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ABSTRACT
In this work, maximum likelihood (ML) estimations of the epsilon-skew-normal (ESN) family are obtained using an EM-
algorithm to modify the ordinary estimation already used and solve some of its problems within issues. This family can be used
for analyzing the asymmetric and near-normal data, so the skewness parameter epsilon is the most important parameter among
others. We have shown that the method has better performance compared to the method in G.S. Mudholkar, A.D. Hutson, J.
Statist. Plann. Infer. 83 (2000), 291–309, especially in the strong skewness and small samples. Performances of the proposedML
estimates are shown via a simulation study and some real datasets under some statistical criteria as a way to illustrate the idea.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

The importance of the asymmetric distributions in various applications such as meteorology, physics, economics, geology, etc., has been
rapidly increasing. Also, the asymmetric distributions which contain famous distributions in the symmetric cases, such as normal distribu-
tion, are more important among all others. The epsilon-skew-normal (ESN) distribution which was introduced by Refs. [1–6], is a flexible
family to model the asymmetry data and statistical models. The ESN parameters maximum likelihood (ML) estimates were found by Refs.
[3,7], and their Bayesian estimates were studied by Ref. [8] as well as Ref. [9].

The classicalML estimates of this family and its application on some statistical models (as regression model by Ref. [7]; time series model
by Ref. [10]; Tobit regression by Ref. [11]) were performed by an especial approach which ordered the data. Applying the variations of
each produced segment and three possible likelihood function forms as well as their proposed estimates, the one with higher likelihood
values was chosen as the approximation of the ML estimates (see e.g. Ref. [12]). But, there exist some problematic issues on this method,
e.g., in the strong asymmetry, in the small samples, and the right/left half-normal distribution estimates in which there are not any real
distributions. We have focused on an especial mixture of two right/left half-normal distributions which lead to ESN family, and have used
an EM-algorithm to obtain theML estimates of the model parameters. In addition, we have shown the modifications of the proposedML
estimates without the maintained issues (see, e.g., Ref. [13]).

The rest of this paper is organized as follows: Some properties of the ESN family and ordinary method of finding the ML estimates are
considered in Section 2. The new approach of finding the ML estimates based on the mixture distributions are provided in Section 3. In
Section 4, in order to show the performance of the proposed methodology, some simulation studies are provided which are later used to
some real dataset. Finally, the conclusion is given in Section 5.

2. THE ESN FAMILY

TheESN distribution denoted byESN (𝜃, 𝜎, 𝜀) is a unimodal distributionwithmode and location parameter 𝜃 ∈ ℝ, scale parameterσ ∈ ℝ+,
skewness parameter 𝜀 ∈ (−1, 1), and probability masses (1 + 𝜀) /2 at below the mode and (1 − 𝜀) /2 at above the mode, with the following

*Corresponding author. Email: m.maleki.stat@gamil.com
Pdf_Folio:481

https://doi.org/{10.2991/jsta.d.201208.001}
https://www.atlantis-press.com/journals/jsta
http://creativecommons.org/licenses/by-nc/4.0/


482 P. Jamshidi et al. / Journal of Statistical Theory and Applications 19(4) 481–486

standard density function of X ∼ ESN (0, 1, 𝜀):

fesn (x; 0, 1, 𝜀) =
⎧
⎪
⎨
⎪
⎩

1
√2𝜋

exp
(
− x2

2 (1 + 𝜀)2
)
, x < 0

1
√2𝜋

exp
(
− x2

2 (1 − 𝜀)2
)
, x ≥ 0

, (1)

Note that, fesn (x; 𝜃, 𝜎, 𝜀) = 1
𝜍 fesn

(
x−𝜃
𝜍 ; 0, 1, 𝜀

)
, and it has the same range of skewness as the skew-normal distribution investigated by Refs.

[14–16]. The standard random variable X ∼ ESN (𝜃, 𝜎, 𝜀) has the following stochastic representation:

X = 𝜃 + 𝜎 (1 − U) (1 − 𝜀) |Z1| − 𝜎U (1 + 𝜀) |Z2|, (2)

whereU,Z1 and Z2 are independent, for which P (U = 1) = (1 + 𝜀) /2 = 1− P (U = 0), and Z1 and Z2 are the standard normal distributed.

The mean and variance of the random variable X ∼ ESN (𝜃, 𝜎, 𝜀) respectively are

E (X) = 𝜃 − 4𝜎𝜀
√2𝜋

, Var (X) = 𝜎2

𝜋 [(3𝜋 − 8) 𝜀2 + 𝜋] . (3)

To see more statistical details of the ESN distribution, refer to the Refs. [1,3].

To obtain the ML estimates of the X ∼ ESN (𝜃, 𝜎, 𝜀), Ref. [3] as well as Ref. [1] considering the sample X = (X1, … ,Xn)⊤ and its order
statistic of the sample X(1) ≤ X(2) ≤ … ≤ X(n), have assumed that there exists the auxiliary integer k such that the first k-th samples come
from the left half-normal and the remaining samples from the right half-normal. Finally, by considering the possible values of k = 0, n
(corresponds to right/left half-normal) and other values between these two values which lead to (n − 1) half-open intervals in the form of
[X(j),X(j+1)] ; j = 1, … , (n − 1), and using the numerical method, they have obtained the (n + 1) plausible ML estimates and choose the
one with the lowest likelihood values as theML estimates of the ESN parameters. (See full details of this method and statistical properties
of the ESN family in Ref. [3].) As previously mentioned, some problematic issues emerge within this method which is later discussed in
Section 4. Moreover, we have used an especial method of constructing the ESN family with mixture models and applied an EM-algorithm
to have the modifiedML estimates of the ESN family parameters in the Section 3.

3. ML ESTIMATES OF THE ESN PARAMETERS USING AN EM-ALGORITHM

3.1. ML Estimates

In fact the location-scale ESN distribution is the reparameterization of a mixture of left- and right half-normal (RHN) densities with special
component probabilities as follows:

fesn
(
x|𝜃, 𝜎1, 𝜎2

)
= 2𝜋𝜙

(
x|𝜃, 𝜎1

)
I(−∞,𝜃) (x) + 2 (1 − 𝜋)𝜙

(
x|𝜃, 𝜎2

)
I(𝜃,+∞) (x) , (4)

where 𝜋 = 𝜎1/ (𝜎1 + 𝜎2). Note that in this form, the scale parameter 𝜎 and skewness parameter recover as in the form of 𝜎 = (𝜎1 + 𝜎2) /2
and 𝜀 = (𝜎1 − 𝜎2) /2𝜎.
By using an EM-algorithm to obtain the ML estimates of the ESN parameters Θ = (𝜃, 𝜎1, 𝜎2)⊤, for each i.i.d. sample X = (X1, … ,Xn)⊤ ∼
ESN (Θ), by using auxiliary (latent) variables Z = (Z1, … ,Zn)⊤ (i.e., completed data D = (X,Z)⊤, where in terms of the components of the
mixture (4) can be equivalently represented as

{
Xi|Zi = 1 ∼ LHN (𝜃, 𝜎1)
Xi|Zi = 0 ∼ RHN (𝜃, 𝜎2)

, i = 1, … , n, (5)

whereLHN andRHNdenotes the left- and right half-normal distribution, respectively andZi ∼ Binomial (1, 𝜋) ; i = 1, … , n is amultinomial
(component-label) vector with probability mass function P (Zi = zi) = 𝜋zi (1 − 𝜋)1−zi , for which zi = 0, 1; i = 1, … , n. So the augmented
(completed) log-likelihood function is in the form of

𝓁
(
Θ|D

)
= −n log (𝜎1 + 𝜎2) −

1
2

n

∑
i=1

[Zi

(
Xi − 𝜃
𝜎1

)2

+ (1 − Zi)
(
Xi − 𝜃
𝜎2

)2

] , (6)

where Θ = (𝜃, 𝜎1, 𝜎2)⊤.
The conditional expectation of latent variables is ̂zi = E [Zi|Θ̂, xi] = I(−∞,𝜃̂

) (xi). Now, the E-Step on the (k + 1) th iteration of the EM-

algorithm (Ref. [17]) requires the calculation of Q-function, i.e., in the form of Q (Θ|D) = EΘ [𝓁 (Θ|D)]. So,Pdf_Folio:482
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E-Step:

Q
(
Θ|D

)
= −n log (𝜎1 + 𝜎2) −

1
2

n

∑
i=1

[ ̂zi
(
xi − 𝜃
𝜎1

)2

+ (1 − ̂zi)
(
xi − 𝜃
𝜎2

)2

] . (7)

M-steps:

M-step 1: Update 𝜃 by

̂𝜃 =
∑n

i=1
[ ̂zi𝜎2

2 + (1 − ̂zi)𝜎2
1 ]Xi

∑n

i=1
[ ̂zi𝜎2

2 + (1 − ̂zi)𝜎2
1 ]

.

M-steps 2–3: Update 𝜎j, j = 1, 2, by solving the following stressed cubic equation:

𝜎3
j + p𝜎j + q = 0; j = 1, 2,

where p = − 1
n

n

∑
i=1

̂zij (xi − 𝜃)2 and q = p𝜎i, for which ̂zij = ̂ziI(j=1) + (1 − ̂zi) I(j=2). Note that p < 0 and q < 0, so the cubic equation

has unique just root in the (0, +∞) interval. The EM-algorithm must be iterated so that a sufficient convergence rule is satisfied, e.g. if
‖Θ̂(k+1) − Θ̂(k) ≤ 𝜀‖ (see Ref. [18]).

3.2. Model Selection

In this paperwehave justESN family butwith different numericalML estimate types, thereforewe compare differentESN distributions based
on different estimated parameters (through mentioning different numerical approaches) to better fit on the simulated and real datasets.
The Akaike information criteria (AIC; Ref. [19]) is in the form of AIC = 2k − 2𝓁

(
Θ̂|x

)
, where 𝓁

(
Θ̂|x

)
is the maximized log-likelihood

function, the Kolmogorov–Smirnov (K-S) and Anderson–Darling (A-D) statistic tests are implemented to choose more suitable models. The
one-sample K-S statistic is given by Dn = supx|Fn (X)− F (X; Θ) |, where supx is the supremum of the set of distances between the empirical
distribution function Fn (⋅) (Ref. [20]) and target ESN distribution function F (⋅), and the A-D statistic is given by A2 = −n − S, where
S = ∑n

i=1

2i − 1
n [lnF (Xi; Θ) − ln (1 − F (Xn+1−i; Θ))], for the target distribution F (⋅; Θ) with sample X = (X1, … ,Xn)⊤ ∼ ESN (Θ). The

minimum values of the mentioned criteria choose the more suitable model (and as a result, better parameter estimates).

4. NUMERICAL STUDIES

In this section, we simulate the some strongly and weakly skewed ESN samples and use the proposedML estimates (denoted by Pr-ML) to
evaluate the ordinaryML estimates (denoted by Or-ML) which correspond to Refs. [1,3]. Then we apply the bothML estimation methods
to some real datasets. The implementation of the necessary algorithms is based on the R software version 3.5.2 with a core i7 760 processor
2.8 GHz, and the relative tolerance of 10−3 is used for convergence of the EM-algorithms.

4.1. Simulations

In this part, we consider 10,000 samples of size n = 50, 100, and 250 from various weak and moderate skewness 𝜀 = 0.5, −0.5, and strong
skewness 𝜀 = 0.85, −0.95, respectively, with standard location-scale parameter values. We recorded the means and standard deviations of
the Pr-ML and Or-ML estimates of parameters in Table 1. The results show the performance of the Pr-ML estimates in each sample size.

4.2. Applications

In this section, considering four various real datasets, we show the performance of the proposed Pr-ML estimates in applications. All of
ESN parameters estimates and criteria are given in Table 2, and the fitted ESN densities based on the two approaches Pr-ML and Or-ML
estimates are curved on the histograms of the mentioned datasets in Figure 1.

The first dataset is corresponds to the “Tstop” component of the “Bronchiolitis obliterans syndrome after lung transplants” called “bosms3”
and available in the “flexsurv” package of R software. Both Pr-ML andOr-ML estimates satisfy the purely skewed right half-normal (𝜀 = −1)
distributions and the criteria are approximately identical on the dataset (see, e.g., the Table 2 and top-left of the Figure 1).

The second dataset is corresponds to the “weight” component of the “Weight versus age of chicks on different diets” called “ChickWeight” and
it is available in the “datasets” package of R software. In this case, although the Or-ML and Pr-ML estimates are close (see, e.g., the Table 2
and top-right of the Figure 1), but all of the criteria prefer the fitted ESN distribution based on the Pr-ML to Or-ML estimates.Pdf_Folio:483
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Table 1 Mean and standard deviations (SDs) of the 10,000 times Or-ML and Pr-ML estimates of the ESN distribution.

Parameters ML n = 50 n = 100 n = 250

Mean SD Mean SD Mean SD

𝜃 (0)
Or-ML −0.1026 0.1637 0.0837 0.0936 −0.0657 0.0746
Pr-ML −0.1017 0.1726 0.0866 0.0894 −0.0719 0.0563

𝜍 (1)
Or-ML 1.0258 0.0403 1.0137 0.0304 0.9846 0.0307
Pr-ML 1.0144 0.0397 1.0003 0.0294 0.9930 0.0308

𝜀 (0.05) Or-ML 0.0618 0.0106 0.0589 0.0095 0.0440 0.0082
Pr-ML 0.0585 0.0098 0.0558 0.0094 0.0528 0.0080

𝜃 (0)
Or-ML 0.1134 0.2016 0.1037 0.1073 0.0589 0.0374
Pr-ML 0.1076 0.2113 0.0937 0.0783 0.0593 0.0412

𝜍 (1)
Or-ML 1.0312 0.0553 1.0207 0.0494 1.0201 0.0365
Pr-ML 1.0189 0.0388 1.0054 0.0307 1.0036 0.0340

𝜀 (−0.5) Or-ML −0.5303 0.0128 −0.5203 0.0097 −0.5176 0.0066
Pr-ML −0.5274 0.0078 −0.5148 0.0071 −0.5104 0.0061

𝜃 (0)
Or-ML 0.1981 0.1803 −0.1037 0.1006 0.0579 0.0793
Pr-ML 0.1805 0.1891 −0.0937 0.0954 0.0667 0.0534

𝜍 (1)
Or-ML 1.0537 0.0683 1.0365 0.0546 1.0311 0.0397
Pr-ML 1.0203 0.0442 1.0112 0.0410 1.0103 0.0385

𝜀 (0.85) Or-ML 0.9204 0.0983 0.9048 0.0784 0.8910 0.0719
Pr-ML 0.8399 0.0068 0.8401 0.0065 0.8411 0.0059

𝜃 (0)
Or-ML 0.1907 0.1887 0.1117 0.0936 0.0794 0.0864
Pr-ML 0.1870 0.1804 0.0946 0.0911 0.0642 0.0570

𝜍 (1)
Or-ML 1.0497 0.0702 1.0405 0.0528 1.0352 0.0401
Pr-ML 1.0286 0.0513 1.0201 0.0465 1.0112 0.0389

𝜀 (−0.95) Or-ML −0.9987 0.0057 −0.9902 0.0102 −0.9893 0.0096
Pr-ML 0.9601 0.0113 −0.9578 0.0094 −0.9523 0.0075

ESN, epsilon-skew-normal;ML,maximum likelihood; Pr-ML, proposedmaximum likelihood;Or-ML, ordinarymaximum likelihood.

Table 2 The Or-ML and Pr-ML estimates of the fitted ESN distributions on four real datasets.

Data ML Parameter Criteria

𝜃 𝜎 𝜀 AIC K-S A-D

1st Data
Or-ML 0.0246 1.8938 −1.0000 2108.798 0.0417 1.4202
Pr-ML 0.0246 1.8939 −1.0000 2108.841 0.0416 1.4169

2nd Data
Or-ML 43.9999 55.2043 −0.9384 6317.510 0.1047 12.8735
Pr-ML 40.9727 55.5884 −0.9569 6291.083 0.0945 8.3241

3rd Data
Or-ML 0.9790 0.2994 −0.0578 3643.910 0.0551 62.1247
Pr-ML 1.1461 0.2919 0.3249 3015.756 0.0343 13.3147

4th Data
Or-ML 4.4999 0.2726 −0.6772 4167.713 0.3357 592.7232
Pr-ML 4.2438 0.3771 −0.6155 893.682 0.0796 4.3623

ESN, epsilon-skew-normal;ML,maximum likelihood; Pr-ML, proposedmaximum likelihood;Or-ML, ordinarymaximum likelihood;
K-S, Kolmogorov–Smirnov; A-D, Anderson–Darling. 

The third dataset is corresponds to the “Yearly Treering Data” called “treering” and it is available in the “datasets” package of R software.
In this case, all of the criteria strongly prefer the fitted ESN distribution based on the Pr-ML to Or-ML estimates (see, e.g., the Table 2 and
bottom-left of the Figure 1).

The fourth dataset is corresponds to the “mag” component of the “Locations of Earthquakes off Fiji” called “quakes” and it is available in the
“datasets” package of R software. In this case, also all of the criteria strongly prefer the fitted ESN distribution based on the Pr-ML toOr-ML
estimates (see, e.g., the Table 2 and bottom-right of the Figure 1).

5. CONCLUSION

We have proposed and implemented an EM-type algorithm to estimate the well-known ESN family parameters by applying the special
stochastic representation. The proposed estimation methodology has better ESN distribution fitting, especially in the strong skewness. The
Pdf_Folio:484
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Figure 1 Histograms of the real datasets with the curved fitted epsilon-skew-normal (ESN) densities based on the
proposed maximum likelihood (Pr-ML) and ordinary maximum likelihood (Or-ML) estimates.

performance of the proposed methodology is illustrated using the simulation studies and four real datasets. The performances of the ESN
family have shown on many statistical models to cover the asymmetry, e.g., Refs. [3,7,10]. In fact, this methodology can be affronted on
them to modify their parameter estimations.
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