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ABSTRACT
This paper describes the classical and Bayesian estimation for the parameters of the Burr Type XII distribution based on gen-
eralized progressive Type I hybrid censored sample. We first discuss the maximum likelihood estimators of unknown parame-
ters using the expectation-maximization (EM) algorithm and associated interval estimates using Fisher information matrix. We
then derive the Bayes estimators with respect to different symmetric and asymmetric loss functions. In this regard, we use Lind-
ley’s approximation and importance sampling methods. Highest posterior density (HPD) intervals of unknown parameters are
constructed as well. The results of simulation studies and real data analysis are conducted to compare the performance of the
proposed point and interval estimators.
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1. INTRODUCTION

The Burr Type XII (BXII) distribution first appears as part of the Burr system of distributions which was introduced by Burr (Burr [1]). The
BXII distribution is becoming increasingly used in the contexts of lifetime data analysis, reliability analysis, quality control, insurance risk
and actuarial science in order to reduce the likelihood of failure. In the recent past few years, this distribution has gained some attention
among researchers, see for example, Gunasekera [2] and Panahi [3]. The probability density function (PDF) and cumulative distribution
function (CDF) of the BXII distribution are given by, respectively,

fBXII(x; 𝛼, 𝛽) = 𝛼𝛽x𝛽−1(1 + x𝛽)−(𝛼+1); x > 0, (1)

and

FBXII(x; 𝛼, 𝛽) = 1 − (1 + x𝛽)−𝛼; x > 0.

The hazard rate function is

HRBXII(t; 𝛼, 𝛽) = 𝛼𝛽t𝛽−1(1 + t𝛽)−1,

where, 𝛼 > 0, 𝛽 > 0 are the shape parameters. The shape of the hazard function of the BXII distribution depends only on the parameter 𝛽 as

• For 𝛽 > 0, the hazard function is eventually decreasing.

• For 𝛽 > 1, the hazard function is unimodal.

• For 𝛽 ≤ 1, the hazard function is decreasing.
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Moreover, There are many situations including reliability and life-testing experiments where observed data are censored in nature. Type I
and Type II censoring schemes are the twomost commonly used censoring schemes. The hybrid censoring scheme is amixture of the Type I
and Type II censoring schemes which first introduced by Epstin [4]. Some recent studies on hybrid censoring scheme have been carried out
by many authors including Gupta and Singh [5] and Panahi and Sayyareh [6]. One of the traditional defects in the Type I, Type II or hybrid
censoring schemes is that they do not allow for removal of units at points other than the final point of the experiment. To deal with this
problem, a more general censoring scheme called progressive Type II censoring (PC) has been introduced. Moreover, Kundu and Joarder
[7] proposed the progressive hybrid censoring (PHC) scheme. Many authors have discussed the estimation procedure under PC and PHC
schemes. See, for example, Lin et al. [8], Panahi [9].

One limitation of the PHC scheme is that it cannot be applied when very few failures may occur before time T. So, Cho et al. [10] introduced
generalized progressive hybrid censoring scheme (GPHCS) which not only control the experiment within a proper testing period, but also
guarantee certain number of failures in testing procedure. It can be described as follows. Suppose that n independent items are put on a life
test and the integers k,m ∈ {1, 2, ..., n} is previously fixed such that k < m. Also, T (T ∈ (0,∞)) is a prefixed time point and (R1,R2, ...,Rm)
is also prefixed integers satisfying ∑m

j=1 Rj + m = n. At the first failure time, say X1∶m∶n, R1 surviving units are randomly selected and
removed from the experiment. Similarly, at the time of the second failure, sayX2∶m∶n,R2 surviving units are removed, and so on. This process
continues until, immediately following the terminated time T⋇ = max {Xk∶m∶n,min(Xm∶m∶n,T)}, at this time all the remaining units are
removed from the experiment. Therefore, under GPHCS, we have one of the following types of observations:

Case1 ∶ X1∶m∶n,X2∶m∶n,⋯ ,Xk∶m∶n if T < Xk∶m∶n < Xm∶m∶n,

Case2 ∶ X1∶m∶n,⋯ ,Xk∶m∶n,⋯ ,X𝜈∶m∶n if Xk∶m∶n < T < Xm∶m∶n,

Case3 ∶ X1∶m∶n,⋯ ,Xk∶m∶n,⋯ ,Xm∶m∶n if Xk∶m∶n < Xm∶m∶n < T.

Note that for Case 2, X𝜈∶m∶n < T < X𝜈+1∶m∶n and X𝜈+1∶m∶n, ...,Xm∶m∶n are not observed. For Case 3, T < Xk∶m∶n < Xm∶m∶n and
Xk+1∶m∶n, ...,Xm∶m∶n are not observed.

The generalized progressive hybrid censored samples have been investigated for instance by Cho et al. [11], Gorny and Cramer [12], Koley
and Kundu [13] and Mohie El-Din et al. [14]. In this paper, we consider the analysis of generalized progressive hybrid censored lifetime
data when the lifetime of each experimental unit follows a BXII distribution, and we try to compute the MLE’s and Bayesian estimates of
the unknown parameters. The rest of the paper is organized as follows: In Section 2, we obtain the maximum likelihood estimators of the
unknown parameters of the BXII distribution using the EM algorithm. Using missing information principle, the asymptotic confidence
intervals are also constructed. In Section 3, the Bayesian estimates are computed using Lindley’s and Markov Chain Monte Carlo (MCMC)
techniques. The highest posterior density (HPD) credible intervals with some calculations are also constructed as well. Simulation results
of the different methods are presented in Section 4. A real set of data is analyzed in Section 5, and in Section 6, we conclude the paper.

2. EM ALGORITHM

Let X1∶n,X2∶n, ...,Xn∶n be an ordered sample of n independent units obtained from a BXII as defined in Equation (1). Based on the Cases 1,
2 and 3 of the GPHCS, the likelihood function is

(𝛼, 𝛽) = 𝜔
∏
j=1

m

∑
k=j

(1 + Rk)(𝛼𝛽)𝜔
𝜔
∏
j=1

x𝛽−1j (1 + x𝛽j )
−𝛼(1+Rj)−1𝜂1. (2)

Here, Xj = Xj∶m∶n and also, 𝜔 = k, 𝜂1 = 1 for Case 1, 𝜔 = 𝜈, 𝜂1 = (1 + T𝛽)−𝛼R
⋇
𝜈+1 for Case 2 and 𝜔 = m, 𝜂1 = 1 for Case 3. Based on the

observed data, the log-likelihood function for combined Cases 1, 2 and 3 can be written as

l(𝛼, 𝛽) = ln(𝛼, 𝛽) = 𝜔(ln𝛼 + ln𝛽) + (𝛽 − 1)
𝜔
∑
j=1

ln(xj) −
𝜔
∑
j=1
{𝛼(1 + Rj) + 1}ln(1 + x𝛽j ) − 𝜂2 (3)

Here 𝜂2 = (0, 𝛼R⋇𝜈+1ln(1+ T𝛽), 0) for (Cases 1, 2 and 3). Note that the maximum likelihood estimators of the unknown parameters 𝛼 and
𝛽 can be obtained by solving the following likelihood equations:

𝜕l(𝛼, 𝛽)
𝜕𝛼 = 𝜔

𝛼 −
𝜔
∑
j=1

(1 + Rj)ln(1 + x𝛽) − 𝜂3 = 0 (4)

𝜕l(𝛼, 𝛽)
𝜕𝛽 = 𝜔

𝛽 +
𝜔
∑
j=1

ln(xj) −
𝜔
∑
j=1
{𝛼(1 + Rj) + 1}

ln(xj)

1 + x−𝛽j
− 𝜂4 = 0 (5)
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Here 𝜂3 = (0, R⋇𝜈+1ln(1 + T𝛽), 0) and 𝜂4 = (0, 𝛼R⋇𝜈+1 lnT
1+T−𝛽 , 0) for (Cases 1, 2 and 3).

It is observed that it is difficult to solve likelihood equations analytically due to the associated form of likelihood function. So, we use the
EM algorithm (Dempster et al. [15]) to compute them. Suppose that X = (X1,X2,⋯ ,X𝜔) denotes the observed and (Zj,Zc) represent the
censored data, where, Zj = (Zj1 ,Zj2 ,⋯ ,ZjRj ) and Z

c = (Z1,Z2,⋯ ,R⋇𝜈+1). The log-likelihood function of (𝛼, 𝛽) given the complete sample
is

lC(𝛼, 𝛽) = {
∇ Case1
∇ +∇c Case2
∇ Case3,

(6)

where,

∇ = nln𝛼 + nln𝛽 + (𝛽 − 1)
𝜔
∑
j=1

lnxj − (𝛼 + 1)
𝜔
∑
j=1

ln(1 + x𝛽j )

+(𝛽 − 1)
𝜔
∑
j=1

Rj

∑
k=1

E[lnZjk|Zjk > xj] − (𝛼 + 1)
𝜔
∑
j=1

Rj

∑
k=1

E[ln(1 + Z𝛽jk)|zjk > xj]

∇c = (𝛽 − 1)
R⋇𝜈+1
∑
p=1

E[ln(Zc
p)|Zc

p > T] − (𝛼 + 1)
R⋇𝜈+1
∑
p=1

E[ln(1 + (Zc
p)𝛽)|Zc

p > T]

The E-step of the EM-iteration needs the following conditional expectations:

♭1(c, 𝛼, 𝛽) = E[lnZjk|Zjk > c] = (SBXII(c))−1 ∫
∞

c
lnxfBXII(x)dx

♭2(c, 𝛼, 𝛽) = E[ln(1 + Z𝛽jk)|Zjk > c] = (SBXII(c))−1 ∫
∞

c
ln(1 + x𝛽)fBXII(x)dx

♭3(T, 𝛼, 𝛽) = E[lnZ′p|Z′p > T] = (SBXII(T))−1 ∫
∞

T
lnxfBXII(x)dx

♭4(T, 𝛼, 𝛽) = E[ln(1 + (Z′p)𝛽)|Z′p > T] = (SBXII(T))−1 ∫
∞

T
ln(1 + x𝛽)fBXII(x)dx

TheM-step in a EM-iteration is maximizing the likelihood function based on complete sample over (𝛼, 𝛽), with the missing values replaced
by their conditional expectations.

Further, we show the existence and uniqueness of the ML estimates of the parameters of the BXII distribution based on GPHCS data using
the graphical method (Ateya [16]) as follows:

♢ Choose certain Case of censored data as n = 20,m = 18, k = 16,T = 2,R9 = 2,Rj = 0, j ≠ 9).

♢ Plot the curves of the equations 𝜕(l(𝛼, 𝛽))/𝜕(𝛼) = 0 and 𝜕(l(𝛼, 𝛽))/𝜕(𝛽) = 0 (Figure 1).

♢ Figure 1 indicates that there exist one intersection point (1.0029, 1.1202). So, we can say that the solution of the 𝜕(l(𝛼, 𝛽))/𝜕(𝛼) = 0 and
𝜕(l(𝛼, 𝛽))/𝜕(𝛽) = 0 exists and is unique. We observed a similar pattern in other Cases of the GPHCS as well.

2.1. Approximate Confidence Interval

In this subsection, we obtain the observed Fisher information matrix IX(𝛼, 𝛽) using the missing information principle. It can be used to
construct the approximate confidence intervals (ACIs). Therefore,

IX(𝛼, 𝛽) = IW(𝛼, 𝛽) − IZ|X(𝛼, 𝛽), (7)

where, IW(𝛼, 𝛽), IX(𝛼, 𝛽) and IZ|X(𝛼, 𝛽) are the complete, observed andmissing informationmatrix respectively. It is to be noted that we have

IW(𝛼, 𝛽) = −E(𝛼,𝛽)
⎡
⎢
⎢
⎢
⎣

𝜕2lC(𝛼, 𝛽)
𝜕𝛼2

𝜕2lC(𝛼, 𝛽)
𝜕𝛼𝜕𝛽

𝜕2lC(𝛼, 𝛽)
𝜕𝛽𝜕𝛼

𝜕2lC(𝛼, 𝛽)
𝜕𝛽2 .

⎤
⎥
⎥
⎥
⎦

(8)
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Figure 1 maximum likelihood estimator (MLEs) of
𝛼 and𝛽 graphically.

Further, we have

I(j)Z|X(𝛼, 𝛽) = −E(𝛼,𝛽)
⎡
⎢
⎢
⎢
⎣

𝜕2
𝜕𝛼2 ln(f(zjk|xj∶m∶n, 𝛼, 𝛽))

𝜕2
𝜕𝛼𝜕𝛽 ln(f(zjk|xj∶m∶n, 𝛼, 𝛽))

𝜕2
𝜕𝛽𝜕𝛼 ln(f(zjk|xj∶m∶n, 𝛼, 𝛽))

𝜕2
𝜕𝛽2 ln(f(zjk|xj∶m∶n, 𝛼, 𝛽))

⎤
⎥
⎥
⎥
⎦

Therefore, the expected missing information can then be computed as

IZ|X (𝛼, 𝛽) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

k

∑
j=1

RiI(j)Z|X (𝛼, 𝛽), Case1

𝜈
∑
j=1

RiI(j)Z|X (𝛼, 𝛽) + R⋇𝜈+1I⋇Z|X (𝛼, 𝛽), Case2

m

∑
j=1

RiI(j)Z|X (𝛼, 𝛽) Case3.

where I(j)Z|X(𝛼, 𝛽) and I⋇Z|X(𝛼, 𝛽) are the information matrix of a single observation for the truncated BXII distribution with left truncation
at, xj and T, respectively. Therefore, using the asymptotic normality of the MLE, the ACIs for the parameters 𝛼 and 𝛽 are given by(
𝛼̂ − Z𝛾/2√Var(𝛼̂) , 𝛼̂ + Z𝛾/2√Var(𝛼̂)

)
, and

(
̂𝛽 − Z𝛾/2√Var( ̂𝛽) , ̂𝛽 + Z𝛾/2√Var( ̂𝛽)

)
.

3. BAYESIAN ETIMATION

3.1. The Prior and Posterior Distributions

In this section, we discuss Bayesian estimates of the unknown parameters of the BXII distribution under GPHCS using the squared error
(SE) and linex (LI) loss functions. These loss functions are defined as, respectively,

LSE(G(𝛼, 𝛽), Ĝ(𝛼, 𝛽)) = (Ĝ(𝛼, 𝛽) − G(𝛼, 𝛽))2

LLI(G(𝛼, 𝛽), Ĝ(𝛼, 𝛽)) = eh (Ĝ(𝛼,𝛽)−G(𝛼,𝛽)) − h
(
Ĝ(𝛼, 𝛽) − G(𝛼, 𝛽)

)
− 1; h ≠ 0.

Here Ĝ(𝛼, 𝛽) denotes an estimate of some parametric function G(𝛼, 𝛽). We assume that 𝛼 and 𝛽 are independently distributed as 𝛾𝛼(a1, b1)
and 𝛾𝛽(a2, b2) priors, respectivelty. The join prior density function is

𝜋(𝛼, 𝛽) = 𝛾𝛼(a1, b1)𝛾𝛽(a2, b2),
Pdf_Folio:550
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where 𝛾𝛼(a1, b1) and 𝛾𝛽(a2, b2) are the gamma distributions. So, the posterior density function of (𝛼, 𝛽) given data can be written as

𝜋(𝛼, 𝛽|X) ∝ (𝛼, 𝛽|X)𝜋(𝛼, 𝛽),
Therefore,

𝜋(𝛼, 𝛽 |X ) ∝

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

𝜁𝛼k+a1−1𝛽k+a2−1e−𝛼b1−𝛽b2
k
∏
j=1

x𝛽−1j (1 + x𝛽j )
−𝛼(1+Rj)−1 Case1

𝜁𝛼𝜈+a1−1𝛽𝜈+a2−1e−𝛼b1−𝛽b2
𝜈
∏
j=1

x𝛽−1j (1 + x𝛽j )
−𝛼(1+Rj)−1 Case2

𝜁𝛼m+a1−1𝛽m+a2−1e−𝛼b1−𝛽b2
m
∏
j=1

x𝛽−1j (1 + x𝛽j )
−𝛼(1+Rj)−1 Case3

(9)

where 𝜁 is
k

∏
j=1

m

∑
k=j

(1+ Rk),
𝜈
∏
j=1

m

∑
k=j

(1+ Rk)(1+ T𝛽)−𝛼R
⋇
𝜈+1 and

m

∏
j=1

m

∑
k=j

(1+ Rk) for Cases 1, 2 and 3 respectively. Thus, the Bayesian estimate

of G(𝛼, 𝛽) under SE loss function is evaluated as

^
GSE(𝛼, 𝛽) = E[G(𝛼, 𝛽)|X] = ∬G(𝛼, 𝛽)𝜋(𝛼, 𝛽|X)d𝛼 d𝛽. (10)

Similarly for the LI loss function, we have

^
GLI(𝛼, 𝛽) = −1

h
lnE[e−hG(𝛼,𝛽)|X]

= −1
h
ln[∬ e−hG(𝛼,𝛽)𝜋(𝛼, 𝛽|X)d𝛼 d𝛽]. (11)

Unfortunately, we cannot obtain (10) and (11) analytically. So, we propose two approximation methods for evaluating the Bayes estimates
of 𝛼 and 𝛽, namely, Lindley’s approximation and MCMCmethod.

3.2. Lindley’s Approximation

In this section, Lindley’s approximation (Lindley [17]) is applied to gain Bayes estimates of 𝛼 and 𝛽 . Based on the Lindley’s approximation,
the Bayesian estimates of 𝛼 and 𝛽 under SE and LI loss functions are

Ĝ(𝛼, 𝛽) ≈ G(𝛼, ̂𝛽) + .5[(ℏ̂11 + 2ℜ̂1ℏ̂1) ̂𝜎11 + (ℏ̂21 + 2ℜ̂2ℏ̂1) ̂𝜎21

+(ℏ̂12 + 2ℜ̂1ℏ̂2) ̂𝜎12 + (ℏ̂22 + 2ℜ̂2ℏ̂2) ̂𝜎22 + §1(ℏ̂1𝜎11 + ℏ̂2 ̂𝜎12)

+§2(ℏ̂1 ̂𝜎21 + ℏ̂2 ̂𝜎22)] (12)

and

§1 = ̂l111 ̂𝜎11 + ̂l121 ̂𝜎12 + ̂l211 ̂𝜎21 + ̂l221 ̂𝜎22, §2 = ̂l211 ̂𝜎11 + ̂l122 ̂𝜎12 + ̂l212 ̂𝜎21 + ̂l222 ̂𝜎22 respectively. Where, ℜ̂1 = b1−1
𝛼̂ − a1, ℜ̂2 = b2−1

̂𝛽
− a2, and

̂𝜎ij are the (ij)th elements of matrix [ − 𝜕2l(𝛼, 𝛽)/𝜕𝛼𝜕𝛽 ]−1 ; i, j = 1, 2. For the SE loss function, we get that

G(𝛼, 𝛽) = 𝛼 , ℏ̂1 = 1 , ℏ̂11 = 0 , ℏ̂2 = 0, ℏ̂22 = 0 ℏ̂12 = 0

and the corresponding Bayesian estimate of 𝛼 is 𝛼SE = E[𝛼|X]. Also, the Bayesian estimate of 𝛼 under LI loss function is obtained as

𝛼LI = −1
h
ln {E

(
e−h𝛼|X

)
}

where G(𝛼, 𝛽) = e−h𝛼, ℏ̂1 = −he−h𝛼, ℏ̂11 = h2e−h𝛼, ℏ̂2 = ℏ̂22 = ℏ̂12 = ℏ̂21 = 0. Proceeding similarly, the Bayesian estimate of 𝛽 under
SE loss function can be obtained as 𝛽SE = E[𝛽|X]. Where, G(𝛼, 𝛽) = 𝛽, ℏ̂2 = 1, ℏ̂1 = ℏ̂22 = ℏ̂12 = ℏ̂21 = 0.

Also, the Bayesian estimate of 𝛽 under LI loss function is obtained as

𝛽LI = −1
h
ln {E

(
e−h 𝛽|X

)
} ; h ≠ 0
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G(𝛼, 𝛽) = e−h 𝛽, ℏ̂2 = −he−h 𝛽, ℏ̂22 = h2e−h 𝛽, ℏ̂1 = ℏ̂11 = ℏ̂12 = ℏ̂21 = 0

Moreover, ̂l11 = 𝜕2 l(𝛼,𝛽)
𝜕𝛼2 |𝛼=𝛼̂,𝛽= ̂𝛽, ̂l22 = 𝜕2 l(𝛼,𝛽)

𝜕𝛽2 |𝛼=𝛼̂,𝛽= ̂𝛽, ...

3.3. MCMC Method and HPD Credible Intervals

TheMCMCmethodology serves as an effective tool for generating random samples on complex Bayesianmodels. The importance sampling
method provides commonly used in MCMC methods. So, we use this method to compute the Bayes estimates and construct the HPD
credible intervals of unknown parameters. Based on the independent proposed priors, the posterior density functions of 𝛼 and 𝛽 can be
rewritten as

𝜋(𝛼, 𝛽|X) ∝ 𝛾𝛼|𝛽(𝜔 + a1,
𝜔
∑
j=1

(1 + Rj)ln(1 + x𝛽j ) + b1 + 𝜂3)

× 𝛾𝛽(𝜔 + a2, b2 −
𝜔
∑
j=1

ln(xj))H(𝛼, 𝛽),

where

H(𝛼, 𝛽) = e−∑𝜔
j=1 ln(1+x

𝛽
j )(

𝜔
∑
j=1

(1 + Rj)ln(1 + x𝛽j ) + b1 + 𝜂3)−(𝜔+a1).

We propose the following algorithm along the line of Kundu and Pradhan [18] to compute the Bayes estimate of G(𝛼, 𝛽), say Ĝ(𝛼, 𝛽) and
also to construct the associated HPD credible interval.

Step I : Generate 𝛽1 ∼ 𝛾𝛽(𝜔 + a2, b2 −∑𝜔
j=1 lnxj).

Step II : Given 𝛽1 generated in step I, generate 𝛼1 from 𝛾𝛼|𝛽(𝜔 + b1,∑𝜔
j=1(1 + Rj)ln(1 + x𝛽j ) + b1 + 𝜂3).

Step III : Repeat Steps I and II, M times to obtain the importance sample (𝛼1, 𝛽1), (𝛼2, 𝛽2), (𝛼M, 𝛽M).
Step IV: The Bayes estimate of G(𝛼, 𝛽)under SE and LI loss functions can be approximated as

ĜSE(𝛼, 𝛽) =
1
M ∑M

j=1 G(𝛼j, 𝛽j)H(𝛼j, 𝛽j)
1
M ∑M

j=1 H(𝛼j, 𝛽j)
(13)

and

ĜLI(𝛼, 𝛽) = −1
h
ln {

1
M ∑M

j=1 e
−hG(𝛼j,𝛽j)H(𝛼j, 𝛽j)

1
M ∑M

j=1 H(𝛼j, 𝛽j)
} (14)

We also construct the HPD intervals of 𝛼 and 𝛽 by using the method of Chen and Shao [19] (1999).

4. SIMULATION STUDY

In this section, we present simulation study to compare the performance of the classical and Bayesian estimation procedures under different
GPHCS. Extensive computations were performed using statistical software R. We simulate GPHCS for different combinations of (n,m, k,T)
from the BXII (𝛼, 𝛽) distribution. For convenience we consider the true values of unknown parameters as 𝛼 = 1.2 and 𝛽 = 1.5.
By employing an EM algorithm, the maximum likelihood estimates have been computed. Approximate expressions for the Bayesian esti-
mators have been computed using the Lindley’s approximation and importance sampling algorithm. The Bayes estimates are obtained by
assuming that 𝛼 and 𝛽 have 𝛾(a1, b1) and 𝛾(a2, b2) priors, respectively with a1 = 15, a2 = 12, b1 = 10, b2 = 10. The %95 ACIs and HPD
credible intervals for the parameters are also constructed. The HPD credible intervals are computed based on 5000 MCMC samples. We
take three different censoring schemes as follows:

Scheme 1: R1 = Rm = (n −m)/2 and Rj = 0 for j ≠ 1,m
Scheme 2: R1 = n −m and Rj = 0 for j ≠ 1.

Scheme 3: Rm = (n −m) and Rj = 0 for j ≠ m.
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Table 1 The mean values of MLEs and Bayesian estimates along with associated MSEs.

Lindely MCMC

Scheme (m, k) ̂𝛼EM ̂𝛼SE ̂𝛼LI ̂𝛼SE ̂𝛼LI

T = .9 R1 (24, 12) 1.7870 (.6999) 1.6439 (.6644) 1.4997 (.5844) 1.5651 (.3525) 1.4912 (.3414)
n = 30 R2 1.8548 (.7231) 1.7212 (.6538) 1.5618 (.4471) 1.7412 (.4444) 1.6368 (.3961)

R3 1.7021 (.5263) 1.5774 (.3862) 1.4312 (.3060) 1.6041 (.3052) 1.5357 (.2329)
R1 (28, 12) 1.5119 (.6467) 1.3923 (.4457) 1.2678 (.3655) 1.4384 (.2432) 1.3575 (.2370)
R2 1.5663 (.5489) 1.4121 (.4812) 1.2939 (.3922) 1.4603 (.3255) 1.3788 (.2373)
R3 1.4927 (.4066) 1.3777 (.3473) 1.2556 (.2514) 1.4246 (.2321) 1.3451 (.1389)

T = 1 R1 (24, 12) 1.7182 (.5769) 1.6418 (.4570) 1.4806 (.3513) 1.6236 (.3370) 1.5475 (.2446)
n = 30 R2 1.8393 (.6847) 1.7239 (.4616) 1.5615 (.3465) 1.6882 (.3277) 1.5584 (.2440)

R3 1.7029 (.5123) 1.5905 (.2933) 1.4414 (.1989) 1.7067 (.1768) 1.6324 (.1248)
R1 (28, 12) 1.4220 (.4306) 1.3540 (.3243) 1.2144 (.2201) 1.2542 (.1841) 1.2018 (.1704)
R2 1.4568 (.3791) 1.3747 (.2902) 1.2320 (.2531) 1.2941 (.2176) 1.2418 (.1925)
R3 1.3962 (.3855) 1.3402 (.2150) 1.2017 (.1682) 1.2780 (.0751) 1.2260 (.0602)

T = .9 R1 (32, 16) 1.7247 (.5141) 1.6220 (.3250) 1.4906 (.2150) 1.5993 (.1362) 1.5580 (.1257)
n = 40 R2 1.8944 (.9081) 1.7145 (.4315) 1.5908 (.3708) 1.6325 (.2787) 1.5780 (.2133)

R3 1.6594 (.4087) 1.5770 (.2637) 1.4568 (.1863) 1.5077 (.1503) 1.4599 (.1230)
R1 (36,16) 1.5045 (.3809) 1.4157 (.2590) 1.3130 (.2038) 1.4165 (.0977) 1.3797 (.0828)
R2 1.5684 (.5176) 1.4512 (.3918) 1.3496 (.3094) 1.3804 (.2075) 1.3391 (.1642)
R3 1.4471 (.2380) 1.3869 (.1339) 1.2790 (.1103) 1.3823 (.0712) 1.3459 (.0582)

T = 1 R1 (32, 16) 1.7346 (.4949) 1.6435 (.3156) 1.5095 (.2161) 1.6531 (.1681) 1.6097 (.1308)
n = 40 R2 1.8297 (.6762) 1.7060 (.4281) 1.5606 (.2977) 1.7220 (.2417) 1.6638 (.2021)

R3 1.6586 (.3726) 1.5899 (.2311) 1.4659 (.1769) 1.5375 (.1456) 1.4897 (.1215)
R1 (36, 16) 1.4447 (.1892) 1.3963 (.1309) 1.2798 (.0990) 1.4240 (.0926) 1.3856 (.0750)
R2 1.7434 (.2320) 1.4154 (.1499) 1.2941 (.1057) 1.4356 (.0947) 1.3925 (.0752)
R3 1.4352 (.1791) 1.3904 (.1226) 1.2795 (.0865) 1.3913 (.0621) 1.3537 (.0478)

MSE, mean squared error; MCMC, Markov Chain Monte Carlo.

Table 2 The mean values of MLEs and Bayesian estimates along with associated MSEs.

Lindely MCMC

Scheme (m, k) 𝛽EM 𝛽SE 𝛽LI 𝛽SE 𝛽LI
T = .9 R1 (24, 12) 1.6759 (.2715) 1.5907 (.2510) 1.4981 (.2375) 1.4024 (.2239) 1.2732 (.1902)
n = 30 R2 1.0707 (.2578) 1.6108 (.1995) 1.5180 (.0925) 1.3765 (.0869) 1.3553 (.0710)

R3 1.6516 (.1828) 1.6078 (.1733) 1.4826 (.1543) 1.5411 (.1422) 1.5069 (.1396)
R1 (28, 12) 1.6335 (.2568) 1.5948 (.2397) 1.4439 (.2090) 1.3297 (.1964) 1.3054 (.1701)
R2 1.6472 (.1701) 1.5892 (.1557) 1.4527 (.0975) 1.3607 (.0634) 1.3343 (.0590)
R3 1.6274 (.1691) 1.5961 (.1596) 1.4416 (.0900) 1.3271 (.0820) 1.3022 (.0785)

T = 1 R1 (24, 12) 1.6759 (.1499) 1.6347 (.1437) 1.4997 (.1128) 1.4887 (.1060) 1.4560 (.1030)
n = 30 R2 1.7098 (.1768) 1.6212 (.1589) 1.5205 (.0914) 1.6106 (.0683) 1.3868 (.0606)

R3 1.6565 (.1315) 1.6272 (.1211) 1.4879 (.0854) 1.5331 (.0726) 1.5059 (.0697)
R1 (28, 12) 1.6153 (.1418) 1.6314 (.1403) 1.4325 (.1011) 1.4021 (.0937) 1.3570 (.0834)
R2 1.6227 (.1563) 1.6302 (.1457) 1.4356 (.0831) 1.3666 (.0552) 1.3383 (.0517)
R3 1.6085 (.1259) 1.6317 (.1176) 1.4297 (.0708) 1.4309 (.0648) 1.3846 (.0530)

T = .9 R1 (32, 16) 1.6361 (.1052) 1.5989 (.1946) 1.5019 (.0855) 1.4099 (.0725) 1.3994 (.0636)
n = 40 R2 1.6684 (.1300) 1.5743 (.1286) 1.5233 (.0750) 1.5387 (.0359) 1.5216 (.0337)

R3 1.6260 (.0945) 1.6009 (.0873) 1.4992 (.0796) 1.4178 (.0694) 1.4044 (.0611)
R1 (36, 16) 1.6022 (.1007) 1.5775 (.0993) 1.4227 (.0673) 1.4507 (.0667) 1.4338 (.0557)

(continued)

Pdf_Folio:553



554 P. Parviz and H. Panahi. P. Parviz and H. Panahi / Journal of Statistical Theory and Applications 19(4) 547–557

Table 2 The mean values of MLEs and Bayesian estimates along with associated MSEs. (Continued)

Lindely MCMC

Scheme (m, k) 𝛽EM 𝛽SE 𝛽LI 𝛽SE 𝛽LI
R2 1.6145 (.1124) 1.5697 (.1051) 1.4694 (.0718) 1.5238 (.0278) 1.5028 (.0258)
R3 1.5905 (.0921) 1.5868 (.0825) 1.4559 (.0638) 1.4478 (.0642) 1.4293 (.0624)

T = 1 R1 (32, 16) 1.6500 (.1037) 1.6274 (.0965) 1.5168 (.0618) 1.4669 (.0614) 1.4548 (.0508)
n = 40 R2 1.6672 (.1186) 1.6251 (.1044) 1.5247 (.0684) 1.5429 (.0510) 1.5209 (.0419)

R3 1.6326 (.0886) 1.6235 (.0872) 1.5076 (.0645) 1.4682 (.0545) 1.4515 (.0529)
R1 (36, 16) 1.6064 (.0917) 1.5931 (.0874) 1.4575 (.0596) 1.4894 (.0434) 1.4692 (.0334)
R2 1.6003 (.0982) 1.6093 (.0959) 1.4600 (.0622) 1.5184 (.0244) 1.4916 (.0214)
R3 1.5942 (.0852) 1.6074 (.0787) 1.4625 (.0616) 1.4916 (.0488) 1.4678 (.0425)

MSE, mean squared error; MCMC, Markov Chain Monte Carlo.

Table 3 The ACIs and HPD credible intervals for 𝛼 and 𝛽.

𝛼 𝛽

T Scheme (m, k) ACI HPD ACI HPD

T = .9 R1 (24, 12) (.9344, 2.7197) (.8375, 2.3375) (.9800, 2.2939) (.4902, 1.4964)
n = 30 R2 (.9654, 2.9061) (.9122, 2.2947) (1.0448, 2.3448) (.4103, 1.3928)

R3 (.9091, 2.4950) (.7390, 1.8992) (.8581, 2.2480) (.5074, 1.5712)
R1 (28, 12) (.7567, 2.2823) (.5909, 1.9019) (.9972, 2.2699) (.6274, 1.3527)
R2 (.7650, 2.3676) (.7010, 1.9810) (1.0017, 2.2927) (.4704, 1.4206)
R3 (.7562, 2.2291) (.8193, 1.8892) (.9983, 2.2566) (.4084, 1.3584)

T = 1 R1 (24, 12) (.9397, 2.6172) (.9236, 2.005) (.9914, 2.2393) (.7703, 1.5099)
n = 30 R2 (.9701, 2.8885) (.9108, 2.1780) (1.0738, 2.3458) (.6580, 1.5680)

R3 (.9279, 2.4779) (1.0181, 2.0732) (.9868, 2.2468) (.6903, 1.5560)
R1 (28, 12) (.7395, 2.1049) (.7718, 1.6812) (.9914, 2.2393) (.6553, 1.4315)
R2 (.7436, 2.1699) (.5731, 1.7665) (.9906, 2.2547) (.6577, 1.4760)
R3 (.7385, 2.0540) (.8062, 1.7203) (.9924, 2.2247) (.6855, 1.4748)

T = .9 R1 (32, 16) (1.0002, 2.4490) (.8962, 1.8438) (1.1108, 2.3608) (.7789, 1.6099)
n = 40 R2 (.9412, 2.7433) (.1307, 1.2828) (1.1205, 2.2163) (.6769, 1.5792)

R3 (.9926, 2.3262) (.8434, 1.8434) (.8856, 2.1356) (.6478, 1.4578)
R1 (36, 16) (.8564, 2.1526) (.8331, 1.7041) (1.0656, 2.1389) (.8282, 1.4961)
R2 (.8697, 2.2672) (.7225, 1.7225) (1.1205, 2.2163) (.6769, 1.5792)
R3 (.8438, 2.0504) (.8360, 1.8347) (.8856, 2.1356) (.6478, 1.4578)

T = 1 R1 (32, 16) (1.0272, 2.4420) (.9564, 1.7657) (1.1267, 2.1733) (.8402, 1.4860)
n = 40 R2 (1.0441, 2.6153) (.9800, 2.1277) (1.1241, 2.2104) (.7897, 1.5510)

R3 (1.0113, 2.3059) (1.0161, 1.8946) (1.1267, 2.1385) (.9484, 1.6682)
R1 (36, 16) (.8475, 2.0420) (.7461, 1.4314) (1.0645, 2.1216) (.8135, 1.4988)
R2 (.8484, 2.0984) (.8712, 1.8350) (1.0617, 2.1388) (.7665, 1.5244)
R3 (.8546, 2.0141) (.8851, 1.7370) (1.1143, 2.1146) (.8303, 1.5211)

ACI, approximate confidence interval; HPD, highest posterior density.

The average estimates, mean squared errors (MSEs) and average confidence intervals based on 10000 replications have been reported in
Tables 1–3. For more compression, the MSEs of the proposed estimators and lengths of intervals are presented in Figures 2 and 3 for some
values of generalized progressive censoring schemes.

It can be observed that for fixed n, T and k asm increases, the average estimates and theMSEs of the parameters decreases. Also, the average
lengths of approximate and HPD intervals tend to decrease with increasing the effective sample sizem (see also, Figures 2 and 3).

For fixed m, k and T as sample size n increases the MSEs of all the estimators decreases (see also, Figure 2). Similar trend is observed for
fixed n, k andm as T increases (see also, Figure 2).Pdf_Folio:554
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Tabulated values also show that the importance sampling estimates are better choice among all rivals and for all values of n,m, k and T. In
particular, the MCMC Bayes estimates of 𝛼 and 𝛽 under LI loss function perform better than other respective estimators for all values of n,
m, k and T.

Thus, we recommend Bayesian point and interval estimations of the parameters using importance sampling algorithm.

Figure 2 The mean squared errors (MSEs) of the proposed estimators
(expectation-maximization (EM), Lindley, Markov Chain Monte Carlo (MCMC))
for different choices of n,T andm.

5. REAL DATA ANALYSIS

In order to illustrate all the inferential results established for the BXII distribution, we analyze one data set fromWingo [20]. We first make
an inference whether the BXII distribution fits the given data set. For this purpose, we compute the Kolmogorov-Smirnov (K-S) distances
between the empirical distribution and the fitted distribution functions based on MLEs, it is 0.1019, and the associated p-value is 0.9719.
The p value suggests that BXII distribution can be considered as an adequate model for the given data set. We take (R1 = 2 and Rj = 0 for
j ≠ 1) and consider different GPHCS Cases by taking selected choices ofm, k, and T values which are listed below:

Case 1: m = 18, k = 16,T = 0.8,
Case 2: m = 18, k = 8,T = 1,

Case 3: m = 18, k = 8,T = 2.

The maximum likelihood estimates and the approximate Bayesian estimates using Lindley’s approximation and MCMC algorithm are
presented in Table 4. The upper and lower bounds for the %95 approximate and HPD confidence intervals of 𝛼 and 𝛽 are presented in
Tables 5 and 6 respectively. Because we have no prior information about the unknown parameters, we assume the non-informative gamma
priors of the unknown parameters which are defined as a1 = a2 = b1 = b2 = 0. In general, the Bayes estimates are smaller than the MLEs.

6. CONCLUSIONS

In this paper, different point and interval estimation problems have taken into consideration under classical and Bayesian framework when
lifetime data following BXII distribution are observed under GPHCS. It is observed that theMLEs cannot be derived in the closed form and
Pdf_Folio:555
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Figure 3 The length of approximate confidence intervals (ACIs) and highest
posterior densities (HPDs) for different choices of n,T andm.

instead the traditionalNewton-Raphson algorithm,we suggest the EMalgorithm to compute them. By applying two different approximation
approaches like Lindley’s and the importance sampling algorithm, the Bayesian estimates of the parameters under different symmetric and
asymmetric loss functions have been obtained. Based on the EM framework and MCMC technique, the confidence intervals have also
been constructed. We compared performance of different proposed estimators using Monte Carlo simulations and observed that the Bayes
estimates based on importance sampling algorithm outperforms other proposed estimators. An illustrative example is also provided in
support of the proposed methods.

Table 4 The MLEs and Bayesian estimates of 𝛼 and 𝛽 for (n,m) = (20, 18).

Lindely MCMC

k T 𝛼̂EM 𝛼̂SE 𝛼̂LI 𝛼̂SE 𝛼̂LI

Case 1: (T < Xk < Xm) 16 .8 4.48017 4.3678 3.6591 3.8213 3.4523
Case 2: (Xk < T < Xm) 8 1 2.8606 2.8167 2.3670 2.6084 2.4212
Case 3: (Xk < Xm < T) 8 2 2.9191 2.8879 2.5179 2.8658 2.6769

k T 𝛽̂EM 𝛽̂SE 𝛽̂LI 𝛽̂SE 𝛽̂LI

Case 1: (T < Xk < Xm) 16 .8 6.8144 7.3354 6.0906 5.4495 5.2748
Case 2: (Xk < T < Xm) 8 1 5.8888 6.2755 5.2147 4.9963 4.7647
Case 3: (Xk < Xm < T) 8 2 5.9872 6.1919 5.4047 5.7884 5.3493
MCMC, Markov Chain Monte Carlo.

Table 5 The ACIs and HPD intervals of 𝛼 for (n,m) = (20, 18).

k T %95 ACIs HPD Credible Intervals

Case 1: (T < Xk < Xm) 16 .8 (1.9531, 7.0070) (1.4170, 4.3683)
Case 2: (Xk < T < Xm) 8 1 (1.2622, 5.8302) (1.0755, 3.1945)
Case 3: (Xk < Xm < T) 8 2 (1.5281, 4.3101) (1.4502, 3.8189)
ACI, approximate confidence interval; HPD, highest posterior density.
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Table 6 The ACIs and HPD intervals of 𝛽 for (n,m) = (20, 18).

k T %95 ACIs HPD Credible Intervals

Case 1: (T < Xk < Xm) 16 .8 (4.4475, 9.1813) (3.3368, 6.2481)
Case 2: (Xk < T < Xm) 8 1 (3.6823, 8.0954) (3.8160, 5.9253)
Case 3: (Xk < Xm < T) 8 2 (3.8680, 6.8192) (3.7736, 6.0916)
ACI, approximate confidence interval; HPD, highest posterior density.
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