.36 0.38 0.40
0.42 0.43 0.52 0.54 0.56 0.60 0.60 0.63 0.65 0.67 0.68
0.72 0.72 0.72 0.73 0.79 0.79 0.80 0.80 0.83 0.85 0.90
0.92 0.95 0.99 1.00 1.01 1.02 1.03 1.05 1.10 1.10 1.11
1.15 1.18 1.20 1.29 1.31 1.33 1.34 1.40 1.43 1.45 1.50
1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.60 1.63 1.64 1.80
1.80 1.81 2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.20
4.69 7.89

Pdf_Folio:514



S. A. Wani et al. / Journal of Statistical Theory and Applications 19(4) 506–517 515

R software version 3.5.3 [13] is used for analyzing the data.We have fitted QGD, PD, GD,WD, and PQGD to the data sets 1 and 2. The sum-
mary statistics of data sets 1 and 2 are displayed in Tables 5 and 6, MLEs of the parameters with standard errors in parenthesis, model func-
tions are displayed in Table 7 and log-likelihood values, LR statistic, AIC, AICC, BIC, HQIC, and Shannon’s entropy are displayed in Tables 8
and 9 respectively.

In order to test the statistical significance of mixing parameter p for proposed PQGDwe computed LR statistic by testingH0 ∶ p = 0 against
H1 ∶ p ≠ 0 using LR statistic 𝜔1 = 2 {L

(
Θ̂
)
− L

(
Θ̂0

)
} = 101.188 for data set 1 and 𝜔2 = 2 {L

(
Θ̂
)
− L

(
Θ̂0

)
} = 506.18 for data set 2 where

Θ̂ and Θ̂0 are MLEs under H1 and H0. LR statistic 𝜔 ∼
(
𝜒2
(1)(𝛼 = 0.01) = 6.635

)
as n → ∞, d.f being the difference of dimensionality.

From Table 8 𝜔1 = 101.188 > 6.635 and from Table 9 𝜔2 = 506.18 > 6.635 at 1% significance level, hence we rejected H0 and conclude
that mixing parameter p plays statistically a significant role for both the data sets.

Table 5 Summary statistics of data set 1.

Number of Observations Minimum First Quartile Median Mean Third Quartile Maximum

43 0.019 1.212 1.923 2.534 3.700 6.874

Table 6 Summary statistics of data set 2.

Number of Observations Minimum First Quartile Median Mean Third Quartile Maximum

101 0.010 0.240 0.800 1.025 1.450 7.890

Table 7 ML estimates with standard errors in parenthesis, model function of proposed model, and its related models for data set 1 and 2.

Distribution Parameter Estimates Model Function

Data Set 1 Data Set 2

Quasi Gamma Distribution
(QGD)

̂𝜃 = 0.199032 (0.021465) ̂𝜃 = 0.8730(0.0614) 2𝜃2e−𝜃x2x3

Pranav Distribution (PD) ̂𝜃 = 1.244312 (0.075493) ̂𝜃 = 1.8976(0..0821) 𝜃4

(𝜃4+6)
(
𝜃 + x3

)
e−𝜃x

Pranav Quasi Gamma
Distribution (PQGD)

̂𝜃 = 1.143384 (0.093793)
p̂ = 0.76297 (0.11982019)

̂𝜃 = 1.8784(0.0878)
p̂ = 0.7782(0.0870)

p𝜃4

(𝜃4+6)
(
𝜃 + x3

)
e−𝜃x + 2(1− p)𝜃2e−𝜃x2x3

Gamma Distribution
(GD)

�̂� = 1.3017130 (0.2527684)
̂𝛽 = 1.946648 (0.4588967)

�̂� = 0.8718 (0.10669)
̂𝛽 = 1.17547 (0.19074)

x𝛼−1e−x/𝛽
𝛽𝛼Γ𝛼

Weibull distribution
(WD)

�̂� = 2.702256 (0.3482947)
̂𝛽 = 1.2397431 (0.1532526)

�̂� = 0.98994 (0.111770)
̂𝛽 = 0.92588 (0.072598)

𝛽
𝜆
( x
𝜆
)𝛽−1 e−(x/𝜆)𝛽

Table 8 Model comparison and Likelihood ratio statistic of proposed model and its related models for data set 1.

Distribution − log L AIC BIC AICC HQIC Shanon Entropy
H(X)

Likelihood Ratio

PQGD 80.07714 164.1543 167.6767 164.4543 165.4532 1.862
101.188

QGD 130.6714 263.3428 265.104 263.4404 263.9923 3.038
PD 82.17808 166.3562 168.1174 166.4537 167.0056 1.911
GD 82.12227 168.2445 171.7669 168.5445 169.5435 1.909
WD 81.61015 167.2203 170.7427 167.5203 168.5192 1.897

Table 9 Model comparison and Likelihood ratio statistic of proposed model and its related models for data set 2.

Distribution − log L AIC BIC AICC HQIC Shanon Entropy
H(X)

Likelihood Ratio

PQGD 102.8728 209.7456 214.9758 209.868 211.8629 1.018
506.18

QGD 355.9660 713.9321 716.5472 713.9725 714.9907 3.52
PD 106.3711 214.7422 217.3573 214.7826 215.8008 1.05
GD 102.9827 209.9655 215.2048 210.2421 212.2049 1.020
WD 102.9768 209.9536 215.1839 210.0761 212.1071 1.019
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Figure 5 Curve fitting of data set 1.

Figure 6 Curve fitting of data set 1.

Loss of information criteria’s like AIC, BIC, AICC, and HQIC are computed along with measure of average uncertainty that is Shannon
entropy H(X) for comparison of models fitted to data.

AIC = 2v − 2 log L AICC = AIC + 2v(v + 1)
f − v − 1

BIC = v log f − 2 log L HQIC = 2v log
(
log

(
f
))
+ 2 log L

H(X) = − log L
f

where v gives count of parameters in the statistical model, f represents the sample size, and −2 log L shows the maximized value of the
log-likelihood function. From Tables 8 and 9, it is observed that the PQGD possesses the lesser AIC, AICC, BIC, HQIC, andH(X)values as
compared to QGD, GD, WD, and PD for both the data sets 1 and 2. Hence we can conclude that the PQGD leads to a better fit than the
QGD, GD, WD, and PD for data sets 1 and 2.Pdf_Folio:516
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10. CONCLUSION

We incorporated PQGD as amixture of Pranav distribution andQuasi Gamma distribution.We obtained crucial properties of our proposed
model. We carried out the simulation study and showed superiority of our model over its related models. We also obtained the estimates
of our proposed model by using maximum likelihood method of estimation. Significance of mixing parameter has been tested. Finally we
fitted our model and its related models to two real-life data sets and concluded that our model gives better fit to these data sets as compared
to its related models.

ACKNOWLEDGEMENT

We are highly thankful to reviewers for their valuable suggestions and we are also highly thankful to journal.

CONFLICTS OF INTEREST

All the authors have no conflict of interest.

AUTHORS’ CONTRIBUTIONS

All the authors contributed equally.

REFERENCES

1. E.W. Stacy, Ann. Math. Stat. 33 (1962), 1187–1192.
2. S. Nadarjah, A.K. Gupta, Math. Comp. Simul. 74 (2007), 1–7.
3. K.K. Shukla, Bio. Bio. Int. J. 7 (2018), 244–254.
4. M.E. Ghitany, B. Atieh, S. Nadarjah, Math. Comp. Simul. 78 (2008), 493–506.
5. R. Shanker, K.K. Shukla, S. Sharma, R. Shanker, Int. J. Stat. Appl. Math. 3 (2018), 208–217.
6. R. Shanker, K.K. Shukla, Bio. Bio. Int. J. 5 (2017), 39–46.
7. A. Hassan, S.A. Wani, S. Shafi, B.A. Sheikh, Pak. J. Stat. 36 (2020), 73–89.
8. A. Hassan, S.A. Wani, S. Shafi, Pak. J. Stat. 36 (2020), 57–72.
9. A. Hassan, S.A. Wani, B.A. Para, Int. J. Sci. Res. Math. Stat. Sci. 5 (2018), 210–224.
10. S. Shafi, S. Shafi, S. Riyaz, J. Xi, Uni. Arch. Technol. XII (2020), 1716–1733.
11. S. Kotz, N.L. Johnson, Encyclopedia of Statistical Sciences, John Wiley and Sons, New York, NY, USA, 1983, p. 613.
12. B. Makubate, B.O. Oluyede, N. Dingalo, A.F. Francis, Int. J. Stat. Prob. 7 (2018), 49–67.
13. R Core Team, R Version 3.5.3, R Foundation for Statistical Computing, Vienna, Austria.

Pdf_Folio:517

https://doi.org/10.1214/aoms/1177704481
https://doi.org/10.1016/j.matcom.2006.04.004
https://doi.org/10.1016/j.matcom.2007.06.007
https://doi.org/10.13140/RG.2.2.12947.37922
https://doi.org/10.26438/ijsrmss/v5i5.210224
https://doi.org/10.5539/ijsp.v7n6p49

	Pranav Quasi Gamma Distribution: Properties and Applications
	1 INTRODUCTION
	2 PRANAV QUASI GAMMA DISTRIBUTION
	3 RELIABILITY ANALYSIS
	4 STATISTICAL PROPERTIES
	4.1 Moments
	4.2 Average Deviation About Median and Arithmetic Mean of PQGD

	5 ORDER STATISTICS OF PQGD
	6 ESTIMATION OF PARAMETERS OF PQGD
	7 SIMULATION STUDY
	8 SPECIAL CASES
	9 APPLICATIONS OF PQGD
	10 CONCLUSION


